首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Cdc13 both positively and negatively regulates telomere replication   总被引:13,自引:0,他引:13       下载免费PDF全文
Cdc13 is a single-strand telomeric DNA-binding protein that positively regulates yeast telomere replication by recruiting telomerase to chromosome termini through a site on Cdc13 that is eliminated by the cdc13-2 mutation. Here we show that Cdc13 has a separate role in negative regulation of telomere replication, based on analysis of a new mutation, cdc13-5. Loss of this second regulatory activity results in extensive elongation of the G strand of the telomere by telomerase, accompanied by a reduced ability to coordinate synthesis of the C strand. Both the cdc13-5 mutation and DNA polymerase alpha mutations (which also exhibit elongated telomeres) are suppressed by increased expression of the Cdc13-interacting protein Stn1, indicating that Stn1 coordinates action of the lagging strand replication complex with the regulatory activity of CDC13. However, the association between Cdc13 and Stn1 is abolished by cdc13-2, the same mutation that eliminates the interaction between Cdc13 and telomerase. We propose that Cdc13 participates in two regulatory steps-first positive, then negative-as a result of successive binding of telomerase and the negative regulator Stn1 to overlapping sites on Cdc13. Thus, Cdc13 coordinates synthesis of both strands of the telomere by first recruiting telomerase and subsequently limiting G-strand synthesis by telomerase in response to C-strand replication.  相似文献   

2.
Qi H  Zakian VA 《Genes & development》2000,14(14):1777-1788
Saccharomyces telomeres consist of approximately 350 bp of C(1-3)A/TG(1-3) DNA. Most of this approximately 350 bp is replicated by standard, semiconservative DNA replication. After conventional replication, the C(1-3)A strand is degraded to generate a long single strand TG(1-3) tail that can serve as a substrate for telomerase. Cdc13p is a single strand TG(1-3) DNA-binding protein that localizes to telomeres in vivo. Genetic data suggest that the Cdc13p has multiple roles in telomere replication. We used two hybrid analysis to demonstrate that Cdc13p interacted with both the catalytic subunit of DNA polymerase alpha, Pol1p, and the telomerase RNA-associated protein, Est1p. The association of these proteins was confirmed by biochemical analysis using full-length or nearly full-length proteins. Point mutations in either CDC13 or POL1 that reduced the Cdc13p-Pol1p interaction resulted in telomerase mediated telomere lengthening. Over-expression of the carboxyl terminus of Est1p partially suppressed the temperature sensitive lethality of a cdc13-1 strain. We propose that Cdc13p's interaction with Est1p promotes TG(1-3) strand lengthening by telomerase and its interaction with Pol1p promotes C(1-3)A strand resynthesis by DNA polymerase alpha.  相似文献   

3.
Mutations in CTC1 lead to the telomere syndromes Coats Plus and dyskeratosis congenita (DC), but the molecular mechanisms involved remain unknown. CTC1 forms with STN1 and TEN1 a trimeric complex termed CST, which binds ssDNA, promotes telomere DNA synthesis, and inhibits telomerase-mediated telomere elongation. Here we identify CTC1 disease mutations that disrupt CST complex formation, the physical interaction with DNA polymerase α-primase (polα-primase), telomeric ssDNA binding in vitro, accumulation in the nucleus, and/or telomere association in vivo. While having diverse molecular defects, CTC1 mutations commonly lead to the accumulation of internal single-stranded gaps of telomeric DNA, suggesting telomere DNA replication defects as a primary cause of the disease. Strikingly, mutations in CTC1 may also unleash telomerase repression and telomere length control. Hence, the telomere defect initiated by CTC1 mutations is distinct from the telomerase insufficiencies seen in classical forms of telomere syndromes, which cause short telomeres due to reduced maintenance of distal telomeric ends by telomerase. Our analysis provides molecular evidence that CST collaborates with DNA polα-primase to promote faithful telomere DNA replication.  相似文献   

4.
Pol32 is a subunit of Saccharomyces cerevisiae DNA polymerase δ required in DNA replication and repair. To gain insight into the function of Pol32 and to determine in which repair pathway POL32 may be involved, we extended the analysis of the pol32Δ mutant with respect to UV and methylation sensitivity, UV-induced mutagenesis; and we performed an epistasis analysis of UV sensitivity by combining the pol32Δ with mutations in several genes for postreplication repair (RAD6 group), nucleotide excision repair (RAD3 group) and recombinational repair (RAD52 group). These studies showed that pol32Δ is deficient in UV-induced mutagenesis and place POL32 in the error-prone RAD6/REV3 pathway. We also found that the increase in the CAN1 spontaneous forward mutation of different rad mutators relies entirely or partially on a functional POL32 gene. Moreover, in a two-hybrid screen, we observed that Pol32 interacts with Srs2, a DNA helicase required for DNA replication and mutagenesis. Simultaneous deletion of POL32 and SRS2 dramatically decreases cellular viability at 15 °C and greatly increases cellular sensitivity to hydroxyurea at the permissive temperature. Based on these findings, we propose that POL32 defines a link between the DNA polymerase and helicase activities, and plays a role in the mutagenic bypass repair pathway. Received: 25 May 2000 / Accepted: 3 July 2000  相似文献   

5.
Eukaryotic cells distinguish their chromosome ends from accidental DNA double-strand breaks by packaging them in a protective structure referred to as the telomere "cap." Here we investigate the nature of the telomere cap by examining events at DNA breaks generated adjacent to either natural telomeric sequences (TG repeats) or arrays of Rap1-binding sites that vary in length. Although DNA breaks adjacent to either short or long telomeric sequences are efficiently converted into stable telomeres, they elicit very different initial responses. Short telomeric sequences (80 base pair [bp]) are avidly bound by Mre11, as well as the telomere capping protein Cdc13 and telomerase enzyme, consistent with their rapid telomerase-dependent elongation. Surprisingly, little or no Mre11 binding is detected at long telomere tracts (250 bp), and this is correlated with reduced Cdc13 and telomerase binding. Consistent with these observations, ends with long telomere tracts undergo strongly reduced exonucleolytic resection and display limited binding by both Rpa1 and Mec1, suggesting that they fail to elicit a checkpoint response. Rap1 binding is required for end concealment at long tracts, but Rif proteins, yKu, and Cdc13 are not. These results shed light on the nature of the telomere cap and mechanisms that regulate telomerase access at chromosome ends.  相似文献   

6.
Telomeres, nucleoprotein complexes at chromosome ends, protect chromosomes against end-to-end fusion. Previous in vitro studies in human fibroblast models indicated that telomere dysfunction results in chromosome instability. Loss of telomere function can result either from critical shortening of telomeric DNA or from loss of distinct telomere-capping proteins. It is less clear whether telomere dysfunction has an important role in human cancer development in vivo. Acute myeloid leukemia (AML) is a good model to study mechanisms that generate chromosome instability in human cancer development because distinct groups of AML are characterized either by aberrations that theoretically could result from telomere dysfunction (terminal deletions, gains/losses of chromosome parts, nonreciprocal translocations), or aberrations that are unlikely to result from telomere dysfunction (e.g., reciprocal translocations or inversions). Here we demonstrate that AML with multiple chromosome aberrations that theoretically could result from telomere dysfunction is invariably characterized by critically short telomeres. Short telomeres in this group are not associated with low telomerase activity or decreased expression of essential telomeric capping proteins TRF2 and POT1. In contrast, telomerase activity levels are significantly higher in AML with short telomeres. Notably, short telomeres in the presence of high telomerase may relate to significantly higher expression of TRF1, a negative regulator of telomere length. Our observations suggest that, consistent with previous in vitro fibroblast models, age-related critical telomere shortening may have a role in generating chromosome instability in human AML development.  相似文献   

7.
广义的端粒由帽子、双链的串联重复序列的DNA核心部分及亚端粒构成,其结合蛋白是一个复合体,由TRF1、TRF2、TIN2、Pot1、TPP1、RAP1 6个亚单位组成;另外,还结合组蛋白的特定成分H3K9三甲基聚合体和H4K20三甲基聚合体.端粒酶主要由hTerc、hTert、dyskerin构成.端粒的功能主要受端粒酶的活性调控;而端粒酶活性主要受hTert及hTerc的转录水平和转录后的剪切、hTert的翻译等因素的调控.端粒与端粒酶结构和功能的异常与细胞衰老及肿瘤的发生、发展关系密切.  相似文献   

8.
Telomeres are ribonucleoprotein structures that protect the end of linear chromosomes from recognition as DNA double-stranded breaks and activation of a DNA damage response. Telomere-associated proteins also regulate telomerase, the protein responsible for maintaining telomere length. Loss of telomere function results from either alteration in the capping function at telomeres, or from progressive loss of telomeric repeats necessary to maintain proper telomeric structure. Dysfunctional telomeres activate p53 to initiate cellular senescence or apoptosis to suppress tumorigenesis. However, in the absence of p53, telomere dysfunction is an important mechanism to generate chromosomal instability commonly found in human carcinomas. Telomerase is expressed in the majority of human cancers, making it an attractive therapeutic target. Emerging anti-telomerase therapies that are currently in clinical trials might prove useful against some forms of human cancers.  相似文献   

9.
10.
Ku is a conserved DNA end-binding protein that plays various roles at different kinds of DNA ends. At telomeres, Ku is part of the structure that protects the chromosome end, whereas at broken DNA ends, Ku promotes DNA repair as part of the nonhomologous end-joining (NHEJ) pathway. Here, we present evidence of a new role for Ku that impacts both telomere-length maintenance and DNA repair in Saccharomyces cerevisiae. We show that Ku binds TLC1, the RNA component of telomerase. We also describe a novel separation-of-function allele of Ku that is specifically defective in TLC1 binding. In this mutant, telomeres are short and the kinetics of telomere addition are slow, but other Ku-dependent activities, such as chromosome end protection and NHEJ, are unaffected. At low frequency, yeast will use telomerase to heal DNA damage by capping the broken chromosome with telomeric DNA sequences. We show that when Ku's ability to bind TLC1 is disrupted, DNA repair via telomere healing is reduced 10- to 100-fold, and the spectrum of sequences that can acquire a telomere changes. Thus, the interaction between Ku and TLC1 RNA enables telomerase to act at both broken and normal chromosome ends.  相似文献   

11.
Coats plus (CP) can be caused by mutations in the CTC1 component of CST, which promotes polymerase α (polα)/primase-dependent fill-in throughout the genome and at telomeres. The cellular pathology relating to CP has not been established. We identified a homozygous POT1 S322L substitution (POT1CP) in two siblings with CP. POT1CP induced a proliferative arrest that could be bypassed by telomerase. POT1CP was expressed at normal levels, bound TPP1 and telomeres, and blocked ATR signaling. POT1CP was defective in regulating telomerase, leading to telomere elongation rather than the telomere shortening observed in other telomeropathies. POT1CP was also defective in the maintenance of the telomeric C strand, causing extended 3′ overhangs and stochastic telomere truncations that could be healed by telomerase. Consistent with shortening of the telomeric C strand, metaphase chromosomes showed loss of telomeres synthesized by leading strand DNA synthesis. We propose that CP is caused by a defect in POT1/CST-dependent telomere fill-in. We further propose that deficiency in the fill-in step generates truncated telomeres that halt proliferation in cells lacking telomerase, whereas, in tissues expressing telomerase (e.g., bone marrow), the truncations are healed. The proposed etiology can explain why CP presents with features distinct from those associated with telomerase defects (e.g., dyskeratosis congenita).  相似文献   

12.
Telomeres are repeats of TTAGGG sequences located at the end of eukaryotic chromosomes. They are essential for stabilisation and protection of chromosomal ends and for the regulation of cell replicative capacity. Due to the end-replication defect of DNA polymerase, telomeres shorten progressively with each cell division and telomere length may be an indicator of the replicative history of a cell. Compensatory mechanisms for the telomere loss have been identified. The most widely studied one is mediated by telomerase a ribonuclear protein-enzyme complex that synthesise telomeric repeats. In this study we have investigated whether NK cells, derived from a group of old healthy subjects, underwent the modifications of telomere length and telomerase activity observed in other sub-populations of lymphocytes with advancing age. We demonstrated that: (a) telomere shortening occurred and telomerase activity decreased in human NK cells with ageing; (b) the rate of telomere loss was different under and over 80 years of age; (c) similarly to telomere shortening, the modification of telomerase activity was particularly evident in octogenarians; (d) subjects with the most evident modifications of telomeres and telomerase were the oldest and those with increased NK cell numbers.  相似文献   

13.
In human cancer cells with telomeres that have been over-lengthened by exogenous telomerase activity, telomere shortening can occur by a process that generates circles of double-stranded telomeric DNA (t-circles). Here, we demonstrate that this telomeretrimming process occurs in cells of the male germline and in normal lymphocytes following mitogen-stimulated upregulation of telomerase activity. Mouse tissues also contain abundant t-circles, suggesting that telomere trimming also contributes to telomere length regulation in mice. In cancer cells and stimulated lymphocytes, the mechanism involves the XRCC3 homologous recombination (HR) protein and generates single-stranded C-rich telomeric DNA. This suggests that, in addition to the well-documented gradual telomere attrition that accompanies cellular replication, there is also a more rapid form of negative telomere length control in normal mammalian cells, which most likely involves HR-mediated removal of telomere loops in the form of t-circles. We therefore propose that this telomere trimming mechanism is an additional factor in the balance between telomere lengthening and telomere shortening in normal human germline and somatic cells that may prevent excessive lengthening by processes such as telomerase activity.  相似文献   

14.
15.
Mouse telomerase and the DNA polymerase alpha-primase complex elongate the leading and lagging strands of telomeres, respectively. To elucidate the molecular mechanism of lagging strand synthesis, we investigated the interaction between DNA polymerase alpha and two paralogs of the mouse POT1 telomere-binding protein (POT1a and POT1b). Yeast two-hybrid analysis and a glutathione S-transferase pull-down assay indicated that the C-terminal region of POT1a/b binds to the intrinsically disordered N-terminal region of p180, the catalytic subunit of mouse DNA polymerase alpha. Subcellular distribution analyses showed that although POT1a, POT1b, and TPP1 were localized to the cytoplasm, POT1a-TPP1 and POT1b-TPP1 coexpressed with TIN2 localized to the nucleus in a TIN2 dose-dependent manner. Coimmunoprecipitation and cell cycle synchronization experiments indicated that POT1b-TPP1-TIN2 was more strongly associated with p180 than POT1a-TPP1-TIN2, and this complex accumulated during the S phase. Fluorescence in situ hybridization and proximity ligation assays showed that POT1a and POT1b interacted with p180 and TIN2 on telomeric chromatin. Based on the present study and a previous study, we propose a model in which POT1a/b-TPP1-TIN2 translocates into the nucleus in a TIN2 dose-dependent manner to target the telomere, where POT1a/b interacts with DNA polymerase alpha for recruitment at the telomere for lagging strand synthesis.  相似文献   

16.
DNA polymerase μ (pol μ) catalyzes nonhomologous end-joining in DNA double-stranded break repair. Pol μ consists of an amino-terminal BRCA1 carboxyl-terminal homology (BRCT) domain and a pol β-like region, which contains the catalytic site. By DNA cellulose column chromatography, using full-length pol μ and five different deletion mutants, we found that the amino-terminal region has double-stranded DNA (dsDNA)-binding activity. Pol μ without BRCT domain reduces the DNA polymerization activity when compared to full-length pol μ. Observation by atomic force microscopy showed that full-length pol μ binds to the ends and middle part of dsDNA. Pol μ lacking the amino-terminal region or with a mutation within the BRCT domain bound only to DNA ends, whereas the amino-terminal region with the BRCT domain bound to both the ends and the middle part of dsDNA (mpdDNA). Terminal deoxynucleotidyltransferase, which, like pol μ, belongs to the X family DNA polymerases, also bound to mpdDNA through its amino-terminal region.  相似文献   

17.
Human chromosome end-capping and telomerase regulation require POT1 (Protection of Telomeres 1) and TPP1 proteins, which bind to the 3′ ssDNA extension of human telomeres. POT1–TPP1 binding to telomeric DNA activates telomerase repeat addition processivity. We now provide evidence that this POT1–TPP1 activation requires specific interactions with telomerase, rather than it being a DNA substrate-specific effect. First, telomerase from the fish medaka, which extends the same telomeric DNA primer as human telomerase, was not activated by human POT1–TPP1. Second, mutation of a conserved glycine, Gly100 in the TEN (telomerase essential N-terminal) domain of TERT, abolished the enhancement of telomerase processivity by POT1–TPP1, in contrast to other single amino acid mutations. Chimeric human–fish telomerases that contained the human TEN domain were active but not stimulated by POT1–TPP1, showing that additional determinants of processivity lie outside the TEN domain. Finally, primers bound to mouse POT1A and human TPP1 were activated for extension by human telomerase, whereas mPOT1A–mTPP1 was most active with mouse telomerase, indicating that these mammalian telomerases have specificity for their respective TPP1 proteins. We suggest that a sequence-specific interaction between TPP1 in the TPP1–POT1–telomeric DNA complex and the G100 region of the TEN domain of TERT is necessary for high-processivity telomerase action.  相似文献   

18.
Telomere length homeostasis is essential for the long-term survival of stem cells, and its set point determines the proliferative capacity of differentiated cell lineages by restricting the reservoir of telomeric repeats. Knockdown and overexpression studies in human tumor cells showed that the shelterin subunit TPP1 recruits telomerase to telomeres through a region termed the TEL patch. However, these studies do not resolve whether the TPP1 TEL patch is the only mechanism for telomerase recruitment and whether telomerase regulation studied in tumor cells is representative of nontransformed cells such as stem cells. Using genome engineering of human embryonic stem cells, which have physiological telomere length homeostasis, we establish that the TPP1 TEL patch is genetically essential for telomere elongation and thus long-term cell viability. Furthermore, genetic bypass, protein fusion, and intragenic complementation assays define two distinct additional mechanisms of TPP1 involvement in telomerase action at telomeres. We demonstrate that TPP1 provides an essential step of telomerase activation as well as feedback regulation of telomerase by telomere length, which is necessary to determine the appropriate telomere length set point in human embryonic stem cells. These studies reveal and resolve multiple TPP1 roles in telomere elongation and stem cell telomere length homeostasis.  相似文献   

19.
In budding yeast, Cdc13, Stn1, and Ten1 form a heterotrimeric complex (CST) that is essential for telomere protection and maintenance. Previous bioinformatics analysis revealed a putative oligonucleotide/oligosaccharide-binding (OB) fold at the N terminus of Stn1 (Stn1N) that shows limited sequence similarity to the OB fold of Rpa2, a subunit of the eukaryotic ssDNA-binding protein complex replication protein A (RPA). Here we present functional and structural analyses of Stn1 and Ten1 from multiple budding and fission yeast. The crystal structure of the Candida tropicalis Stn1N complexed with Ten1 demonstrates an Rpa2N–Rpa3-like complex. In both structures, the OB folds of the two components pack against each other through interactions between two C-terminal helices. The structure of the C-terminal domain of Saccharomyces cerevisiae Stn1 (Stn1C) was found to comprise two related winged helix–turn–helix (WH) motifs, one of which is most similar to the WH motif at the C terminus of Rpa2, again supporting the notion that Stn1 resembles Rpa2. The crystal structure of the fission yeast Schizosaccharomyces pombe Stn1N–Ten1 complex exhibits a virtually identical architecture as the C. tropicalis Stn1N–Ten1. Functional analyses of the Candida albicans Stn1 and Ten1 proteins revealed critical roles for these proteins in suppressing aberrant telomerase and recombination activities at telomeres. Mutations that disrupt the Stn1–Ten1 interaction induce telomere uncapping and abolish the telomere localization of Ten1. Collectively, our structural and functional studies illustrate that, instead of being confined to budding yeast telomeres, the CST complex may represent an evolutionarily conserved RPA-like telomeric complex at the 3′ overhangs that works in parallel with or instead of the well-characterized POT1–TPP1/TEBPα–β complex.  相似文献   

20.
Telomere proteins protect the chromosomal terminus from nucleolytic degradation and end-to-end fusion, and they may contribute to telomere length control and the regulation of telomerase. The current studies investigate the effect of Oxytricha single-stranded telomere DNA-binding protein subunits α and β on telomerase elongation of telomeric DNA. A native agarose gel system was used to evaluate telomere DNA-binding protein complex composition, and the ability of telomerase to use these complexes as substrates was characterized. Efficient elongation occurred in the presence of the α subunit. Moreover, the α–DNA cross-linked complex was a substrate for telomerase. At higher α concentrations, two α subunits bound to the 16-nucleotide single-stranded DNA substrate and rendered it inaccessible to telomerase. The formation of this α·DNA·α complex may contribute to regulation of telomere length. The α·β·DNA ternary complex was not a substrate for telomerase. Even when telomerase was prebound to telomeric DNA, the addition of α and β inhibited elongation, suggesting that these telomere protein subunits have a greater affinity for the DNA and are able to displace telomerase. In addition, the ternary complex was not a substrate for terminal deoxynucleotidyltransferase. We conclude that the telomere protein inhibits telomerase by rendering the telomeric DNA inaccessible, thereby helping to maintain telomere length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号