首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stray radiation exposures are of concern for patients receiving proton radiotherapy and vary strongly with several treatment factors. The purposes of this study were to conservatively estimate neutron exposures for a contemporary passive scattering proton therapy system and to understand how they vary with treatment factors. We studied the neutron dose equivalent per therapeutic absorbed dose (H/D) as a function of treatment factors including proton energy, location in the treatment room, treatment field size, spread-out Bragg peak (SOBP) width and snout position using both Monte Carlo simulations and analytical modeling. The H/D value at the isocenter for a 250 MeV medium field size option was estimated to be 20 mSv Gy(-1). H/D values generally increased with the energy or penetration range, fell off sharply with distance from the treatment unit, decreased modestly with the aperture size, increased with the SOBP width and decreased with the snout distance from the isocenter. The H/D values from Monte Carlo simulations agreed well with experimental results from the literature. The analytical model predicted H/D values within 28% of those obtained in simulations; this value is within typical neutron measurement uncertainties.  相似文献   

2.
A Monte Carlo study on internal wedges using BEAM   总被引:1,自引:0,他引:1  
  相似文献   

3.
Absorbed photoneutron dose to patients undergoing 18 MV x-ray therapy was studied using Monte Carlo simulations based on the MCNPX code. Two separate transport simulations were conducted, one for the photoneutron contribution and another for neutron capture gamma rays. The phantom model used was of a female patient receiving a four-field pelvic box treatment. Photoneutron doses were determinate to be higher for organs and tissues located inside the treatment field, especially those closest to the patient's skin. The maximum organ equivalent dose per x-ray treatment dose achieved within each treatment port was 719 microSv/Gy to the rectum (180 degrees field), 190 microSv/Gy to the intestine wall (0 degrees field), 51 microSv/Gy to the colon wall (90 degrees field), and 45 microSv/Gy to the skin (270 degrees field). The maximum neutron equivalent dose per x-ray treatment dose received by organs outside the treatment field was 65 microSv/Gy to the skin in the antero-posterior field. A mean value of 5 +/- 2 microSv/Gy was obtained for organs distant from the treatment field. Distant organ neutron equivalent doses are all of the same order of magnitude and constitute a good estimate of deep organ neutron equivalent doses. Using the risk assessment method of the ICRP-60 report, the greatest likelihood of fatal secondary cancer for a 70 Gy dose is estimated to be 0.02% for the pelvic postero-anterior field, the rectum being the organ representing the maximum contribution of 0.011%.  相似文献   

4.
《Plasmas & Ions》1999,2(2):79-83
Total structure factors from neutron diffraction (ND) and X-ray diffraction (XRD) measurements on molten lithium carbonate have been analyzed by the reverse Monte Carlo (RMC) modeling technique to generate a three-dimensional structural model of the melt. The calculated pair distribution functions were different from a previous result obtained by molecular dynamics (MD) simulation while the coordination numbers, NLi-C = 3.8, NO-Li = 2.4, NLi-O = 3.7, were in agreement with those obtained from X-ray diffraction. Viewing the CO32− ion as a plane triangle, the most probable site for the Li cation is found to be a corner site.  相似文献   

5.
医用加速器电子束能谱分布的Monte Carlo模拟研究   总被引:1,自引:1,他引:0  
目的:模拟并分析医用直线加速器电子束在记录平面上的能谱分布,总结其分布特征。方法:基于蒙特卡罗方法的EGSnrc程序是医学物理领域中使用最广泛的模拟电子和光子输运过程的MC模拟程序,其计算精度已为大量实验所证实。本文用以EGSnrc为基础的BEAMnrc和BEAMdp程宇对医用直线加速器在四种典型能量下的出射电子束能谱进行了模拟计算,在SSD平面记录所有初级和次级电子的能量和角分布,然后在该平面上选择不同大小的分析区域计算电子能谱。结果:首先在6MeV、9MeV、12MeV、20MeV四种不同能量,相同射野下选取相同大小分析区域.对其能谱进行分析,发现这些能谱都有一个主峰,并伴之以一个强度较小的次级峰,主峰半宽度几乎相同,而且都可以很好地用Pierson分布描述,但最可几能量和人射能量的比值随电子束能量的不同有很大差异:然后在12Mev能量下选取不同大小分析区域对能谱进行分析,以考察能谱在分析平面内对位置依赖性。结论:在不同能量下,电子束能谱形状相似,可用Pierson分布描述;能谱几乎独立于所选择的分析区域,表明能谱的空间分布几乎是均匀的。  相似文献   

6.
A Monte Carlo study of IMRT beamlets in inhomogeneous media   总被引:3,自引:0,他引:3  
Jones AO  Das IJ  Jones FL 《Medical physics》2003,30(3):296-300
Intensity Modulated Radiation Therapy (IMRT) has trended toward smaller multiple radiation fields thereby increasing the resolution of the intensity map. Vendors have introduced multileaf collimators with beam apertures of 0.5 cm and less. The beam characteristics of these smaller fields have not been adequately assessed, especially in the presence of inhomogeneities. Most dosimetric devices have significant limitations due to finite size, dose rate, and energy dependence. We studied the effect of inhomogeneities on small beamlets. The 6, 15, and 24 MV beams were modeled using the EGSnrc Monte Carlo code. Point source beams of circular field sizes 0.5, 1.0, 3.0, 5.0, and 10 cm were simulated in a water phantom at 100 SSD. A 3 cm inhomogeneity of lung tissue was incorporated between 3 and 6 cm in the phantom. The depth dose curves and profiles were compared by beam size and density of the inhomogeneity. The Monte Carlo simulations show that for small fields a marked dose decrease in the presence of low-density media due to the lack of lateral electronic equilibrium is observed. As the density and field size increase, the dose reduction is less pronounced and for the 10 cm field there is an increased dose as expected due to lack of attenuation. This data suggests that current TPS may dramatically over- or underestimate the dose in inhomogeneous media for small field sizes that are used for IMRT.  相似文献   

7.
Organ doses are important quantities in assessing the radiation risk. In the case of children, estimation of this risk is of particular concern due to their significant radiosensitivity and the greater health detriment. The purpose of this study is to estimate the organ doses to paediatric patients undergoing barium meal and micturating cystourethrography examinations by clinical measurements and Monte Carlo simulation. In clinical measurements, dose-area products (DAPs) were assessed during examination of 50 patients undergoing barium meal and 90 patients undergoing cystourethrography examinations, separated equally within three age categories: namely newborn, 1 year and 5 years old. Monte Carlo simulation of photon transport in male and female mathematical phantoms was applied using the MCNP5 code in order to estimate the equivalent organ doses. Regarding the micturating cystourethrography examinations, the organs receiving considerable amounts of radiation doses were the urinary bladder (1.87, 2.43 and 4.7 mSv, the first, second and third value in the parentheses corresponds to neonatal, 1 year old and 5 year old patients, respectively), the large intestines (1.54, 1.8, 3.1 mSv), the small intestines (1.34, 1.56, 2.78 mSv), the stomach (1.46, 1.02, 2.01 mSv) and the gall bladder (1.46, 1.66, 2.18 mSv), depending upon the age of the child. Organs receiving considerable amounts of radiation during barium meal examinations were the stomach (9.81, 9.92, 11.5 mSv), the gall bladder (3.05, 5.74, 7.15 mSv), the rib bones (9.82, 10.1, 11.1 mSv) and the pancreas (5.8, 5.93, 6.65 mSv), depending upon the age of the child. DAPs to organ/effective doses conversion factors were derived for each age and examination in order to be compared with other studies.  相似文献   

8.
Earl MA  Ma L 《Medical physics》2002,29(4):484-491
We studied the dose distributions from electron beams subjected to a longitudinal magnetic field applied to them before they reach the phantom. We found that specific combinations of the length and intensity of the magnetic field produced enhancement of the peaks of the central-axis depth-dose distributions. The EGS4 Monte Carlo system was used in this study. In the simulations, a uniform axial magnetic field parallel to the electron beam direction was applied to the air gap between the collimation and the phantom. We extensively studied the simplified case of an 18 MeV electron beam point source. Dose deposition was calculated for various magnetic field strengths, distances through which the magnetic field was applied, collimation sizes, and source to collimation distances. The magnetic field strengths varied from 0 to 3 T, the source-to-collimation distances studied were 50 and 95 cm, the collimation sizes studied were 10 x 10 and 20 x 20 cm2, and the distance through which the field was applied ranged from 10 to 20 cm. Specific combinations of these variables resulted in as much as a 70% enhancement of the peak dose relative to the surface dose. Finally, to determine how the geometry of a real accelerator affects the resulting dose distribution, we performed a full simulation of an Elekta SL20 linear accelerator and compared the results with the ideal case.  相似文献   

9.
Due to the significant increase in the number of monitor units used to deliver a dynamic IMRT treatment, the total MLC leakage (transmission plus scatter) can exceed 10% of the maximum in-field dose. To avoid dosimetric errors, this leakage must be accurately accounted for in the dose calculation and conversion of optimized intensity patterns to MLC trajectories used for treatment delivery. In this study, we characterized the leaf end transmission and leakage radiation for Varian 80- and 120-leaf MLCs using Monte Carlo simulations. The complex geometry of the MLC, including the rounded leaf end, leaf edges (tongue-and-groove and offset notch), mounting slots, and holes was modeled using MCNP4b. Studies were undertaken to determine the leakage as a function of field size, components of the leakage, electron contamination, beam hardening and leaf tip effects. The leakage radiation with the MLC configured to fully block the field was determined. Dose for 6 and 18 MV beams was calculated at 5 cm depth in a water phantom located at 95 cm SSD, and normalized to the dose for an open field. Dose components were scored separately for radiation transmitted through and scattered from the MLC. For the 80-leaf MLC at 6 MV, the average leakage dose is 1.6%, 1.7%, 1.8%, and 1.9% for 5 x 5, 10 x 10, 15 x 15, and 20 x 20cm2 fields, respectively. For the 120-leaf MLC at 6 MV, the average leakage dose is 1.6%, 1.6%, 1.7%, and 1.9% for the same field sizes. Measured leakage values for the 120-leaf MLC agreed with calculated values to within 0.1% of the open field dose. The increased leakage with field size is attributed to MLC scattered radiation. The fractional electron contamination for a blocked MLC field is greater than that for an open field. The MLC attenuation significantly affects the photon spectrum, resulting in an increase in percent depth dose at 6 MV, however, little effect is observed at 18 MV. Both phantom scatter and the finite source size contribute to the leaf tip profile observed in phantom. The results of this paper can be applied to fluence-to-trajectory and trajectory-to-fluence calculations for IMRT.  相似文献   

10.
Advances in digital x-ray detector systems have led to a renewed interest in the performance of x-ray phosphors and other detector materials. Indirect flat panel x-ray detector and charged coupled device (CCD) systems require a more technologically challenging geometry, whereby the x-ray beam is incident on the front side of the scintillator, and the light produced must diffuse to the back surface of the screen to reach the photoreceptor. Direct detector systems based on selenium have also enjoyed a growing interest, both commercially and academically. Monte Carlo simulation techniques were used to study the x-ray scattering (Rayleigh and Compton) and the more prevalent x-ray fluorescence properties of seven different x-ray detector materials, Gd2O2S, CsI, Se, BaFBr, YTaO4, CaWO4, and ThO2. The redistribution of x-ray energy, back towards the x-ray source, in a forward direction through the detector, and lateral reabsorption in the detector was computed under monoenergetic conditions (1 keV to 130 keV by 1 keV intervals) with five detector thicknesses, 30, 60, 90, 120, and 150 mg/cm2 (Se was studied from 30 to 1000 mg/cm2). The radial distribution (related to the point spread function) of reabsorbed x-ray energy was also determined. Representative results are as follows: At 55 keV, more (31.3%) of the incident x-ray energy escaped from a 90 mg/cm2Gd2O2S detector than was absorbed (27.9%). Approximately 1% of the total absorbed energy was reabsorbed greater than 0.5 mm from the primary interaction, for 90 mg/cm2 CsI exposed at 100 kVp. The ratio of reabsorbed secondary (fluorescence + scatter) radiation to the primary radiation absorbed in the detectors (90 mg/cm2) (S/P) was determined as 10%, 16%, 2%, 12%, 3%, 3%, and 0.3% for a 100 kVp tungsten anode x-ray spectrum, for the Gd2O2S, CsI, Se, BaFBr, YTaO4, CaWO4, and ThO2 detectors, respectively. The results indicate significant x-ray fluorescent escape and reabsorption in common x-ray detectors. These findings suggest that x-ray fluorescent radiation redistribution should be considered in the design of digital x-ray imaging systems.  相似文献   

11.
12.
The contribution of multiple scatter to the measured signal in x- and gamma-ray Compton scatter densitometry has been investigated theoretically by the use of Monte Carlo techniques to follow individual photon life histories. A three component phantom was employed in the computer model to simulate the patient at three examination sites; the radius/ulna, the femoral neck, and the lumbar spine. Monoenergetic radiation beams of 60- and 100-keV photons and polyenergetic x-ray spectra of 100 and 140 kVp were used. Scattered events were detected over 360 degrees and classified according to their origin and frequency of scatter. The single scatter in bone to multiple scatter ratio was studied as an indication of the signal-to-noise ratio and this was found to vary with phantom size but was independent of photon energy. Correction factors to be used in a clinical densitometer to account for the inclusion of multiple scatter events were computed. These were found to be 0.65-0.58 at the optimum scattering angles for the phantoms considered.  相似文献   

13.
Standard algorithms for postimplant analysis of transperineal interstitial permanent prostate brachytherapy (TIPPB) are based on AAPM Task Group 43 formalism (TG-43), which makes use of a world entirely made of water. This entails an assignment of the prostate, surrounding organs at risk, as well as all brachytherapy seeds present in a permanent prostate implant to water. Brachytherapy seeds are generally made from high atomic number materials. Because of the simultaneous presence of many brachytherapy seeds in a TIPPB, there is a shielding effect causing an attenuation of energy of the emitted photons generally called the "interseed attenuation" (ISA). This study investigates the impact of seed designs and compositions on the interseed attenuation. For this purpose, six brachytherapy seeds covering a wide variety of seed design and composition were modeled with the GEANT4 Monte Carlo (MC) toolkit. MC has allowed calculation of the contribution of each major component (encapsulation and internal components) of a given seed model to ISA separately. The impact of ISA on real clinical implant configurations was also explored. Two clinical postimplant geometries with different brachytherapy seeds were studied with MC simulations. The change in the clinical parameter D90 was observed. This study shows that Nucletron SelectSeed (similar to the Oncura model 6711), ProstaSeed, and Best Medical model 2335 are the most attenuating designs with 4.8%, 3.9%, and 4.6% of D90 reduction, respectively. The least attenuating seed is a 103Pd seed encapsulated in a polymer shell, the IBt OptiSeed with 1.5%. Finally, based on this systematic study, a new seed design is proposed that is predicted to be the most waterlike brachytherapy seed and thus TG-43 compatible.  相似文献   

14.
The assessment of the radiation dose to internal organs or to an embryo or fetus is required on occasion for risk assessment or for comparing imaging studies. Limited resources hinder the ability to accurately assess the radiation dose received to locations outside the tissue volume actually scanned during computed tomography (CT). The purpose of this study was to assess peripheral doses and provide tabular data for dose evaluation. Validated Monte Carlo simulation techniques were used to compute the dose distribution along the length of water-equivalent cylindrical phantoms, 16 and 32 cm in diameter. For further validation, comparisons between physically measured and Monte Carlo-derived air kerma profiles were performed and showed excellent (1% to 2%) agreement. Polyenergetic x-ray spectra at 80, 100, 120, and 140 kVp with beam shaping filters were studied. Using 10(8) simulated photons input to the cylinders perpendicular to their long axis, line spread functions (LSF) of the dose distribution were determined at three depths in the cylinders (center, mid-depth, and surface). The LSF data were then used with appropriate mathematics to compute dose distributions along the long axis of the cylinder. The dose distributions resulting from helical (pitch = 1.0) scans and axial scans were approximately equivalent. Beyond about 3 cm from the edge of the CT scanned tissue volume, the fall-off of radiation dose was exponential. A series of tables normalized at 100 milliampere seconds (mAs) were produced which allow the straight-forward assessment of dose within and peripheral to the CT scanned volume. The tables should be useful for medical physicists and radiologists in the estimation of dose to sites beyond the edge of the CT scanned volume.  相似文献   

15.
During experimental procedures, an adequate evaluation of all sources of uncertainty is necessary to obtain an overall uncertainty budget. In specific radiation dosimetry applications where a single detector is used, common methods to evaluate uncertainties caused by setup positioning errors are not applicable when the dose gradient is not known a priori. This study describes a method to compute these uncertainties using the Monte Carlo method. A mathematical formalism is developed to calculate unbiased estimates of the uncertainties. The method is implemented in egs_chamber, an EGSnrc-based code that allows for the efficient calculation of detector doses and dose ratios. The correct implementation of the method into the egs_chamber code is validated with an extensive series of tests. The accuracy of the developed mathematical formalism is verified by comparing egs_chamber simulation results to the theoretical expectation in an ideal situation where the uncertainty can be computed analytically. Three examples of uncertainties are considered for realistic models of an Exradin A12 ionization chamber and a PTW 60012 diode, and results are computed for parameters representing nearly realistic positioning error probability distributions. Results of practical examples show that uncertainties caused by positioning errors can be significant during IMRT reference dosimetry as well as small field output factor measurements. The method described in this paper is of interest in the study of single-detector response uncertainties during nonstandard beam measurements, both in the scope of daily routine as well as when developing new dosimetry protocols. It is pointed out that such uncertainties should be considered in new protocols devoted to single-detector measurements in regions with unpredictable dose gradients. The method is available within the egs_chamber code in the latest official release of the EGSnrc system.  相似文献   

16.
Bednarz B  Xu XG 《Medical physics》2008,35(7):3054-3061
A Monte Carlo-based procedure to assess fetal doses from 6-MV external photon beam radiation treatments has been developed to improve upon existing techniques that are based on AAPM Task Group Report 36 published in 1995 [M. Stovall et al., Med. Phys. 22, 63-82 (1995)]. Anatomically realistic models of the pregnant patient representing 3-, 6-, and 9-month gestational stages were implemented into the MCNPX code together with a detailed accelerator model that is capable of simulating scattered and leakage radiation from the accelerator head. Absorbed doses to the fetus were calculated for six different treatment plans for sites above the fetus and one treatment plan for fibrosarcoma in the knee. For treatment plans above the fetus, the fetal doses tended to increase with increasing stage of gestation. This was due to the decrease in distance between the fetal body and field edge with increasing stage of gestation. For the treatment field below the fetus, the absorbed doses tended to decrease with increasing gestational stage of the pregnant patient, due to the increasing size of the fetus and relative constant distance between the field edge and fetal body for each stage. The absorbed doses to the fetus for all treatment plans ranged from a maximum of 30.9 cGy to the 9-month fetus to 1.53 cGy to the 3-month fetus. The study demonstrates the feasibility to accurately determine the absorbed organ doses in the mother and fetus as part of the treatment planning and eventually in risk management.  相似文献   

17.
Although not as widespread as Ir-192, Co-60 is also available on afterloading equipment devoted to high dose rate brachytherapy, mainly addressed to the treatment of gynaecological lesions. The purpose of this study is to obtain the dosimetric parameters of the Co-60 source used by the BEBIG MultiSource remote afterloader (BEBIG GmbH, Germany) for which there are no dosimetric data available in the literature. The Monte Carlo code GEANT4 has been used to obtain the TG43 parameters and the 2D dose rate table in Cartesian coordinates of the BEBIG Co-60 HDR source. The dose rate constant, radial dose function and anisotropy function have been calculated and are presented in a tabular form as well as a detailed 2D dose rate table in Cartesian coordinates. These dosimetric datasets can be used as input data and to validate the treatment planning system calculations.  相似文献   

18.
A Monte Carlo model of an Elekta Precise linear accelerator has been built and verified by measured data for a 6 and 10 MV photon beam running with and without a flattening filter in the beam line. In this study the flattening filter was replaced with a 6 mm thick copper plate, provided by the linac vendor, in order to stabilize the beam. Several studies have shown that removal of the filter improves some properties of the photon beam, which could be beneficial for radiotherapy treatments. The investigated characteristics of this new beam included output, spectra, mean energy, half value layer and the origin of scattered photons. The results showed an increased dose output per initial electron at the central axis of 1.76 and 2.66 for the 6 and 10 MV beams, respectively. The number of scattered photons from the accelerator head was reduced by (31.7 ± 0.03)% (1 SD) for the 6 MV beam and (47.6 ± 0.02)% for the 10 MV beam. The photon energy spectrum of the unflattened beam was softer compared to a conventional beam and did not vary significantly with the off-axis distance, even for the largest field size (0-20 cm off-axis).  相似文献   

19.
Monte Carlo simulations of emission tomography have proven useful to assist detector design and optimize acquisition and processing protocols. The more realistic the simulations, the more straightforward the extrapolation of conclusions to clinical situations. In emission tomography, accurate numerical models of tomographs have been described and well validated under specific operating conditions (collimator, radionuclide, acquisition parameters, count rates, etc). When using these models under these operating conditions, the realism of simulations mostly depends on the activity distribution used as an input for the simulations. It has been proposed to derive the input activity distribution directly from reconstructed clinical images, so as to properly model the heterogeneity of the activity distribution between and within organs. However, reconstructed patient images include noise and have limited spatial resolution. In this study, we analyse the properties of the simulated images as a function of the properties of the reconstructed images used to define the input activity distributions in (18)F-FDG PET and (131)I SPECT simulations. The propagation through the simulation/reconstruction process of the noise and spatial resolution in the input activity distribution was studied using simulations. We found that the noise properties of the images reconstructed from the simulated data were almost independent of the noise in the input activity distribution. The spatial resolution in the images reconstructed from the simulations was slightly poorer than that in the input activity distribution. However, using high-noise but high-resolution patient images as an input activity distribution yielded reconstructed images that could not be distinguished from clinical images. These findings were confirmed by simulated highly realistic (131)I SPECT and (18)F-FDG PET images from patient data. In conclusion, we demonstrated that (131)I SPECT and (18)F-FDG PET images indistinguishable from real scans can be simulated using activity maps with spatial resolution higher than that used in routine clinical applications.  相似文献   

20.
The Monte Carlo calculation of dose for radiotherapy treatment planning purposes introduces unavoidable statistical noise into the prediction of dose in a given volume element (voxel). When the doses in these voxels are summed to produce dose volume histograms (DVHs), this noise translates into a broadening of differential DVHs and correspondingly flatter DVHs. A brute force approach would entail calculating dose for long periods of time--enough to ensure that the DVHs had converged. In this paper we introduce an approach for deconvolving the statistical noise from DVHs, thereby obtaining estimates for converged DVHs obtained about 100 times faster than the brute force approach described above. There are two important implications of this work: (a) decisions based upon DVHs may be made much more economically using the new approach and (b) inverse treatment planning or optimization methods may employ Monte Carlo dose calculations at all stages of the iterative procedure since the prohibitive cost of Monte Carlo calculations at the intermediate calculation steps can be practically eliminated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号