首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
探讨新型聚己内酯(PCL)/磷酸钙(CPC)复合材料支架的制备方法及对骨髓基质细胞(BMSCs)的生物相容性。采用溶液共混法,利用可溶盐晶体做造孔剂,制备PCL/CPC复合材料支架,以单纯PCL和CPC支架为对照组,Q800型动态力学分析仪进行动态力学性能试验(DMA),采用排水法测量孔隙率;灭菌后通过与犬BMSCs体外共同培养后细胞形态、生长曲线、碱性磷酸酶(ALP)染色和半定量及骨钙素(OC)半定量等方法检测细胞在支架材料上的黏附、增殖及成骨分化情况,动物体内异位成骨检测其成骨情况。结果显示,复合材料的储能模量在PCL/CPC比例为7:3时达到最大,制得的材料孔径为250~350μm,多孔支架的孔隙率为70%~80%;BMSCs在新型PCL/CPC组、CPC组支架表面分布均匀,生长增殖明显较PCL组活跃(P<0.05);PCL/CPC组、CPC组BMSCs成骨行为与PCL组之间有显著差异(P<0.05)。动物体内异位成骨检测提示,4周时PCL/CPC组为13.78%±1.60%、CPC组BMSCs为15.29%±1.20%,成骨显著强于PCL组BMSCs的7.56%±2.20%(P<0.05),表明PCL和CPC的复合明显改善了两种材料的缺陷,获得的PCL/CPC支架具有良好的生物相容性,可与BMSCs共同构建具有成骨能力的三维立体组织工程化骨。  相似文献   

2.
背景:丝蛋白是有利于表皮细胞、成纤维细胞、成骨细胞、血管内皮细胞、胶质细胞黏附和生长的一种新型生物材料。 目的:评估丝蛋白作为支架材料应用于牙周组织工程的可行性。 方法:采用组织块法培养人牙周膜细胞,将第5代细胞悬液以2×107 L-1的浓度接种到丝蛋白支架材料上复合培养,并以1%,10%,50%,100%的丝蛋白支架浸提液培养,观察人牙周膜细胞在丝蛋白上及在丝蛋白浸提液中生长状况,用MTT法测定浸提液培养人牙周膜细胞的活力。 结果与结论:扫描电镜可见人牙周膜细胞在丝蛋白支架上伸展充分,生长旺盛,不同浓度丝蛋白支架浸提液培养对人牙周膜细胞的增殖与碱性磷酸酶活性均无影响。说明丝蛋白材料具有良好的生物相容性、独特的力学性能,可作为人牙周膜细胞黏附生长的理想支架材料较好地应用于牙周组织工程中。  相似文献   

3.
目的探究脱细胞软骨基质(ACM)作为天然细胞支架的可行性及人胰岛素样生长因子1(hIGF-1)对软骨细胞在ACM上的增殖及黏附作用的影响。方法兔耳软骨细胞原代培养,取第3代细胞备用。将脱细胞处理获得的ACM进行HE染色、Masson染色及电镜下观察,用CCK-8法检测支架浸提液的毒性。将软骨细胞接种至ACM中,实验组加入57.14μg/L的hIGF-1,培养7 d后于电镜下观察细胞在ACM上的增殖及黏附。结果 1)ACM疏松多孔,电镜下孔径(3.48±1.39)μm,孔隙率(90.13±2.52)%。2)实验组软骨细胞增殖旺盛,细胞占据绝大部分支架空穴。而对照组软骨细胞增殖较缓慢,且仅有少量细胞进入材料空穴内。结论实验制备的ACM是一种可靠的天然细胞支架。且hIGF-1能促进软骨细胞在ACM上的增殖及黏附。  相似文献   

4.
目的研究制备出一种新型双相磁性纳米复合支架材料(PLGA/Col-I-PLGA/n-HA/Fe_2O_3),通过各项生物学性能检测,评价并探讨其作为骨组织工程支架的可行性。方法通过低温快速成型方法制备双相磁性纳米复合支架材料(PLGA/Col-I-PLGA/n-HA/Fe_2O_3),采用电子试验机检测支架材料的抗弯,抗压,弹性模量评价其力学性能,通过电镜观察支架材料超微结构;以介质(乙醇)浸泡法测定支架材料的孔隙率,将支架材料与骨髓间充质干细胞复合共培养,检测其生物相容性。结果双相磁性纳米复合支架材料力学检测结果显示其具有良好的力学性能,电镜观察结果显示上下两层孔径均匀分布,上层软骨相孔径较小,中间连续相良好融合,孔径及孔隙率检测结果显示软骨层支架的孔径为189um,孔隙率86.5%。骨层支架的孔径为364um,孔隙率77.1%,符合双层支架材料的设计要求。双相磁性纳米复合支架材料与骨髓间充质干细胞共培养,结果显示骨髓间充质干细胞的增殖效果很好,能更好的促进分化为目的细胞,说明双相磁性纳米复合支架材料具有良好的生物相容性。结论双相磁性纳米复合支架材料(PLGA/Col-I-PLGA/n-HA/Fe_2O_3)有很好的力学性能和生物相容性,孔径及孔隙率达到细胞粘附生长的要求,与正常的关节软骨及软骨下骨生理结构更加接近,有望可以更好的修复骨关节炎或者外伤等疾病带来的软骨和软骨下骨损伤。  相似文献   

5.
目的观察MC3T3-El成骨前体细胞在壳聚糖-脱细胞真皮三维支架材料上的黏附情况,并评价其细胞相容性。方法通过冷冻干燥制备壳聚糖-脱细胞真皮三维支架材料,并测试其孔隙率、密度和吸水率,通过扫描电镜分析支架的微观形貌。采用体外培养细胞的方法,将MC3T3-E1细胞直接接种到壳聚糖-脱细胞真皮三维支架材料上,培养2,3,4,5h,各时间点各取3个样品,测定细胞在支架上的黏附率,确定最佳的细胞贴壁时间。将细胞接种到支架上,共培养1,3,5,7,9,11,13d,采用MTS方法绘制细胞增殖曲线,组织化学染色观察细胞形态,并利用材料试验机测试不同时间材料细胞复合物的压缩弹性模量。结果壳聚糖-脱细胞真皮材料具有连通的多孔结构,孔隙率为92.8%,密度为97.96g/L,吸水率为(2169±100)%。细胞相容性实验显示,成骨细胞易于在支架材料上黏附、增殖。结论壳聚糖-脱细胞真皮材料具有连通的孔隙,孔径较均匀,MC3T3-El成骨前体细胞易在壳聚糖-脱细胞真皮三维支架材料上黏附、增殖,表明该支架材料具有良好的细胞相容性。  相似文献   

6.
目的 体外构建丝素蛋白(silk fibroin,SF)、I型胶原(type I collagen,Col-I)和羟基磷灰石(hydroxyapatite, HA)共混体系制备二维复合膜和三维仿生支架,研究其理化性质和生物相容性,探讨其在组织工程支架材料中应用的可行性。方法 通过在细胞培养小室底部共混SF/Col-I/HA以及低温3D打印结合真空冷冻干燥法制备二维复合膜及三维支架。通过机械性能测试、电子显微镜和Micro-CT检测材料的理化性质,检测细胞的增殖评估其生物相容性。结果 通过共混和低温3D打印获得稳定的二维复合膜及三维多孔结构支架;力学性能具有较好的一致性,孔径、吸水率、孔隙率和弹性模量均符合构建组织工程骨的要求;支架为网格状的白色立方体,内部孔隙连通性较好; HA均匀分布在复合膜中,细胞黏附在复合膜上,呈扁平状;细胞分布在支架孔壁周围,呈梭形状,生长及增殖良好。结论 利用SF/Col-I/HA共混体系成功制备复合膜及三维支架,具有较好的孔连通性与孔结构,有利于细胞和组织的生长以及营养输送,其理化性能以及生物相容性符合骨组织工程生物材料的要求。  相似文献   

7.
背景:高孔隙率聚己内酯纳米纤维支架具有适合血管平滑肌细胞黏附、增殖的多级孔径结构,具有良好的细胞生物相容性。 目的:探讨高孔隙率聚己内酯静电纺丝纳米纤维支架的细胞相容性。 方法:根据支架的制作工艺不同分为传统支架组、新型纳米纤维支架组两组,另设单纯细胞组为对照组。采用组织块贴壁法体外原代培养兔主动脉平滑肌细胞并进行传代,用3~6代细胞作为实验用种子细胞。应用WST-1法测定平滑肌细胞黏附率、增殖力,光镜及扫描电镜观察细胞形态,评估支架的细胞生物相容性。 结果与结论:高孔隙率聚己内酯纳米纤维支架对细胞形态无明显影响,新型支架上的种子细胞黏附、增殖及代谢活性情况较传统支架好。提示,高孔隙率聚己内酯静电纺丝纳米纤维支架具有较高的细胞相容性。  相似文献   

8.
目的观察脂肪源干细胞(ADSCs)与聚丙烯网片的生物相容性。方法制备兔ADSCs悬液。取聚丙烯网片浸提液培养ADSCs。用四甲基偶氮唑盐(MTT)法检测细胞活力,评价支架细胞毒性。ADSCs传代扩增后,接种到聚丙烯网片支架上,体外培养1周。用扫描电子显微镜观察细胞在支架上黏附生长及增殖。结果 ADSCs在聚丙烯网片浸提液中可保持较高的增殖率(RGR)(24、48、72 h实验组细胞RGR分别为97%、96%、101%,平均RGR为103.5%),与对照组比较,差异无统计学意义(χ2=17.45,P0.05),聚丙烯网片浸提液无细胞毒性。脂肪干细胞种植于两种支架材料后生长速度快,扫描电子显微镜观察可见脂肪干细胞呈球型,并伸展形成伪足,贴附于支架材料,细胞间相互连接成团。结论聚丙烯网片支架与ADSCs具有良好的生物相容性,无细胞毒性,可作为脂肪组织工程较理想的生物支架材料。  相似文献   

9.
磷酸三钙(TCP)是构建骨组织工程支架常用的生物陶瓷材料。三维(3D)打印的TCP支架具有精确可控的孔隙结构,但存在力学性能不足的问题。由于烧结工艺对生物陶瓷支架力学性能的影响至关重要,本文详细探讨了不同烧结温度对3D打印TCP支架的力学性能的影响,测试了不同烧结温度制备的支架的表观形貌、质量和体积收缩率、孔隙率、力学性能以及降解性能。结果表明,当烧结温度为1150℃时,晶粒生长充分、气孔最少,支架具有最大的体积收缩率、最小的孔隙率以及最优的力学性能,压缩模量和抗压强度可以分别达到(100.08±18.6)MPa和(6.52±0.84)MPa,能够满足人体松质骨力学强度的要求。此外,与其他烧结温度下制备的支架相比,1150℃下烧结制备的支架在酸性环境中降解最慢,进一步说明其在长期植入时具有更佳的力学稳定性。该支架可支持骨髓间充质干细胞(BMSCs)黏附和快速增殖,具有良好的生物相容性。综上,本文优化了3D打印TCP支架的烧结工艺,提高了其力学性能,为其作为承重骨的应用奠定了基础。  相似文献   

10.
目的 制备纳米羟基磷灰石/重组类人胶原基/聚乳酸复合支架材料 (nano-hydroxyapatite/ recombinant human- like collagen/polylactic acid,nHA/RHLC/PLA),观察材料的形貌特征,探讨材料对骨髓基质干细胞(BMSCs)增殖、黏附及分化等生物学行为的影响。 方法 制备nHA/RHLC/PLA复合支架材料,应用X 光衍射分析(XRD)、红外光谱分析(FTIR)、ZWICK Z005 测试机对样品的化学成分、机械性能测试和压缩强度进行测试,通过扫描电镜检查等方法观察材料的表征;将犬骨髓基质细胞(BMSCs)接种在支架材料上培养,检测材料-细胞的黏附情况及材料对细胞生长增殖的影响。 结果 nHA/RHLC/PLA复合支架材料压缩强度均大于1MPa,达到了天然松质骨的最低强度。扫描电镜结果显示:支架材料呈三维多孔结构,孔为不规则多边形,孔的走向多样,纵向和横向孔隙互为交通,孔径在几十微米到300微米不等,孔隙率为75%~83%。nHA/RHLC/PLA复合支架材料表面BMSCs的黏附、生长良好;而BMSCs的增殖能力与对照组相比,差异无显著性意义(P>0.05)。 结论 nHA/RHLC/PLA复合支架材料符合组织工程骨支架的力学要求,具有良好的微观结构,无细胞毒性,细胞与支架生物相容性良好。利用重组类人胶原代替动物源性胶原制备纳米晶骨修复材料,规避了动物胶原交叉感染的风险,有望成为一种理想的骨组织工程支架材料。  相似文献   

11.
目的探讨纳米壳聚糖纤维强化型磷酸钙骨水泥的机械及生物相容性能。方法使用纳米壳聚糖纤维强化CPC骨水泥,通过MTT比色法及DAPI染色观察其生物相容性情况;通过三点弯曲试验检测其力学性能。结果三点弯曲试验表明经过壳聚糖纤维强化后的骨水泥的机械性能(17.3±4.5)MPa较之普通骨水泥有明显改善(5.3±1.4)MPa;并且这样的改进对材料的生物相容性没有影响,其毒性试验显示新材料相容性比值为(97.5±3.3)%。细胞增值实验3天吸光值分别为(0.237±0.025)、(0.451±0.015)、(0.726±0.032)。结论新型纳米壳聚糖纤维强化型骨水泥无细胞毒性,具有良好的机械性能及生物相容性。  相似文献   

12.
Human umbilical cord mesenchymal stem cells (hUCMSCs) avoid the invasive procedure required to harvest bone marrow MSCs. The addition of collagen fibers into self-setting calcium phosphate cement (CPC) may increase the scaffold strength, and enhance cell attachment and differentiation. The objectives of this study were to develop a novel class of collagen-CPC composite scaffolds, and to investigate hUCMSC attachment, proliferation, and osteogenic differentiation on collagen-CPC scaffolds for the first time. Collagen fibers in CPC improved the load-bearing capability. Flow cytometry showed that the hUCMSCs expressed cell surface markers characteristic of MSCs, and were negative for hematopoietic and endothelial cell markers. hUCMSCs proliferated rapidly in all CPC composite scaffolds, with cell number increasing by sevenfold in 8 days. Cellular function was enhanced with collagen fibers in CPC scaffolds. Cell density increased from (645±60) cells/mm(2) on CPC with 0% collagen, to (1056±65) cells/mm(2) on CPC with 8% collagen (p<0.05). The actin stress fibers inside the hUCMSCs were stained, and the fluorescence intensity was doubled when the collagen in CPC was increased by 0% to 8%. RT-PCR showed that hUCMSCs on CPC with collagen had higher osteogenic expression than those on CPC without collagen. Alizarin Red S staining revealed a great increase in mineralization by hUCMSCs on CPC with collagen than that without collagen. In conclusion, hUCMSCs showed excellent proliferation, differentiation, and synthesis of bone minerals in collagen-CPC composite scaffolds for the first time. The novel hUCMSC-seeded collagen-CPC construct with superior cell function and load-bearing capability is promising to enhance bone regeneration in a wide range of orthopedic and craniofacial applications.  相似文献   

13.
目的 评价基于连笔直写的生命体微结构成形技术制备的管状支架的力学性能及其生物相容性.方法 对该血管支架采用径向顺应性、缝合强度、爆破压力等力学性能检测;通过溶血率、体外动态凝血实验、血小板黏附实验进行血液相容性的分析;采用细胞培养MTT法及细胞形态学观察方法,研究其细胞相容性.结果 血管支架的径向顺应性为(4.03±0.56)%/100mmHg,缝合强度为(204.5±72.1)N/cm2,爆破压力约为(102±8)kPa;支架的溶血率为1.75%,小于ISO规定的5%;在体外动态凝血实验中,血管支架的抗凝血性能显著优于对照组载玻片(P<0.05),而且扫描电镜观察到血小板黏附较少,显示出该血管支架具有良好抗凝血性能;MTT比色法结果显示其细胞毒性为0~1级;细胞形态学观察显示L929细胞在该血管支架膜片的浸提液中呈梭形或三角形,贴壁良好.结论 该血管支架具有良好的力学性能、血液相容性和细胞相容性,可以满足组织工程血管支架的要求.  相似文献   

14.
In this study, the alginate/calcium phosphate cement (CPC) scaffolds with oriented pore structure were fabricated by unidirectional freeze casting and poly (lactic-co-glycolic acid) (PLGA) was used to infiltrate into the macropores to strengthen the scaffolds. By modifying the liquid to powder ratio, the porosity and pore size of the alginate/CPC scaffold could be controlled. At the liquid to powder (L/P) ratio of 3.25, scaffolds possessing open directional macropores and a total porosity of 89.24% could be achieved. The size of the tubule-like macropores could reach 100-200 mum in their radial dimension and more than 1000 mum in the axial one, with macropores well-regulated arrayed. Increasing the L/P ratio would significantly decrease the mechanical strength of alginate/CPC scaffolds. The compressive strength and toughness of scaffolds could be greatly improved via PLGA reinforcement. Three mechanisms of PLGA reinforcement ran as follows: participating in the external load, strengthening the matrix, and patching the defects of CPC pores wall. Alginate/PLGA/CPC scaffold preserved the open directional macropores and might be a potential scaffold for bone tissue engineering.  相似文献   

15.
Tissue engineering approaches are promising to meet the increasing need for bone regeneration. Calcium phosphate cement (CPC) can be injected and self-set to form a scaffold with excellent osteoconductivity. The objectives of this study were to develop a macroporous CPC-chitosan-fiber construct containing alginate-fibrin microbeads encapsulating human umbilical cord mesenchymal stem cells (hUCMSCs) and to investigate hUCMSC release from the degrading microbeads and proliferation inside the porous CPC construct. The hUCMSC-encapsulated microbeads were completely wrapped inside the CPC paste, with the gas-foaming porogen creating macropores in CPC to provide for access to culture media. Increasing the porogen content in CPC significantly increased the cell viability, from 49% of live cells in CPC with 0% porogen to 86% of live cells in CPC with 15% porogen. The alginate-fibrin microbeads started to degrade and release the cells inside CPC at 7 days. The released cells started to proliferate inside the macroporous CPC construct. The live cell number inside CPC increased from 270 cells/mm(2) at 1 day to 350 cells/mm(2) at 21 days. The pore volume fraction of CPC increased from 46.8% to 78.4% using the gas-foaming method, with macropore sizes of approximately 100 to 400 μm. The strength of the CPC-chitosan-fiber scaffold at 15% porogen was 3.8 MPa, which approximated the reported 3.5 MPa for cancellous bone. In conclusion, a novel gas-foaming macroporous CPC construct containing degradable alginate-fibrin microbeads was developed that encapsulated hUCMSCs. The cells had good viability while wrapped inside the porous CPC construct. The degradable microbeads in CPC quickly released the cells, which proliferated over time inside the porous CPC. Self-setting, strong CPC with alginate-fibrin microbeads for stem cell delivery is promising for bone tissue engineering applications.  相似文献   

16.
17.
Calcium phosphate cement (CPC) scaffold design should improve nutrient and cell transfer to the scaffold centre. To achieve this goal, a channel network with proper channel diameters should be incorporated into the scaffold. In this study, CPC scaffolds with a single central channel were fabricated indirectly using a stereolithography rapid prototyping (RP) technology. The diameters of the central channels ranged from 402 microm to 1988 microm. These scaffolds were seeded with rabbit marrow stem cells (MSCs) labeling DiI and cultured for 5 days. Cell observation on the wall of the central channels was performed. The data of the experimental point revealed that cell coverage was from approximately 18% (1988 microm) to approximately 35% (592 microm). There was a significant increase from day 1 to day 5 in cell coverage in the same channel. The cell area coverage increased lineally with the central channel diameter when the channel diameter was less than approximately 789 microm. Afterwards (from 789 to 1988 microm), the relationship between cell area coverage and channel diameter was also linear relationship. But the increase was more slowly than before. Preliminary demonstration from the data that the minimum channel diameter required for cell migration into and adhesion on CPC scaffold was approximately 72 microm. These results are promising for the development of optimal scaffold with a three-dimensional channel network.  相似文献   

18.
骨组织微结构观察分析及仿生支架立体光固化间接制造   总被引:5,自引:0,他引:5  
通过对骨组织显微结构观察分析,指导人工骨支架内部微管道结构设计,结合CAD、反求工程和快速成形技术制造仿生结构生物活性人工骨支架.观察骨组织切片,获取骨组织微观结构数据,进行三维重构和辅助设计,应用快速成形技术制造相应的支架模具.在模具中填充磷酸钙骨水泥,烧结后得到仿生结构生物活性人工骨支架.光学显微镜和扫描电镜观察和测量支架微结构,X射线衍射分析磷酸钙骨水泥在热分解前后的主要成分,结果表明,所得支架与设计相符,热分解前的磷酸钙骨水泥主要成分为低结晶度的羟基磷灰石,而热分解之后为结晶度更高的羟基磷灰石.体外培养试验表明支架无细胞毒性,且黏附在支架上的细胞保持着良好的形态和功能发挥.  相似文献   

19.
Calcium phosphate cement scaffold (CPC) has been widely used as bone graft substitutes, but undesirable osteoinductivity and slow degradability greatly hamper their clinic application. To address these problems, a recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded calcium silicate/calcium phosphate cement scaffold (CSPC) with hierarchical pores was developed in this study. The CSPC scaffold with both interconnected macropores on the order of 200–500 μm and micropores of 2–5 μm was synthesized from CPC and calcium silicate (CS) by a NaCl particulate-leaching method. In vitro cell culture with C2C12 model cells, in vivo ectopic bone formation and rabbit femur cavity defect repair were performed to evaluate the osteogeneic capacity of the CSPC/rhBMP-2 scaffold. CPC, CSPC and CPC/rhBMP-2 scaffolds were parallelly investigated for comparison. The results demonstrated that the hierarchical macro/microporous structure, whether in presence of CS or rhBMP-2, highly favored the adhesion of C2C12 cells and bone in-growth into the CPC-based scaffolds. But, in comparison to the CPC-based scaffolds with CS or rhBMP-2 alone, the CSPC/rhBMP-2 scaffold strongly promoted osteogenic differentiation in vitro and osteogenetic efficacy in vivo. Further studies demonstrated that Si ions derived from CSPC contributed mainly to maintain the conformation of rhBMP-2 and thus stimulate the synergistic action of CS and rhBMP-2 in osteogenic differentiation and osteoinductivity. Additionally, the incorporation of CS was also beneficial for the dissolution of the scaffold. Those results suggest that the CSPC has superior properties for incorporation of rhBMP-2 and our developed CSPC/rhBMP-2 scaffold have great potential for future use in bone tissue regeneration.  相似文献   

20.
Calcium phosphate cement (CPC) is highly promising for craniofacial and orthopedic repair because of its ability to self-harden in situ to form hydroxyapatite with excellent osteoconductivity. However, its low strength, long hardening time, and lack of macroporosity limit its use. This study aimed to develop fast-setting and antiwashout CPC scaffolds with high strength and tailored macropore formation rates. Chitosan, sodium phosphate, and hydroxypropyl methylcellulose (HPMC) were used to render CPC fast-setting and resistant to washout. Absorbable fibers and mannitol porogen were incorporated into CPC for strength and macropores for bone ingrowth. Flexural strength, work-of-fracture, and elastic modulus were measured vs. immersion time in a physiological solution. Hardening time (mean +/- SD; n = 6) was 69.5 +/- 2.1 min for CPC-control, 9.3 +/- 2.8 min for CPC-HPMC-mannitol, 8.2 +/- 1.5 min for CPC-chitosan-mannitol, and 6.7 +/- 1.6 min for CPC-chitosan-mannitol-fiber. The latter three compositions were resistant to washout, whereas the CPC-control paste showed washout in a physiological solution. Immersion for 1 day dissolved mannitol and created macropores in CPC. CPC-chitosan-mannitol-fiber scaffold had a strength of 4.6 +/- 1.4 MPa, significantly higher than 1.2 +/- 0.1 MPa of CPC-chitosan-mannitol scaffold and 0.3 +/- 0.2 MPa of CPC-HPMC-mannitol scaffold (Tukey's). The strength of CPC-chitosan-mannitol-fiber scaffold was maintained up to 42 days and then decreased because of fiber degradation. Work-of-fracture and elastic modulus showed similar trends. Long cylindrical macropore channels were formed in CPC after fiber dissolution. The resorbable, fast-setting, anti-washout and strong CPC scaffold should be useful in craniofacial and orthopedic repairs. The novel method of combining fast- and slow-dissolution porogens/fibers to produce scaffolds with high strength and tailored macropore formation rates to match bone healing rates may have wide applicability to other biomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号