首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pre-graft priming of heart allograft recipients with donor strain blood induces tolerance in 100% of adult rats in the congenic LEW.1W to LEW.1A combination. This tolerant state is specific for donor MHC antigens as third-party blood transfusions fail to induce tolerance, and third-party skin grafts are promptly rejected by tolerant graft recipients. In this study we have characterized the immunodominant donor (RT1u) class I and II allogenic peptides which elicit an in vitro proliferative response to splenocytes from recipients (RT1a) undergoing acute rejection or tolerant to a LEW.1A cardiac allograft. Paradoxically, splenocytes from tolerant animals responded more vigorously to a broader set of donor peptides than splenocytes from rejecting animals. In addition, several of these peptides were observed to be stimulatory only for tolerant splenocytes. These findings suggest that regulatory cells may be involved in tolerance induction or maintenance and are selected by specific motifs, which could be utilized for manipulating the immune system of graft recipients.  相似文献   

2.
Antigen presentation by Major Histocompatibility Complex (MHC) class II molecules plays an important role in controlling immunity and autoimmunity. Multiple co-factors including the invariant chain (Ii), HLA-DM and HLA-DO are involved in this process. While the role for Ii and DM has been well defined, the biological function of DO remains obscure. Our data indicate that DO inhibits presentation of endogenous self-antigens and that developmentally-regulated DO expression enables antigen presenting cells to preferentially present different sources of peptide antigens at different stages of development. Disruption of this regulatory mechanism can result in not only immunodeficiency but also autoimmunity. Despite the fact that deletion of each of the three genes in experimental animals is associated with profound immunological abnormalities, no corresponding human diseases have been reported. This discrepancy suggests the possibility that primary immunodeficiencies due to a genetic defect of Ii, DM and DO in humans are under diagnosed or diagnosed as “common variable immunodeficiency”, a category of immunodeficiency of heterogeneous or undefined etiology. Clinical tests for any of these potential genetic defects are not yet available. We propose the use of multi-color flow cytometry in conjunction with intracellular staining to detect expression of Ii, DM, DO in peripheral blood B cells as a convenient reliable screening test to identify individuals with defects in antigen presentation.  相似文献   

3.
《Research in immunology》1993,144(6-7):525-526
  相似文献   

4.
Antigens internalized through specific membrane receptors are presented to helper CD4(+) T cells at antigen concentrations 10(3) to 10(4) fold lower than antigens internalized by fluid phase. B lymphocyte antigen receptors, mannose receptors and receptors for the Fc region of immunoglobulins, promote both internalization and efficient presentation at low antigen concentrations. Thus, binding to specific membrane receptors concentrate antigens on antigen presenting cells and mediates efficient uptake. Is this 'quantitative' concentration of antigens on antigen presenting cells the end of the story? Or may 'quality', i.e. selective intracellular antigen targeting, somehow influence the efficiency or specificity of MHC class I and class II-restricted antigen presentation?  相似文献   

5.
We have analysed the factors which regulate MHC class II expression in mouse T cell lines. Two such lines, BW 5147 and PLT-24.2, were used in this study. Using 5-azacytidine (5 AzaC) we have shown that hypomethylation of DNA can induce class II antigen synthesis in BW 5147. The expression of class II in PLT-24.2 cells seems to be under a different control mechanism. Southern blot analysis of I-A beta gene in PLT-24.2 suggests that the expression of class II in this cell line is probably the outcome of a gene rearrangement. We hypothesise that insertion of viral long terminal repeats (LTR) next to the class II genes in transformed T cell lines can act as a promoter for the expression of class II antigens.  相似文献   

6.
The effect on heart allograft rejection in the rat of continuous slow infusion of donor MHC type serum is described. DA (RT1a) serum delayed significantly the rejection of PVG.RT1a heart grafts in PVG recipients (p less than 0.01), but did not affect survival of third-party WAG grafts. Grafts at both early and late stages of rejection were prolonged by serum infusion. Removal of soluble class I MHC antigen from DA serum by affinity chromatography on a monoclonal anti-class I antibody column completely abolished the immunosuppressive effect. The results may indicate that soluble class I antigen can act as a specific immunosuppressive agent in allograft rejection.  相似文献   

7.
8.
IgG- and IgE-antibodies have the ability to enhance the production of antibodies directed against the antigen they are specific for. It has been suggested that the mechanism behind IgG- and IgE-mediated feedback enhancement is the ability of these isotypes to induce a more potent antigen-specific T helper cell response, increasing the chances that antigen-specific B cells receive the T cell help they require to become antibody-producing cells. With emphasis on the murine system, we will here focus on the ability of IgG and IgE to capture antigen and facilitate presentation of antigenic peptides to T helper cells. Whether this mechanism underlies feedback enhancement of antibody responses to these antigens will be discussed.  相似文献   

9.
10.
Normal immune surveillance depends on the ability of MHC class II molecules to bind peptide antigens and carry them to the cell surface for display to T cells. To do this efficiently, class II molecules must be able to bind peptides from a broad array of antigen sequences and retain them at the cell surface long enough for T-cell recognition to occur. Class II molecules accomplish this task through a combination of clever structural biochemistry and the help of at least two different molecular chaperones: the class II-associated invariant chain (Ii); and a non-peptide binding class II molecule termed H2-DM in mouse and HLA-DM in man (DM). Here, we compare the existing 3-dimensional structures of class II-peptide complexes in order to review the general principles of peptide binding and presentation. We extend this analysis to include the structures of proteins known to interact with MHC class II, focusing primarily on the Ii chain and DM.  相似文献   

11.
12.
Genes regulating MHC class I processing of antigen   总被引:1,自引:0,他引:1  
The principal pathway of antigen processing that is associated with MHC class I involves three main steps: cytosolic peptide generation, peptide transport into the endoplasmic reticulum and peptide assembly with class I molecules. Recent advances suggest that additional cytosolic proteases complement the proteasome as a source of antigenic peptides. Peptide assembly involves several novel cofactors - including the proteins tapasin and ERp57, which may be important for stabilisation of empty class I molecules as well as quality control after peptide binding. Finally, genetic evidence suggests an important influence of an unidentified gene, in the MHC complex, on MHC class I processing.  相似文献   

13.
MHC class I antigen presentation--recently trimmed and well presented   总被引:2,自引:0,他引:2  
Presentation of antigenic peptide to T cells by major histocompatibility complex (MHC) class I molecules is the key to the cellular immune response. Non-self intracellular proteins are processed into short peptides and transported into endoplasmic reticulum (ER) where they are assembled with class I molecules assisted by several chaperone proteins to form trimeric complex. MHC class I complex loaded with optimised peptides travels to the cell surface of antigen presentation cells to be recognised by T cells. The cells presenting non-self peptides are cleared by CD8 positive T cells. In order to ensure that T cells detect an infection or mutation within the target cells the process of peptide loading and class I expression must be carefully regulated. Many of the cellular components involved in antigen processing and class I presentation are known and their various functions are now becoming clearer.  相似文献   

14.
The MHC class II antigen processing pathway provides a mechanism to selectively present peptides generated in the endosomal compartments of antigen presenting cells to CD4+ T cells. Transport of newly synthesized class II molecules to the endosomal pathway requires the function of an accessory protein, invariant chain, which contains a region that interacts directly with the class II peptide binding site. Release of invariant chain and peptide loading by class II molecules are facilitated by a second accessory protein, HLA-DM. This MHC-encoded membrane protein catalyzes peptide exchange reactions, influencing the repertoire of peptides that are available for recognition by T cells.  相似文献   

15.
The MHC class II antigen processing pathway provides a mechanism to selectively present peptides generated in the endosomal compartments of antigen presenting cells to CD4+ T cells. Transport of newly synthesized class II molecules to the endosomal pathway requires the function of an accessory protein, invariant chain, which contains a region that interacts directly with the class II peptide binding site. Release of invariant chain and peptide loading by class II molecules are facilitated by a second accessory protein, HLA-DM. This MHC-encoded membrane protein catalyzes peptide exchange reactions, influencing the repertoire of peptides that are available for recognition by T cells.  相似文献   

16.
17.
MHC class I molecules on the cellular surface display peptides that either derive from endogenous proteins (self or viral), or from endocytosis of molecules, dying cells or pathogens. The conventional antigen-processing pathway for MHC class I presentation depends on proteasome-mediated degradation of the protein followed by transporter associated with antigen-processing (TAP)-mediated transport of the generated peptides into the endoplasmic reticulum (ER). Here, peptides are loaded onto MHC I molecules before transportation to the cell surface. However, several alternative mechanisms have emerged. These include TAP-independent mechanisms, the vacuolar pathway and involvement of autophagy. Autophagy is a cell intrinsic recycling system. It also functions as a defence mechanism that removes pathogens and damaged endocytic compartments from the cytosol. Therefore, it appears likely that autophagy would intersect with the MHC class I presentation pathway to alarm CD8+ T cells of an ongoing intracellular infection. However, the importance of autophagy as a source of antigen for presentation on MHC I molecules remains to be defined. Here, original research papers which suggest involvement of autophagy in MHC I antigen presentation are reviewed. The antigens are from herpesvirus, cytomegalovirus and chlamydia. The studies point towards autophagy as important in MHC class I presentation of endogenous proteins during conditions of immune evasion. Because autophagy is a regulated process which is induced upon activation of, for example, pattern recognition receptors (PRRs), it will be crucial to use relevant stimulatory conditions together with primary cells when aiming to confirm the importance of autophagy in MHC class I antigen presentation in future studies.  相似文献   

18.
The recognition of major histocompatibility complex (MHC) allopeptides by recipient MHC class II-restricted CD4(+) T cells via indirect pathway is a prerequisite for the generation of an immune response to the allograft. We tested 13-mer to 24-mer peptides from the MHC class I molecule for their possible immunogenicity in a fully MHC-mismatched rat strain combination. Our results confirm the hierarchical distribution of the immunogenicity of donor MHC class I peptides in the T cell alloactivation via indirect pathway. In addition, we show that allopeptide-induced immune response is critical for acute rejection of heart allografts. Among the seven allopeptides tested, peptide P1 was identified as immunodominant; it induced the greatest T cell proliferation and cytokine production in vitro as well as a significant reduction in allograft survival time. The TCR repertoire of T cells involved in the in vitro and in vivo responses induced by the dominant allopeptide P1 was found to be limited to the Vbeta10 and Vbeta 19 gene families. The identification of dominant allopeptides should greatly facilitate characterization of the specific T cell population responsible for allograft rejection and may be used to modulate the alloimmune response through antigen-specific therapy.  相似文献   

19.
MHC class I antigen presentation refers to the co-ordinated activities of many intracellular pathways that promote the cell surface appearance of MHC class I/beta2m heterodimers loaded with a spectrum of self or foreign peptides. These MHC class I peptide complexes form ligands for CD8 positive T cells and NK cells. MHC class I heterodimers are loaded within the endoplasmic reticulum (ER) with peptides derived from intracellular proteins. Alternatively, MHC class I molecules may be loaded with peptides derived from extracellular proteins in a process called MHC class I cross presentation. This pathway is less well defined but can overlap those pathways operating in classical MHC class I presentation and has recently been reviewed elsewhere (1). This review will address the current concepts regarding the intracellular assembly of MHC class I molecules with their peptide cargo within the ER and their subsequent progress to the cell surface.  相似文献   

20.
目的:探讨Th细胞免疫偏离与移植心MHC Ⅱ类抗原表达的关系。方法:建立大鼠心脏移植模型,以同系移植和无移植动物作为对照,采用逆转录PCR技术测定移植心Ⅰ、Ⅱ类细胞因子IL-2、IL-4 mRNA水平变化,用免疫组化技术和单克隆抗体测定移植心MHC Ⅱ类抗原表达。结果:IL-2 mRNA水平和MHC Ⅱ类抗原表达随着移植心急性免疫排斥病变发展而显著增加(P<0.01), IL-4 mRNA水平则显著降低(P<0.01),急性免疫排斥发展到一定阶段Ⅰ、Ⅱ类细胞因子水平出现偏离时MHC Ⅱ类抗原由低表达变为高表达。结论:移植心脏急性免疫排斥过程中,Th细胞免疫偏离与MHC Ⅱ类抗原表达变化有相关性,并参与促进移植心脏MHC Ⅱ类抗原的高表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号