首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although cocaine is primarily known for its powerful hedonic effects, there is evidence that its affective experience has a notable aversive component that is less well understood. A variety of pharmacological and molecular approaches have implicated enhanced monoamine (MA) neurotransmission in the aversive effects of cocaine. Although numerous studies have yielded data supportive of the role of the monoamines (indirectly and directly), the specific system suggested to be involved differs across studies and paradigms (Freeman et al., 2005b; Grupp, 1997; Roberts and Fibiger, 1997). Monoamine transporter knockout mice have been useful in the study of many different aspects of cocaine effects relevant to human drug use and addiction, yet an assessment of the effects of deletion of the genes for the dopamine, norepinephrine and serotonin transporters (DAT, NET, and SERT, respectively) on cocaine's aversive properties has yet to be performed (Uhl et al., 2002). In the current investigation, the strength of cocaine-induced aversions was compared among three groups of transgenic mice with deletions of the genes responsible for the production of one of the monoamine transporters. When compared to their respective WT controls, dopamine transporter deletion slightly attenuated cocaine-induced aversion while deletion of SERT or NET resulted in a more significant delay in the onset and strength of cocaine-induced taste aversions. The data lead us to conclude that the action of cocaine to inhibit NET contributes most substantially to its aversive effects, with some involvement of SERT and minimal contribution of DAT.  相似文献   

3.
In hippocampus slices both dopamine and apomorphine lead to an increased incorporation of (3H)-fucose into total proteins, whereas the incorporation of (14C)-leucine was unchanged or decreased, respectively. Noradrenaline did not alter the incorporation of both precursors, whereas haloperidol partially reduced the dopamine induced increased in incorporation of fucose. Thus, an induction process of the observed macromolecular changes involving dopaminoceptive structures of hippocampus can be assumed.  相似文献   

4.
The norepinephrine transporter (NET) terminates noradrenergic signalling by rapid re-uptake of neuronally released norepinephrine (NE) into presynaptic terminals. NET exerts a fine regulated control over NE-mediated behavioural and physiological effects including mood, depression, feeding behaviour, cognition, regulation of blood pressure and heart rate. NET is a target of several drugs which are therapeutically used in the treatment or diagnosis of disorders among which depression, attention-deficit hyperactivity disorder and feeding disturbances are the most common. Individual genetic variations in the gene encoding the human NET (hNET), located at chromosome 16q12.2, may contribute to the pathogenesis of those diseases. An increasing number of studies concerning the identification of single nucleotide polymorphisms in the hNET gene and their potential association with disease as well as the functional investigation of naturally occurring or induced amino acid variations in hNET have contributed to a better understanding of NET function, regulation and genetic contribution to disorders. This review will reflect the current knowledge in the field of NET from its initial discovery until now.  相似文献   

5.
Cocaine use is a significant problem in the US and it is well established that cocaine binds to the dopamine transporter (DAT) in the brain. This study was designed to determine if the DAT levels measured by (99m)Tc TRODAT SPECT (single photon emission computed tomography) brain scans are altered in cocaine dependent subjects and to explore clinical correlates of such alterations. SPECT brain scans were acquired on 21 cocaine dependent subjects and 21 healthy matched controls. There were significantly higher DAT levels in cocaine dependent subjects compared to controls for the anterior putamen (p=0.003; Cohen's d effect size=0.98), posterior putamen (p<0.001; effect size=1.32), and caudate (p=0.003; effect size=0.97). DAT levels in these regions were 10%, 17%, and 8% higher in the cocaine dependent subjects compared to controls. DAT levels were unrelated to craving, severity of cocaine use, or duration of cocaine use, but DAT levels in the caudate and anterior putamen were significantly (p<0.05) negatively correlated with days since last use of cocaine.  相似文献   

6.
An opportunity to perform targeted genetic manipulations in mice has provided another dimension for modern pharmacological research. Genetically modified mice have become important tools to investigate functions of previously unexplored proteins, define mechanism of action of new and known pharmacological drugs, and validate novel targets for treatment of human disorders. One of the best examples of such use of genetic models in experimental pharmacology represents investigations involving mice deficient in the gene encoding the dopamine transporter (DAT). The dopamine transporter tightly regulates the extracellular dynamics of dopamine by recapturing released neurotransmitter into the presynaptic terminals, and genetic deletion of this protein results in profound alterations in both the presynaptic homeostasis and the extracellular dynamics of dopamine. By using this model of severe dopaminergic dysregulation, significant progress has been made in defining the major target of psychotropic drugs, understanding the mechanisms of their action, unraveling novel signaling events relevant for dopaminergic transmission, and mapping neuronal pathways involved in dopamine-related behaviors. Furthermore, DAT mutant mice provided an opportunity to model in vivo conditions of extreme dopaminergic dysfunction that could be relevant for human disorders such as ADHD, schizophrenia, and Parkinson's disease and, thus, could serve as test systems for developing novel treatments for these and related disorders.  相似文献   

7.
Presynaptic dopamine D2 receptors (D2Rs) regulate dopamine transporter (DAT) activity in the brain. A potential mechanism was suggested by the observations that somatodendritic D2R activation produces hyperpolarization and the velocity of DAT expressed in Xenopus laevis oocytes varies with changes in membrane potential. To investigate whether D2R regulation of DAT function is voltage-dependent, we coexpressed the long isoform of the human (h) D2R and the hDAT in oocytes. Most DAT substrates fully activate D2Rs at concentrations used to measure uptake. Thus, DAT function was compared under conditions of maximal D2R activation (0.1-10 microM DA) or maximal D2R blockade (DA + 1 microM (-)-sulpiride). D2R activation significantly increased [3H]DA uptake into unclamped oocytes expressing relatively lower velocities. Uptake measured with a saturating concentration of DA suggested a D2R-induced increase in Vmax. The D2R-mediated enhancement of DA uptake was not associated with changes in resting membrane potential and was abolished by pertussis toxin pretreatment. Furthermore, in voltage-clamped oocytes, D2R activation enhanced both DA uptake and DAT-mediated steady-state currents by as much as 70%. Activation of D2Rs resulted in a 59% increase in cell surface binding of the cocaine analog [3H]WIN 35,428; this effect was also abolished by pertussis toxin pretreatment. Saturation experiments confirmed that D2R activation was associated with an increased Bmax and unchanged Ki for [3H]WIN 35,428. These results suggest that D2R-induced up-regulation of DAT activity occurs via a voltage-independent mechanism that depends on G(i/o) activation and a rapid increase in expression of functional DAT molecules at the cell surface.  相似文献   

8.
Heptachlor is a persistent cyclodiene pesticide that affects GABAergic function. Recent reports indicate that heptachlor exposure also alters dopamine transporter (DAT) expression and function in adult mice. The aim of this study was to determine whether gestational, perinatal, and/or adolescent heptachlor exposure in rats altered dopamine-receptor and DAT binding. Adolescent exposure to dieldrin was included to evaluate the generality of the findings. Sprague-Dawley rats received doses (po) ranging from 0 to 8.4 mg/kg/day of heptachlor, or dieldrin, 3 mg/kg/day, during different developmental periods. There were dose-related decreases in maternal weight gain and pup survival, as well as delayed righting reflex, at heptachlor doses > or =3 mg/kg/day. There were no changes in striatal dopamine receptor-D1 ([(3)H]SCH-23390) and -D2 ([(3)H]spiperone) binding in preweanling pups exposed perinatally to heptachlor, and no differences in the response of adult rats to the motor activity-increasing effects of d-amphetamine. However, there were significant (27-64%) increases in striatal DAT binding of [(3)H]mazindol in preweanling rats exposed only gestationally. In rats exposed perinatally and/or during adolescence, there were also increases (34-65%) in striatal DAT binding at postnatal days (PND) 22, 43, and 128. Adolescent exposure to dieldrin also increased DAT binding. In other rats exposed perinatally and throughout adolescence, even the lowest dose of heptachlor 0.3 mg/kg/d increased DAT binding on PND 130. The DAT affinity for mazindol was unchanged in heptachlor-exposed striata. In vitro binding studies indicated that heptachlor (> or =10 microM) displaced mazindol binding. Thus, gestational, perinatal, and/or adolescent exposure to heptachlor produced an increase in DAT binding as early as PND 10, and this change persisted into adulthood.  相似文献   

9.
The cardiopulmonary bypass technique was used to compare the effects of dopamine and norepinephrine on venous return, and to identify the adrenoceptors involved in the responses. Intraarterial boluses of dopamine and norepinephrine produced similar increases in mean arterial pressure and similar increases in venous return, but dopamine required 10-30 x larger doses than norepinephrine to produce the same effect. Phenoxybenzamine virtually abolished the venous responses to the lowest doses of both agonists and diminished the venous responses to larger doses. Propranolol had little or no effect on venous responses to the low doses but substantially diminished the responses to larger doses. These results indicate that the increase in venous return produced by dopamine or norepinephrine involves both alpha and beta adrenoceptors. To determine whether the beta adrenoceptor belonged to subtype beta 1, the "selective" beta 2 agonist, salbutamol, was used. The reported affinity of salbutamol in dogs for arterial beta 2 receptors is fivefold greater than that for cardiac beta 1 receptors. However, the dose-response curves of salbutamol on the venous and arterial systems overlapped, indicating that the increase in venous return represents a combination of properties common to both beta 1 and beta 2 adrenoceptors.  相似文献   

10.
11.
12.
We examined the role of norepinephrine in the morphine-induced potentiation in the dentate gyrus of the hippocampus in chronically implanted freely moving rats. The population spikes of the field potentials in the dentate gyrus following perforant path stimulation were recorded before and after morphine injection. We found that a single dose of morphine sulfate (5 mg/kg, i.v.) resulted in a long-lasting augmentation in the amplitudes of population spikes. When pretreated with propranolol (5 mg/kg, i.v.), a beta-adrenoceptor antagonist, the morphine-induced potentiation was significantly attenuated. These results suggested that an increase in norepinephrine release in the hippocampus contributed to the morphine-induced potentiation.  相似文献   

13.
14.
15.
1. We examined the existence of catecholamine metabolizing enzymes (catechol-O-methyltransferase, COMT, and monoamine oxidase, MAO) in CHO cells transfected with norepinephrine (NE) transporter (NET) cDNA. 2. NET activity was studied by incubating cells with [3H]-NE (0. 5 microCi ml-1, 20 min) in a Na+ containing medium. Incubation with [3H]-NE lead to [3H] accumulation at 47797+/-4864 d.p.m. per well. Specific inhibitors of NET abolished this uptake. 3. During post-uptake incubation, [3H] leaked rapidly from cells and the extracellular phase comprised 89% of total radioactivity within 40 min. Both [3H] retention and [3H] 'leakage' were largely unaffected by inhibitors for MAO. In contrast, COMT inhibitors, U-0521 and Ro 41-0960, dose-dependently increased intracellular [3H]-NE retention with a maximal increase of 4.5 fold. The EC50 for Ro 41-0960 was 139-times lower than that of U-0521. U-0521 largely inhibited [3H] 'leakage' and doubled the apparent Vmax for [3H]-NE uptake. 4. Addition of U-0521 during uptake incubation increased intracellular NE content by 8 fold. Normetanephrine, the COMT-dependent metabolite of NE, was formed in large quantities during post-uptake incubation. U-0521 significantly inhibited the formation of NMN with an equal preservation of intracellular NE. 5. CHO cells expressing NET possess COMT activity, which is responsible for the metabolism of NE to form lipophilic metabolite normetanephrine. The apparent 'properties' of the NET function expressed in CHO cells changed, after inhibition of COMT, in such a way closer to that described in the native neuronal preparations.  相似文献   

16.
We report here the effects of an environmental estrogen, bisphenol A, on norepinephrine (NE) transporter function in cultured bovine adrenal medullary cells. The effects of bisphenol A were compared to those of 17beta-estradiol. Bisphenol A significantly inhibited [3H]NE uptake by the cells in a concentration-dependent manner (1-100 microM). Kinetic analysis revealed that bisphenol A, as well as 17beta-estradiol, noncompetitively inhibited [3H]NE uptake. Bisphenol A and 17beta-estradiol inhibited the specific binding of [3H]desipramine to plasma membranes isolated from bovine adrenal medulla. As shown by Scatchard analysis of [3H]desipramine binding, bisphenol A increased the dissociation constant (K(d)) and decreased the maximal binding (B(max)), indicating a mixed type of inhibition. 17beta-Estradiol increased the K(d) without altering the B(max), thereby indicating competitive inhibition. The present findings suggest that bisphenol A inhibits the function of the NE transporter by acting on a site different from that of 17beta-estradiol in the adrenal medulla and probably in the brain noradrenergic neurons.  相似文献   

17.
Given that norepinephrine (NE) and serotonin (5-HT) neurons are implicated in the mechanisms of action of antidepressant drugs and both project to the hippocampus, the impact of acute and long-term administration of the selective NE inhibitor reboxetine was assessed on CA(3) pyramidal neuron firing in this postsynaptic structure. Cumulative injections of reboxetine (1-4 mg/kg, i.v.) dose-dependently increased the recovery time of the firing of these neurons following iontophoretic applications of NE, but not 5-HT. In rats treated with reboxetine for 2.5 mg/kg/day for 21 days, a robust increase in the recovery time following NE applications was observed, and a small but significant prolongation occurred following 5-HT applications. In controls and reboxetine-treated rats, 1 and 5 Hz stimulations of the afferent 5-HT bundle to the hippocampus, which allows determination of terminal 5-HT(1B) autoreceptor sensitivity, produced similar frequency-dependent decreases in pyramidal neuron firing in both groups. However, after low and high doses of clonidine (10 and 400 microg/kg, i.v.), which assesses alpha(2)-adrenergic auto- and heteroreceptor sensitivity, respectively, only the effect of the high dose of clonidine was attenuated. Interestingly, administration of the selective 5-HT(1A) receptor antagonist WAY 100,635 induced a 140% increase in basal pyramidal neuron firing in reboxetine as compared to saline-treated rats. This increase in tonic activation of postsynaptic 5-HT(1A) receptors might be attributable in part to a desensitization of alpha(2)-adrenergic heteroreceptors, presumably resulting from sustained NE reuptake inhibition. These results indicate that even a selective NE reuptake inhibitor can modulate 5-HT transmission.  相似文献   

18.
One of the main theories concerning the mechanism of action of antidepressant drugs (ADs) is based on the notion that the neurochemical background of depression involves an impairment of central noradrenergic transmission with a concomitant decrease of the norepinephrine (NE) in the synaptic gap. Many ADs increase synaptic NE availability by inhibition of the reuptake of NE. Using mice lacking NE transporter (NET-/-) we examined their baseline phenotype as well as the response in the forced swim test (FST) and in the tail suspension test (TST) upon treatment with ADs that display different pharmacological profiles. In both tests, the NET-/- mice behaved like wild-type (WT) mice acutely treated with ADs. Autoradiographic studies showed decreased binding of the beta-adrenergic ligand [3H]CGP12177 in the cerebral cortex of NET-/- mice, indicating the changes at the level of beta-adrenergic receptors similar to those obtained with ADs treatment. The binding of [3H]prazosin to alpha1-adrenergic receptors in the cerebral cortex of NET-/- mice was also decreased, most probably as an adaptive response to the sustained elevation of extracellular NE levels observed in these mice. A pronounced NET knockout-induced shortening of the immobility time in the TST (by ca 50%) compared to WT mice was not reduced any further by NET-inhibiting ADs such as reboxetine, desipramine, and imipramine. Citalopram, which is devoid of affinity for the NET, exerted a significant reduction of immobility time in the NET-/- mice. In the FST, reboxetine, desipramine, imipramine, and citalopram administered acutely did not reduce any further the immobility time shortened by NET knockout itself (ca 25%); however, antidepressant-like action of repeatedly (7 days) administered desipramine was observed in NET-/- mice, indicating that the chronic presence of this drug may also affect other neurochemical targets involved in the behavioral reactions monitored by this test. From the present study, it may be concluded that mice lacking the NET may represent a good model of some aspects of depression-resistant behavior, paralleled with alterations in the expression of adrenergic receptors, which result as an adaptation to elevated levels of extracellular NE.  相似文献   

19.
20.
精神分裂症是在精神病中最具代表性和最常见的一组症状群。研究显示遗传因素对于精神分裂症的发病起主要作用。多巴胺转运体生化研究结果和临床实验的证据支持多巴胺转运体在精神分裂症病理机制中起重要作用,但具体机制尚不清楚。本文就多巴胺转运体基因多态性与精神分裂症的相关研究及其临床意义做一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号