首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cellular and biochemical mechanisms that direct the destruction of bone at sites of tumor osteolysis are unknown. To better understand the mechanisms through which tumors direct bone resorption, research has focused on developing in vivo and in vitro experimental models that are useful for studying this process. In vivo experimental systems have been developed that permit study of tumor osteolysis from human and murine tumors, and that permit the study of tumors that arise from (sarcoma) or can metastasize (breast cancer) to bone. Recent research has focused on three questions: (1) Are osteoclasts or tumor cells responsible for bone resorption during tumor osteolysis? (2) What are the cellular mechanisms that are responsible for bone resorption during tumor osteolysis, and (3) what are the tumor cell products that regulate the cellular mechanisms that are responsible for tumor osteolysis? It has been determined that osteoclasts are responsible for bone resorption at sites of tumor osteolysis by enhancing the binding of osteoclast to bone, by inducing osteoclastic bone resorption, and by stimulating osteoclast formation. Attempts to identify tumor cell products that regulate these cellular mechanisms are in progress, and findings suggest that production of macrophage colony stimulating factor may be required for tumor osteolysis to occur with some tumors.  相似文献   

2.
The cellular and biochemical mechanisms that direct destruction of bone at the site of tumor osteolysis are unknown. In order to understand this process better, a murine model designed for the study of tumor osteolysis was developed and the influence of osteolytic and nonosteolytic tumors on bone was investigated. Tumors developed following femoral intramedullary injection of sarcoma (2472) and melanoma (G3.26) cell lines: however, only tumors from the 2472 cell line caused osteolysis. It was determined that 2472 tumor-induced osteolysis commenced 6 days after the femora had been inoculated with 2472 cells. There were more osteoclasts per millimeter of bone surface in 2472 tumor-bearing limbs (16.7 ± 5.0) than in sham-injected limbs (3.8 ± 0.9) (p < 0.015). In addition, an increase in the osteoclast size (area) was detected in 2472 tumor-bearing limbs: 412 ± 65 μm2 compared with 187 ± 17 μm2 (p < 0.01). In vitro bone resorption experiments indicated that 2472 tumor cells had a limited ability to destroy bone in comparison with macrophages and osteoclasts. Taken in total, these findings define a model that is useful for the study of tumor osteolysis, and the data from analyses of the model demonstrate that the cellular mechanisms responsible for 2472 tumor-induced osteolysis include both an increase in the number of osteoclasts and activation of mature osteoclasts.  相似文献   

3.
It has been hypothesized that bone resorption during tumor osteolysis is performed by osteoclasts. Data supporting this hypothesis have been provided from analysis of human biopsy specimens obtained from sites of tumor osteolysis, as well as from experimentation with in vivo animal models. Experiments in this report take this concept one step further by testing the hypothesis that osteoclasts are required for bone tumors to grow and destroy bone. To test this hypothesis, the influence of an osteolytic sarcoma tumor, NCTC clone 2472 (2472). on bone was studied in animals that are osteoclast deficient (microphthalmic, strain B6C3Fe-a/a-Mitfmi) but whose osteoclast deficiency can be reversed following bone marrow transplantation. Femora of these mice and unaffected wild-type siblings were injected with 105 2472 cells, and after 14 days the femora were analyzed by radiographic and histomorphometric analysis. Macroscopic tumor, tumor-induced osteolysis, and increased osteoclast number were noted in femora of normal mice but not in femora of osteoclast-deficient mice (p < 0.001). Bone marrow transplantation converted osteoclast-deficient mice to mice with femora that contained osteoclasts in 4 weeks. Femora of these mice were then injected with 105 2472 tumor cells; after 14 days, in contrast to the findings in the original osteoclast-deficient mice, macroscopic tumor was present, tumor-induced osteolysis was noted on roentgenograms, and osteoclast number was increased when tumor-bearing limbs were compared with sham-injected limbs (p < 0.001). These data prove the hypothesis that osteoclasts are required for 2472 tumor-induced osteolysis, and they introduce the exciting possibility that osteoclasts are also required for tumors to grow in bone.  相似文献   

4.
The cellular mechanism or mechanisms through which tumors induce osteoclast formation at sites of tumor osteolysis is unknown. To test the hypothesis that osteoclast formation at sites of tumor osteolysis reflects influences that tumors have on proliferating osteoclast precursor cells, a novel in vivo experimental model was developed that produced mice that were deficient in osteoclasts (op/op) and were depleted (by way of total body irradiation) of proliferating osteoclast precursor cells. The femora of irradiated op/op mice were injected with tumor cells (2472 clone) that had been previously shown to form osteolytic tumors and to induce focal osteoclastogenesis, and the influence of these tumor cells on osteoclast formation was determined in op/op mice that were depleted of proliferating osteoelast precursor cells. The results indicated that 2472 tumor cells induced osteoclast formation in op/op mice despite the absence of proliferating osteoclast precursor cells. This finding disproved the hypothesis under investigation and suggests that osteoclast formation at sites of tumor osteolysis reflects influences of tumors on postmitotic, not proliferating, osteoclast precursor cells.  相似文献   

5.
Details of the cellular and biochemical mechanisms involved in focal destruction of bone at sites of tumor osteolysis are unknown. It has been shown that tumors from sarcoma (2472) cell lines induce focal osteolysis in mice by stimulating formation and activation of osteoclasts. In this report, the influence of 2472 tumors on the skeletons of osteoclast-deficient animals (op/op) was studied. After op/op femora had been inoculated with 2472 cells, tumors developed and focal osteolysis occurred. There were more osteoclasts per histologic section in sham-injected femora (19 ± 5) than in tumor-bearing femora (412 ± 129) (p < 0.05). The size of the osteoclasts also increased from 304 ± 81 μm2 in sham-injected limbs to 407 ± 62 μm2 in tumor-bearing limbs (p < 0.001). Conditioned media from 2472 op/op tumor explants contained macrophage colony-stimulating factor. A deficiency of osteoclasts in op/op mice is the result of the absence of this factor; therefore, these data introduce the possibility that macrophage colony-stimulating factor derived from 2472 tumor may be responsible for directing osteoclast-mediated osteolysis at sites of the tumor.  相似文献   

6.
Summary Tumor extracts and conditioned tissue culture media from a canine adenocarcinoma tumor line (CAC-8) propagated in nude mice significantly increasedin vitro bone resorption in neonatal mouse calvaria as measured by release of previously incorporated45Ca.In vitro bone resorption activity was induced in a dose-dependent manner, was not suppressible by indomethacin, and was heat- and acid-stable. Gel exclusion chromatography demonstrated peak bone resorbing activity at a relative molecular mass of approximately 28,000. The parathyroid hormone (PTH) antagonist (8,18norleucine,34tyrosine) bovine PTH (3–34) amide did not inhibit CAC 8-stimulated or (1–34) bPTH-induced bone resorption. There was an increased number of tartrate-resistant, acid phosphatase-positive cells in calvariae exposed to CAC-8 extract. Ultrastructural evaluation of calvaria revealed hypertrophy and maturation of osteoclasts in calvaria exposed to CAC-8 extract. The maturation effects included close contact to bone surfaces and the presence of clear zones and ruffled borders in osteoclasts. Similar structures were observed infrequently in osteoclasts of control calvaria. These data demonstrate that the tumor line (CAC-8) contained activity capable of stimulatingin vitro bone resorption by increasing osteoclast numbers and the activity of existing osteoclasts.  相似文献   

7.
8.
BACKGROUND: Breast cancer metastasis to bone causes resorption of the mineralized matrix by osteoclasts.Macrophage colony stimulating factor (M-CSF)and receptor activator of the NF-kappaB ligand (RANKL) are produced by stromal cells and are essential for osteoclast formation. The human breast cancer cell line, MDA-MB-231, reliably forms bone metastases in a murine model and stimulates osteoclast formation in culture. We hypothesized that MDA-MB-231 stimulates osteoclast formation through secretion of M-CSF and/or RANKL. MATERIALS AND METHODS: We cocultured MDA-MB-231 and a bone marrow derived cell line, UAMS-33, and evaluated the expression of M-CSF and RANKL mRNA. Osteoclast formation was assessed using these cells added to hematopoietic cell cultures. RESULTS: MDA-MB-231 exhibited constitutive expression of M-CSF mRNA. As expected, addition of recombinant M-CSF (30 ng/ml) and RANKL (30 ng/ml) to hematopoietic osteoclast precursors supported osteoclast formation, while the addition of soluble RANKL alone or MDA-231 without added RANKL did not. Notably, coculture of MDA-231 with hematopoietic cells and added soluble RANKL stimulated significant osteoclast formation, indicating that MDA-231 served as an effective source for M-CSF. MDA-231 did not express RANKL. However, when cocultured with the murine bone marrow stromal cell line UAMS-33, RANKL expression was significantly increased in the latter cells. MDA-231 also stimulated osteoclast formation in coculture with UAMS-33 and hematopoietic cells. CONCLUSIONS: We conclude that MDA-MB-231 increases osteoclast formation by secreting adequate amounts of M-CSF protein and enhancing the expression of RANKL by stromal support cells. The ability to stimulate osteoclasts may explain the ability to metastasize to bone.  相似文献   

9.
10.
Bendre MS  Montague DC  Peery T  Akel NS  Gaddy D  Suva LJ 《BONE》2003,33(1):28-37
Interleukin 8 (IL-8) is a member of the alpha chemokine family of cytokines originally identified as a neutrophil chemoattractant. Recently, we reported that elevated levels of IL-8, but not parathyroid hormone-related protein (PTHrP), correlated with increased bone metastasis in a population of human breast cancer cells. We hypothesized that IL-8 expression by breast cancer cells would either indirectly influence osteoclastogenesis via nearby stromal cells or directly influence osteoclast differentiation and activity. In the present study, we investigated the role of IL-8 in the process of osteoclast formation and bone resorption, which is associated with metastatic breast cancer. The addition of recombinant human (rh) IL-8 (10 ng/ml) to cultures of stromal osteoblastic cells stimulated both RANKL mRNA expression and protein production, with no effect on the expression of osteoprotegerin. In addition, rhIL-8 also directly stimulated the differentiation of human peripheral blood mononuclear cells into bone-resorbing osteoclasts. In these cultures, IL-8 was able to stimulate human osteoclast formation even in the presence of excess (200 ng/ml) RANK-Fc. The effect of IL-8 on osteoclasts and their progenitors was associated with the cell surface expression of the IL-8-specific receptor (CXCR1) on the cells. These results demonstrate a direct effect of IL-8 on osteoclast differentiation and activity. Together, these data implicate IL-8 in the osteolysis associated with metastatic breast cancer.  相似文献   

11.
ABSTRACT: BACKGROUND: Osteoclasts and osteoblasts regulate bone resorption and formation to allow bone remodeling and homeostasis. The balance between bone resorption and formation is disturbed by abnormal recruitment of osteoclasts. Osteoclast differentiation is dependent on the receptor activator of nuclear factor NF-kappa B (RANK) ligand (RANKL) as well as the macrophage colony-stimulating factor (M-CSF). The RANKL/RANK system and RANK signaling induce osteoclast formation mediated by various cytokines. The RANK/RANKL pathway has been primarily implicated in metabolic, degenerative and neoplastic bone disorders or osteolysis. The central role of RANK/RANKL interaction in osteoclastogenesis makes RANK an attractive target for potential therapies in treatment of osteolysis. The purpose of this study was to assess the effect of inhibition of RANK expression in mouse bone marrow macrophages on osteoclast differentiation and bone resorption. METHODS: Three pairs of short hairpin RNAs (shRNA) targeting RANK were designed and synthesized. The optimal shRNA was selected among three pairs of shRNAs by RANK expression analyzed by Western blot and Real-time PCR. We investigated suppression of osteoclastogenesis of mouse bone marrow macrophages (BMMs) using the optimal shRNA by targeting RANK. RESULTS: Among the three shRANKs examined, shRANK-3 significantly suppressed [88.3%] the RANK expression (p < 0.01). shRANK-3 also brought about a marked inhibition of osteoclast formation and bone resorption as demonstrated by tartrate--resistant acid phosphatase (TRAP) staining and osteoclast resorption assay. The results of our study show that retrovirus-mediated shRANK-3 suppresses osteoclast differentiation and osteolysis of BMMs. CONCLUSIONS: These findings suggest that retrovirus-mediated shRNA targeting RANK inhibits osteoclast differentiation and osteolysis. It may appear an attractive target for preventing osteolysis in humans with a potential clinical application.  相似文献   

12.
Skeletal metastases of breast cancer and subsequent osteolysis connote a dramatic change in the prognosis for the patient and significantly increase the morbidity associated with disease. The cytokine interleukin 8 (IL-8/CXCL8) is able to directly stimulate osteoclastogenesis and bone resorption in mouse models of breast cancer bone metastasis. In this study, we determined whether circulating levels of IL-8 were associated with increased bone resorption and breast cancer bone metastasis in patients and investigated IL-8 action in vitro and in vivo in mice. Using breast cancer patient plasma (36 patients), we identified significantly elevated IL-8 levels in bone metastasis patients compared with patients lacking bone metastasis (p < 0.05), as well as a correlation between plasma IL-8 and increased bone resorption (p < 0.05), as measured by NTx levels. In a total of 22 ER + and 15 ER − primary invasive ductal carcinomas, all cases examined stained positive for IL-8 expression. In vitro, human MDA-MB-231 and MDA-MET breast cancer cell lines secrete two distinct IL-8 isoforms, both of which were found to stimulate osteoclastogenesis. However, the more osteolytic MDA-MET-derived full length IL-8(1–77) had significantly higher potency than the non-osteolytic MDA-MB-231-derived IL-8(6–77), via the CXCR1 receptor. MDA-MET breast cancer cells were injected into the tibia of nude mice and 7 days later treated daily with a neutralizing IL-8 monoclonal antibody. All tumor-injected mice receiving no antibody developed large osteolytic bone tumors, whereas 83% of the IL-8 antibody-treated mice had no evidence of tumor at the end of 28 days and had significantly increased survival. The pro-osteoclastogenic activity of IL-8 in vivo was confirmed when transgenic mice expressing human IL-8 were examined and found to have a profound osteopenic phenotype, with elevated bone resorption and inherently low bone mass. Collectively, these data suggest that IL-8 plays an important role in breast cancer osteolysis and that anti-IL-8 therapy may be useful in the treatment of the skeletal related events associated with breast cancer.  相似文献   

13.
Bone is a favorable microenvironment for tumor cell colonization because of abundant growth factors released during active bone resorption. Bisphosphonates can dramatically affect the ability of tumor cells to grow in bone by inhibiting osteoclast-mediated bone resorption and by depriving tumors of growth-promoting signals. Moreover, bisphosphonates have direct anti-tumor effects in vitro via induction of apoptosis. Zoledronic acid is a nitrogen-containing bisphosphonate that has demonstrated potent anti-tumor activity in vitro and in vivo. In vitro studies have provided important clues as to the molecular mechanisms by which zoledronic acid induces apoptosis of human breast cancer cell lines. Studies in multiple myeloma and breast cancer models have shed further light on the possible mechanisms underlying the in vivo anti-tumor effects of zoledronic acid. These studies have led to the development of novel strategies to target specific molecular pathways involved in osteoclast maturation and activity, tumor cell metastasis, and tumor growth and survival. The clinical application of these strategies may ultimately prevent bone metastasis.  相似文献   

14.
Transforming growth factor-beta (TGF-beta) is released from the matrix during bone resorption and has been implicated in the pathogenesis of giant cell tumors of bone and the expansion of breast cancer metastases in bone. Because osteoclasts mediate tumor-induced osteolysis, we investigated whether TGF-beta stimulates osteoclast recruitment. Osteoclasts were isolated from rat long bones and time-lapse video microscopy was used to monitor their morphology and motility. Within 5 minutes, TGF-beta (0.1 nM) induced dynamic ruffling, with 65% of osteoclasts displaying membrane ruffles compared with 35% in untreated controls. Over a 2-h period, osteoclasts exhibited significant directed migration toward a source of TGF-beta, indicating chemotaxis. echistatin, an alphavbeta3 integrin blocker that inhibits macrophage colony-stimulating factor (M-CSF)-induced osteoclast migration, did not prevent the migration of osteoclasts toward TGF-beta. In contrast, a beta1 integrin blocking antibody inhibited osteoclast chemotaxis toward TGF-beta but not M-CSF. These data indicate the selective use of integrins by osteoclasts migrating in response to different chemotaxins. In addition, wortmannin and U0126 inhibited TGF-beta-induced chemotaxis, suggesting involvement of the phosphatidylinositol 3 (PI 3) kinase and mitogen-activated protein (MAP) kinase signaling pathways. Physiologically, TGF-beta, may coordinate osteoclast activity by recruiting osteoclasts to existing sites of resorption. Pathologically, TGF-beta-induced osteoclast recruitment may be critical for expansion of primary and metastatic tumors in bone.  相似文献   

15.
Insulin‐like growth factor 1 (IGF‐1) plays an important role in both bone metabolism and breast cancer. In this study, we investigated the effects of the novel IGF‐1 receptor tyrosine kinase inhibitor cis‐3‐[3‐(4‐methyl‐piperazin‐l‐yl)‐cyclobutyl]‐1‐(2‐phenyl‐quinolin‐7‐yl)‐imidazo[1,5‐a]pyrazin‐8‐ylamine (PQIP) on osteolytic bone disease associated with breast cancer. Human MDA‐MB‐231 and mouse 4T1 breast cancer cells enhanced osteoclast formation in receptor activator of NF‐κB ligand (RANKL) and macrophage colony‐stimulating factor (M‐CSF) stimulated bone marrow cultures, and these effects were significantly inhibited by PQIP. Functional studies in osteoclasts showed that PQIP inhibited both IGF‐1 and conditioned medium–induced osteoclast formation by preventing phosphatidylinositol 3‐kinase (PI3K)/protein kinase B (Akt) activation without interfering with RANKL or M‐CSF signaling. Treatment of osteoblasts with PQIP significantly inhibited the increase in RANKL/osteoprotegerin (OPG) ratio by IGF‐1 and conditioned medium and totally prevented conditioned medium–induced osteoclast formation in osteoblast–bone marrow (BM) cell cocultures, thereby suggesting an inhibitory effect on osteoblast–osteoclast coupling. PQIP also inhibited IGF‐1–induced osteoblast differentiation, spreading, migration, and bone nodule formation. Treatment with PQIP significantly reduced MDA‐MB‐231 conditioned medium–induced osteolytic bone loss in a mouse calvarial organ culture system ex vivo and in adult mice in vivo. Moreover, once daily oral administration of PQIP significantly decreased trabecular bone loss and reduced the size of osteolytic bone lesions following 4T1 intratibial injection in mice. Quantitative histomorphometry showed a significant reduction in bone resorption and formation indices, indicative of a reduced rate of cancer‐associated bone turnover. We conclude that inhibition of IGF‐1 receptor tyrosine kinase activity by PQIP suppresses breast cancer–induced bone turnover and osteolysis. Therefore, PQIP, and its novel derivatives that are currently in advanced clinical development for the treatment of a number of solid tumors, may be of value in the treatment of osteolytic bone disease associated with breast cancer. © 2013 American Society for Bone and Mineral Research.  相似文献   

16.
Summary Organ cultures of newborn mouse calvaria were used to test the hypothesis that tartrate-resistant acid phosphatase might serve as a biochemical marker for osteoclast function. When bone resorption was stimulatedin vitro with either parathyroid hormone or 1,25(OH)2D3, there was a significant increase in both tartrate-resistant and tartrate-sensitive acid phosphatase activity in the medium relative to cultured controls. Tartrate-resistant activity was localized histochemically primarily over the osteoclast and appeared as three distinct activity bands when electrophoresed on polyacrylamide gels. The tartrate-sensitive activity was found primarily associated with bone cells other than the osteoclast using histochemical techniques, and was resolved into five bands on polyacrylamide gels. The results obtained from biochemical assays, histochemical observations, and polyacrylamide gel electrophoresis suggest that bone resorptionin vitro results in the release of tartrate-resistant acid phosphatase from osteoclasts and tartrate-sensitive acid phosphatase from other bone cells as well as osteoclasts. Tartrate-resistant acid phosphatases of bone may be suitable biochemical probes for osteoclast function, but it will be necessary to achieve further purification in order to develop analytical methods with sufficient sensitivity and specificity (e.g., immunochemical) to ensure precise localization and quantitation.  相似文献   

17.
We have previously shown that dichlorodiamine platinum (DDP), or cisplatin, a cancer chemotherapeutic agent, is effective in the treatment of malignancy-associated hypercalcemia. In the present studies, we evaluated its effects on bovine parathyroid hormone (PTH)- or tumor-induced bone resorption in vitro in the neonatal mouse calvarial bone resorption assay. PTH alone or tumor extract (TE) of a human squamous cell lung cancer alone caused a significant increase in the bone resorption and in the number of osteoclasts in the calvaria. The addition of 3 and 10 micrograms/ml DDP inhibited the PTH- or TE-induced bone resorption. Lower doses of 1 and 2 micrograms/ml DDP, although not effective in inhibiting the PTH-induced bone resorption, were effective in lowering the TE-induced bone resorption. The number of osteoclasts was also reduced by DDP treatment. We therefore conclude that DDP is effective in the treatment of malignancy-associated hypercalcemia by virtue of its inhibitory effects on osteoclast numbers and on bone resorption.  相似文献   

18.
Osteolysis is a common complication of tumors that arise in, or metastasize to, bone. The recent discovery of key regulators of osteoclast formation and activity, including receptor activator of nuclear factor of kappaB ligand (RANKL), RANK, and osteoprotegerin (OPG), may facilitate new treatment regimes for certain tumors associated with excessive bone loss. We recently showed that the stromal cells of osteolytic giant cell tumors (GCT) of bone express high levels of mRNA encoding RANKL, relative to mRNA for the RANKL antagonist, OPG, compared with the expression patterns of other lytic and nonlytic bone tumors. In this study, we found that expression of RANKL and OPG mRNA continued by the stromal element of these tumors in a constitutive manner for at least 9 days in the absence of giant cells. Immunostaining of unfractionated GCT cultured in vitro revealed punctate cytoplasmic/membranous staining for RANKL and both cytoplasmic and extracellular matrix staining for OPG in stromal cells. Giant cells (osteoclasts) were negative for RANKL staining, but stained brightly for cytoplasmic OPG protein. We also investigated the functional relevance of these molecules for GCT osteolysis by adding recombinant OPG and RANKL to cultured GCT cells. We found that OPG treatment potently and dose-dependently inhibited resorption of bone slices by GCT, and could also inhibit the formation of multinucleated osteoclasts from precursors within the GCT. These effects of OPG were reversed by stoichiometric concentrations of exogenous RANKL. These data indicate that both the processes of osteoclast formation and activation in GCT are promoted by RANKL. Therefore, GCT represent a paradigm for the direct stimulation of osteoclast formation and activity by tumor stromal cells, in contrast to the mechanisms described for osteolytic breast tumors and multiple myeloma. The demonstration of these relationships is important in developing approaches to limit tumor-induced osteolysis.  相似文献   

19.
Effective treatment for bacteria-induced bone lytic diseases is not yet available. In this study, we showed that PAR, an NF-kappaB inhibitor found in medicinal herbs, can block LPS-induced osteolysis. PAR does this by inhibiting osteoclastogenesis and bone resorption and promoting apoptosis of osteoclasts through the suppression of NF-kappaB activity. INTRODUCTION: Osteolysis induced by chronic gram-negative bacterial infection underlies many bone diseases such as osteomyelitis, septic arthritis, and periodontitis. Drugs that inhibit lipopolysaccharide (LPS)-induced osteolysis are critically needed for the prevention of bone destruction in infective bone diseases. In this study, we investigated the effect of parthenolide (PAR) on LPS-induced osteolysis in vivo and studied its role in osteoclastogenesis, bone resorption, apoptosis, and NF-kappaB activity. MATERIALS AND METHODS: The LPS-induced osteolysis in the mouse calvarium model was used to examine the effect of PAR in vivo. RANKL-induced osteoclast differentiation from RAW264.7 cells and bone resorption assays were used to assess the effect of PAR in vitro. Assays for NF-kappaB activation, p65 translocation, and IkappaB-alpha degradation were used to determine the mechanism of action of PAR in osteoclasts and their precursors. Flow cytometry and confocal microscopic analysis were used to examine cell apoptosis. Semiquantitative RT-PCR was performed to examine the effect of PAR on gene expression of RANK and TRAF6. RESULTS: We found that PAR (0.5 and 1 mg/kg), injected simultaneously with LPS (25 mg/kg) or 3 days later, blocked the LPS-induced osteolysis in the mouse calvarium model. In vitro studies showed that low concentrations of PAR (<1 microM) inhibited in vitro osteoclastogenesis and osteoclastic bone resorption, whereas higher concentrations (>5 microM) triggered apoptotic cell death of osteoclasts and their precursor cells in a dose-dependent manner. Furthermore, PAR inhibited LPS-induced NF-kappaB activation, p65 translocation, and IkappaB-alpha degradation both in mature osteoclasts and their precursors in a time- and dose-dependent manner. In addition, PAR inhibited NF-kappaB activation induced by osteoclastogenic factors RANKL, interleukin (IL)-1beta, or TNF-alpha to varying degrees and reduced the gene expression of RANK and TRAF6. CONCLUSION: The NF-kappaB pathway is known to mediate both osteoclast differentiation and survival. These findings indicate that PAR blocks LPS-induced osteolysis through the suppression of NF-kappaB activity and suggest that it might have therapeutic value in bacteria-induced bone destruction.  相似文献   

20.
Regulator of G-protein Signaling 10 (Rgs10) plays an important function in osteoclast differentiation. However, the role of Rgs10 in immune cells and inflammatory responses, which activate osteoclasts in inflammatory lesions, such as bacteria-induced periodontal disease lesions, remains largely unknown. In this study, we used an adeno-associated virus (AAV-) mediated RNAi (AAV-shRNA-Rgs10) knockdown approach to study Rgs10''s function in immune cells and osteoclasts in bacteria-induced inflammatory lesions in a mouse model of periodontal disease. We found that AAV-shRNA-Rgs10 mediated Rgs10 knockdown impaired osteoclastogenesis and osteoclast-mediated bone resorption, in vitro and in vivo. Interestingly, local injection of AAV-shRNA-Rgs10 into the periodontal tissues in the bacteria-induced inflammatory lesion greatly decreased the number of dendritic cells, T-cells and osteoclasts, and protected the periodontal tissues from local inflammatory damage and bone destruction. Importantly, AAV-mediated Rgs10 knockdown also reduced local expression of osteoclast markers and pro-inflammatory cytokines. Our results demonstrate that AAV-shRNA-Rgs10 knockdown in periodontal disease tissues can prevent bone resorption and inflammation simultaneously. Our data indicate that Rgs10 may regulate dendritic cell proliferation and maturation, as well as the subsequent stimulation of T-cell proliferation and maturation, and osteoclast differentiation and activation. Our study suggests that AAV-shRNA-Rgs10 can be useful as a therapeutic treatment of periodontal disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号