首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Keyhole acquisition techniques have been used to reduce image acquisition times primarily in contrast agent studies and via simulation in interventional MRI procedures. More recent simulations have suggested that improved definition of an interventional device [e.g., biopsy needles, radio frequency (RF) electrodes] could be achieved by rotating the keyhole pattern in k-space so that the read out direction lies perpendicular to the device orientation in real space. This study seeks to validate the earlier predictions of improved efficacy of a rotated stripes keyhole acquisition in actual in vitro and in vivo interventional MR imaging procedures. A true-FISP sequence was modified to perform central stripes keyhole (as known as conventional keyhole) acquisitions after a full initial reference data set was acquired. The gradients of this sequence were then modified to rotate the k-space definition and the keyhole stripes by 10 degrees, 20 degrees, 30 degrees, 45 degrees, and 60 degrees from their conventional k-space orientation. Acquisitions were performed during insertion of interventional devices in phantom and in vivo RF ablation procedures, using the modified sequence selected which placed the phase encoding axis at parallel and perpendicular orientations to the devices. Resulting images were compared between the two orientations for needle width and tip accuracy. Apparent needle width was thinner and tip position more accurately determined for placement of phase encoding parallel to the needle in all cases. Rotated keyhole imaging provides the required temporal advantage of conventional keyhole imaging along with a near optimal definition of an interventional device when the phase encoding is oriented parallel to the direction of the needle motion. Magn Reson Med 42:554-560, 1999.  相似文献   

2.
Periodically rotated overlapping parallel lines with enhanced reconstruction-echo-planar imaging (PROPELLER-EPI) is a multishot technique that samples k-space by acquisition of narrow blades, which are subsequently rotated until the entire k-space is filled. It has the unique advantage that the center of k-space, and thus the area containing the majority of functional MRI signal changes, is sampled with each shot. This continuous refreshing of the k-space center by each acquired blade enables not only sliding-window but also keyhole reconstruction. Combining PROPELLER-EPI with a fast gradient-echo readout scheme allows for high spatial resolutions to be achieved while maintaining a temporal resolution, which is suitable for functional MRI experiments. Functional data acquired with a novel interlaced sequence that samples both single-shot EPI and blades in an alternating fashion suggest that PROPELLER-EPI can achieve comparable functional MRI results. PROPELLER-EPI, however, features different spatiotemporal characteristics than single-shot EPI, which not only enables keyhole reconstruction but also makes it an interesting alternative for many functional MRI applications.  相似文献   

3.
Singular value decomposition (SVD) encoding offers great promise to provide high spatial and temporal resolution required for interventional MRI (I-MRI) (1). This study investigates its efficacy when (a) objects are rotated and (b) a small device (ie, a needle) is moved within anatomic structures. It was found that SVD-encoded MRI is biased toward the reference from which encoding vectors are derived, thus providing a potential limitation under conditions in which the object has undergone significant global change. Reference images with partial device insertion may be needed to accurately resolve the device or track the object motion. Theoretically, the differences between the reference and the object being imaged suggest that SVD encoding is suboptimal (in a minimum mean squared error sense). Other encoding/reconstruction algorithms may come closer to achieving the desired advantages in spatial and temporal fidelity.  相似文献   

4.
Time-dependent phenomena are of great interest, and researchers have sought to shed light on these processes with MRI, particularly in vivo. In this work, a new hybrid technique based on EPI and using the concept of keyhole imaging is presented. By sharing peripheral k-space data between images and acquiring the keyhole more frequently, it is shown that the spatial resolution of the reconstructed images can be maintained. The method affords a higher temporal resolution and is more robust against susceptibility and chemical-shift artifacts than single-shot EPI. The method, termed shared k-space echo planar imaging with keyhole (shared EPIK), has been implemented on a standard clinical scanner. Technical details, simulation results, phantom images, in vivo images, and fMRI results are presented. These results indicate that the new method is robust and may be used for dynamic MRI applications. Magn Reson Med 45:109-117, 2001.  相似文献   

5.
Dynamic contrast‐enhanced MRI (or DCE‐MRI) is a useful tool for measuring blood flow and perfusion, and it has found use in the study of pulmonary perfusion in animal models. However, DCE‐MRI experiments are difficult in small animals such as rats. A recently developed method known as Interleaved Radial Imaging and Sliding window‐keyhole (IRIS) addresses this problem by using a data acquisition scheme that covers ( k ,t)‐space with data acquired from multiple bolus injections of a contrast agent. However, the temporal resolution of IRIS is limited by the effects of temporal averaging inherent in the sliding window and keyhole operations. This article describes a new method to cover ( k ,t)‐space based on the theory of partially separable functions (PSF). Specifically, a sparse sampling of ( k ,t)‐space is performed to acquire two data sets, one with high‐temporal resolution and the other with extended k‐space coverage. The high‐temporal resolution training data are used to determine the temporal basis functions of the PSF model, whereas the other data set is used to determine the spatial variations of the model. The proposed method was validated by simulations and demonstrated by an experimental study. In this particular study, the proposed method achieved a temporal resolution of 32 msec. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Dynamic magnetic resonance imaging (MRI) acquires a sequence of images for the visualization of the temporal variation of tissue or organs. Keyhole methods such as Fourier keyhole (FK) and keyhole SVD (KSVD) are the most popular methods for image reconstruction in dynamic MRI. This paper provides a class of adaptive keyhole methods, called adaptive FK (AFK) and adaptive KSVD (AKSVD), for dynamic MRI reconstruction. The proposed methods are based on the conventional Fourier encoding and SVD encoding schemes. Instead of the conventional keyhole methods' duplication of un-acquired data from the reference images, the proposed methods use a temporal model to depict the inter-frame dynamic changes and to estimate the un-acquired data in each successive frame. Because the model is online identified from the acquired data, the proposed methods do not require the pre-imaging process, the navigator signals, and any prior knowledge of the imaged objects. Furthermore, the new methods use the conventional keyhole encoding schemes without the bias to any particular object characters, and the temporal model for updating information is in the general form of AR process without the preference to any particular motion types. Hence, the proposed methods are designed as a generic approach to dynamic MRI, other than for any specific class of objects. Studies on dynamic MRI data set show that the new methods can produce images with much lower reconstruction error than the conventional FK and KSVD.  相似文献   

7.
A new method for MRI needle tracking within a given two-dimensional (2D) image slice is presented. The method is based on k-space investigation of the difference image between the current dynamic frame and a reference frame. Using only a few central k-lines of the difference image and a nonlinear optimization procedure, one can resolve the parameters that define the 2D sinc function that best characterizes the needle in k-space. The spatial location and orientation of the needle are determined from these parameters. Rapid needle tracking is obtained by repeated acquisitions of the same set of several central k-lines (as in a "keyhole" protocol) and repeated computation of these parameters. The calculated needle tip is depicted on the reference image by means of a graphic overlay. The procedure was tested in computer simulations and in actual MRI scans (the computations were done offline). It was demonstrated that six k-lines out of 128 usually suffice to locate the needle. The refresh rate of the needle location depends on the time required to sample the subset of k-lines, calculate the current needle location, and refresh the reference image.  相似文献   

8.
We examined the potential of the ’keyhole' technique to improve spatial resolution in perfusion-weighted MRI on whole-body imagers with standard gradient hardware. We examined 15 healthy volunteers. We acquired a high-resolution image with 256 phase-encoding steps before a bolus-tracking procedure. For the dynamic series we collected only 34 lines in the center of k-space. Data reconstruction was performed by both zero-filling and keyhole methods. The dynamic datasets, concentration-time curves calculated from user-defined regions and maps of the cerebrovascular parameters using both reconstruction methods were compared. Using keyhole series, anatomical structures could easily be defined which were not seen on the original dynamic series because of blurring due to ringing artefacts. Comparison of signal-time curves in large regions yielded no significant difference in signal loss during bolus passage. In the parameter maps truncation artefacts were significantly reduced using keyhole reconstruction. The keyhole method is appropriate for enhancing image quality in perfusion-weighted imaging on standard imagers without sacrificing time resolution or information about transitory susceptibility changes. However, it should be applied carefully, because the spatial resolution of the dynamic signal change and the cerebrovascular parameters is less than that afforded by the spatial resolution of the reconstructed images. Received: 31 August 2000 Accepted: 5 December 2000  相似文献   

9.
Traditional Fourier MR imaging (FT MRI) utilizes the Whittaker-Kotel'nikov-Shannon (WKS) sampling theorem. This theorem specifies the spatial frequency components which need to be measured to reconstruct an image with a known field of view (FOV). In this paper, we generalize this result in order to find the optimal k-space sampling for images that vanish except in multiple, possibly non-adjacent regions within the FOV. This provides the basis for "multiple region MRI" (mrMRI), a method of producing such images from a traction of the k-space samples required by the WKS theorem. Image reconstruction does not suffer from noise amplification and can be performed rapidly with fast Fourier transforms, just as in conventional FT MRI. The mrMRI method can also be used to reconstruct images that have low spatial-frequency components throughout the entire FOV and high spatial frequencies (i.e. edges) confined to multiple small regions. The greater efficiency of mrMRI sampling can be parlayed into increased temporal or spatial resolution whenever the imaged objects have signal or "edge" intensity confined to multiple small portions of the FOV. Possible areas of application include MR angiography (MRA), interventional MRI, functional MRI, and spectroscopic MRI. The technique is demonstrated by using it to acquire Gd-enhanced first-pass 3D MRA images of the carotid arteries without the use of bolus-timing techniques.  相似文献   

10.
PURPOSE: To present a new 4D method that is designed to provide high spatial resolution MR angiograms at subsecond temporal resolution by combining different techniques of view sharing with parallel imaging at 3.0T. MATERIALS AND METHODS: In the keyhole-based method, a central elliptical cylinder in k-space is repeated n times (keyhole) with a random acquisition (CENTRA), and followed by the readout of the periphery of k-space. 4D-MR angiography with CENTRA keyhole (4D-TRAK) was combined with parallel imaging (SENSE) and partial Fourier imaging. In total, a speed-up factor of 66.5 (6.25 [CENTRA keyhole] x 8 [SENSE] x 1.33 [partial Fourier imaging]) was achieved yielding a temporal resolution of 608 ms and a spatial resolution of (1.1 x 1.4 x 1.1) mm(3) with whole-brain coverage 4D-TRAK was applied to five patients and compared with digital subtraction angiography (DSA). RESULTS: 4D-TRAK was successfully completed with an acceleration factor of 66.5 in all five patients. Sharp images were acquired without any artifacts possibly created by the transition of the central cylinder and the reference dataset. MRA findings were concordant with DSA. CONCLUSION: 4D time-resolved MRA with keyhole (4D-TRAK) is feasible using a combination of CENTRA, keyhole, and SENSE at 3.0T and allows for more than 60 times accelerated MRA with high spatial resolution.  相似文献   

11.
Three-dimensional (3D) keyhole magnetic resonance (MR) imaging has been proposed as a means of providing dynamic monitoring of contrast agent uptake by breast lesions, with complete breast coverage and high spatial and temporal resolution. The 3D keyhole technique dynamically samples the central regions of k-space in both phase-encoding directions and provides high-frequency data from a precon-trast acquisition. Errors due to data truncation with two-dimensional and 3D region-of-lnterest measurements are estimated from a numerical simulation of various implementations of the 3D keyhole technique. Errors were found to increase with increasing temporal resolution and reduced object size. Errors of 75% are possible for objects with a diameter approaching 1 pixel when a 3D keyhole implementation that samples 50% of phase-encoding data in each direction is used. Preliminary clinical Images with this approach illustrate artifacts consistent with inadequate k-space sampling.  相似文献   

12.
Clinical requirements for interventional MRI (I-MRI) monitoring of needle placement or thermal ablation demand rapid (near-real-time) image acquisition rates, high spatial resolution, and T2 weighting. Experimental analysis performed earlier (see ref. 8) suggests that many sequences used for either rapid scanning or T2 weighting at high fields fail to meet both the speed (conventional spin echo [SE], turbo SE) or contrast (ie, fast low-angle shot [FLASH], fast imaging with steady state precession [FISP]) requirements when used at .2 T. In this work, we revisited a number of pulse sequences advocated primarily for higher field applications requiring T2 weighting and found that refocused steady state coherent pulse sequences, aka, true FISP sequences, performed superiorly in achieving both speed and T2 contrast requirements for I-MRI at .2 T. This work focuses on our experience with this new/old technique in the I-MRI setting and describes how one can take advantage of the low field strength and modest inhomogeneity of .2 T (and similar) systems to design pulse sequences that balance TE, TR (and hence T2 dephasing), and resonant offset frequency effects to provide images with the desired contrast and minimal artifactual field inhomogeneity “banding.” At high flip angles (~90°), reasonably short TEs (~5 msec) and short TRs (~ 10 msec), we have used this method in our last 25 I-MRI procedures (biopsies and/or radiofrequency [RF] thermal ablations) and found these sequences to be extremely useful in both needle localization phases of I-MRI biopsy procedures, RF thermal ablation electrode guidance, and posttherapy imaging assessment. Design methods and clinical I-MRI cases are presented that highlight these points.  相似文献   

13.
Partially parallel imaging (PPI) achieves imaging acceleration by replacing partial phase encoding (PE) with the spatially localized sensitivity encoding of a receiver surface coil array. Further accelerations can be achieved through 2D PPI along two PE directions in 3D MRI. This paper is to explore the k-space-based PPI acquisition and reconstruction strategies for 3D MRI. A surrounding neighbors-based autocalibrating PPI (SNAPPI) was first presented by generalizing the 2D multicolumn multiline interpolation method. Several 2D PPI reconstruction methods were then provided by applying SNAPPI to recover the partially skipped k-space data along two PE directions separately or nonseparately, in k-space or in the hybrid k and image space. An optimal 2D PPI sampling-based reconstruction approach was also presented for applying PPI along certain spatial direction along which the array coil has not sufficient sensitivity variation for a valid PPI reconstruction. Both simulated and in vivo 2D PPI data were used to evaluate the proposed methods.  相似文献   

14.
A novel technique called "k-t GRAPPA" is introduced for the acceleration of dynamic magnetic resonance imaging. Dynamic magnetic resonance images have significant signal correlations in k-space and time dimension. Hence, it is feasible to acquire only a reduced amount of data and recover the missing portion afterward. Generalized autocalibrating partially parallel acquisitions (GRAPPA), as an important parallel imaging technique, linearly interpolates the missing data in k-space. In this work, it is shown that the idea of GRAPPA can also be applied in k-t space to take advantage of the correlations and interpolate the missing data in k-t space. For this method, no training data, filters, additional parameters, or sensitivity maps are necessary, and it is applicable for either single or multiple receiver coils. The signal correlation is locally derived from the acquired data. In this work, the k-t GRAPPA technique is compared with our implementation of GRAPPA, TGRAPPA, and sliding window reconstructions, as described in Methods. The experimental results manifest that k-t GRAPPA generates high spatial resolution reconstruction without significant loss of temporal resolution when the reduction factor is as high as 4. When the reduction factor becomes higher, there might be a noticeable loss of temporal resolution since k-t GRAPPA uses temporal interpolation. Images reconstructed using k-t GRAPPA have less residue/folding artifacts than those reconstructed by sliding window, much less noise than those reconstructed by GRAPPA, and wider temporal bandwidth than those reconstructed by GRAPPA with residual k-space. k-t GRAPPA is applicable to a wide range of dynamic imaging applications and is not limited to imaging parts with quasi-periodic motion. Since only local information is used for reconstruction, k-t GRAPPA is also preferred for applications requiring real time reconstruction, such as monitoring interventional MRI.  相似文献   

15.
Magnetic resonance imaging (MRI) sequences are characterized by both radio frequency (RF) pulses and time-varying gradient magnetic fields. The RF pulses manipulate the alignment of the resonant nuclei and thereby generate a measurable signal. The gradient fields spatially encode the signals so that those arising from one location in an excited slice of tissue may be distinguished from those arising in another location. These signals are collected and mapped into an array called k-space that represents the spatial frequency content of the imaged object. Spatial frequencies indicate how rapidly an image feature changes over a given distance. It is the action of the gradient fields that determines where in the k-space array each data point is located, with the order in which k-space points are acquired being described by the k-space trajectory. How signals are mapped into k-space determines much of the spatial, temporal, and contrast resolution of the resulting images and scan duration. The objective of this article is to provide an understanding of k-space as is needed to better understand basic research in MRI and to make well-informed decisions about clinical protocols. Four major classes of trajectories-echo planar imaging (EPI), standard (non-EPI) rectilinear, radial, and spiral-are explained. Parallel imaging techniques SMASH (simultaneous acquisition of spatial harmonics) and SENSE (sensitivity encoding) are also described.  相似文献   

16.
Keyhole imaging is a scheme introduced to improve temporal resolution in dynamic contrast-enhanced MRI by a factor of four or more. A “full” acquisition before contrast administration is followed by truncated acquisitions sensitive primarily to changes in image contrast. Simulations of the point-spread functions that obtain, and their effect on contrast and spatial resolution, reveal significant degradation only for the smallest objects. Our simulations also address the feasibility of three-dimensional keyhole imaging, and demonstrate a potential 16-fold increase in temporal resolution. This suggests roles for keyhole imaging in conventional (nondynamic) precon-trast and postcontrast studies and other applications.  相似文献   

17.
Breast tumor diagnosis requires both high spatial resolution to obtain information about tumor morphology and high temporal resolution to probe the kinetics of contrast uptake. Adaptive sampling of k‐space allows images in dynamic contrast‐enhanced (DCE)‐magnetic resonance imaging (MRI) to be reconstructed at various spatial or temporal resolutions from the same dataset. However, conventional radial approaches have limited flexibility that restricts image reconstruction to predetermined resolutions. Golden‐angle radial k‐space sampling achieves flexibility in‐plane with samples that are incremented by the golden angle, which fills two‐dimensional (2D) k‐space with radial spokes that have a relatively uniform angular distribution for any time interval. We extend this method to three‐dimensional (3D) radial sampling, or 3D‐Projection Reconstruction (3D‐PR) using multidimensional golden means, which are derived from modified Fibonacci sequences by an eigenvalue approach. We quantitatively compare this technique to conventional 3D radial methods in terms of the fluctuation in error caused by undersampling artifacts, and show that the golden 3D‐PR method can substantially improve the temporal stability of quantitative measurements made from dynamic images when compared to conventional 3D radial approaches of k‐space sampling. Magn Reson Med 61:354–363, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.

Purpose:

To evaluate the temporal and spatial resolution of magnetic resonance (MR) temperature imaging when using the proton resonance frequency (PRF) method combined with the keyhole technique.

Materials and Methods:

Tissue‐mimicking phantom and swine muscle tissue were microwave‐heated by a coaxial slot antenna. For the sake of MR hardware safety, MR images were sequentially acquired after heating the subjects using a spoiled gradient (SPGR) pulse sequence. Reference raw (k‐space) data were collected before heating the subjects. Keyhole temperature images were reconstructed from full k‐space data synthesized by combining the peripheral phase‐encoding part of the reference raw data and the center phase‐encoding keyhole part of the time sequential raw data. Each keyhole image was analyzed with thermal error, and the signal‐to‐noise ratio (SNR) was compared with the self‐reference (nonkeyhole) images according to the number of keyhole phase‐encoding (keyhole‐data size) portions.

Results:

In applied keyhole temperature images, smaller keyhole‐data sizes led to more temperature error increases, but the SNR did not decreased comparably. Additionally, keyhole images with a keyhole‐data size of <16 had significantly different temperatures compared with fully phase‐encoded self‐reference images (P < 0.05).

Conclusion:

The keyhole technique combined with the PRF method improves temporal resolution and SNR in the measurement of the temperature in the deeper parts of body in real time. J. Magn. Reson. Imaging 2011;. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
Velocity imaging with phase contrast (PC) MRI is a noninvasive tool for quantitative blood flow measurement in vivo. A shortcoming of conventional PC imaging is the reduction in temporal resolution as compared to the corresponding magnitude imaging. For the measurement of velocity in a single direction, the temporal resolution is halved because one must acquire two differentially flow-encoded images for every PC image frame to subtract out non-velocity-related image phase information. In this study, a high temporal resolution PC technique which retains both the spatial resolution and breath-hold length of conventional magnitude imaging is presented. Improvement by a factor of 2 in the temporal resolution was achieved by acquiring the differentially flow-encoded images in separate breath-holds rather than interleaved within a single breath-hold. Additionally, a multiecho readout was incorporated into the PC experiment to acquire more views per unit time than is possible with the single gradient-echo technique. A total improvement in temporal resolution by approximately 5 times over conventional PC imaging was achieved. A complete set of images containing velocity data in all three directions was acquired in four breath-holds, with a temporal resolution of 11.2 ms and an in-plane spatial resolution of 2 mm x 2 mm.  相似文献   

20.
An alternative to the standard echo-planar spectroscopic imaging technique is presented, spectroscopic imaging using concentrically circular echo-planar trajectories (SI-CONCEPT). In contrast to the conventional chemical shift imaging data, the sampled data from each set of concentric rings were regridded into Cartesian space. Usage of concentric k-space trajectories has the advantage of requiring significantly reduced slew rates than echo-planar spectroscopic imaging, allowing for the collection of higher spectral bandwidths and opening the door for high-bandwidth echo-planar styled spectroscopic imaging at higher magnetic fields. Before two-dimensional spatial and one-dimensional spectral encoding, the volume of interest was localized using the standard point-resolved spectroscopy sequence. The feasibility of using concentric k-space trajectories is demonstrated, and the spatial profiles and representative spectra are compared with the standard echo-planar spectroscopic imaging technique in a gray matter phantom containing metabolites at physiological concentrations and healthy human brain in vivo. The symmetric nature of the concentric circles also reduces the number of required excitations for a given resolution by a factor of two. Possible artifacts and limitations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号