首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The aim of this study was to investigate the effect of transplanted chondrocytes on endochondral bone formation in cartilage repair tissue. In the knee joint of miniature pigs, cartilage lesions were treated by microfracturing and were then either left empty, covered with a collagen membrane, or treated by matrix-associated autologous chondrocyte transplantation. In control lesions, the subchondral bone plate was left intact (partial-thickness lesion). The repair tissues were analyzed after 12 weeks by histological methods focusing on bone formation and vascularization. The effect of chondrocytes on angiogenesis was assessed by in vitro assays. The presence of antiangiogenic proteins in cartilage repair tissue, including thrombospondin-1 (TSP-1) and chondromodulin-I (ChM-I), was detected immunohistochemically and their expression in chondrocytes and bone marrow stromal cells was measured by quantitative RT-PCR. Significant outgrowths of subchondral bone and excessive endochondral ossification within the repair tissue were regularly observed in lesions with an exposed or microfractured subchondral bone plate. In contrast, such excessive bone formation was significantly inhibited by the additional transplantation of chondrocytes. Cartilaginous repair tissue that resisted ossification was strongly positive for the antiangiogenic proteins, TSP-1 and ChM-I, which were, however, not detectable in vascularized osseous outgrowths. Chondrocytes were identified to be the major source of TSP-1- and ChM-I expression and were shown to counteract the angiogenic activity of endothelial cells. These data suggest that the resistance of cartilaginous repair tissue against endochondral ossification following the transplantation of chondrocytes is associated with the presence of antiangiogenic proteins whose individual relevance has yet to be further explored.  相似文献   

2.
Fibroblast growth factors (FGFs)/fibroblast growth factor receptor-3 signaling interferes with endochondral bone growth. However, the exact mechanisms by which FGFs inhibit endochondral ossification remain to be elucidated. In the present study, we utilized immunohistochemical techniques to clarify the effects of FGF-2 on the proximal tibial growth plate cartilage, when injected systemically into growing rats. In the FGF-2-treated rats, the growth plate was obviously thickened and, in the lowermost part, the hypertrophic chondrocytes were flattened, with an irregular arrangement. The connection of the cartilage columns and trabecular bone was disrupted. FGF-2 treatment stimulated the proliferation of chondrocytes and permitted their differentiation, but inhibited vascular invasion and resorption of the cartilage matrix. Expression of matrix metalloproteinase-13 (MMP-13) was detected in the chondrocytes in the last row of the hypertrophic zone of the growth plate in control animals. The immunoreactivity of MMP-13 was diminished in the regions where endochondral ossification was disturbed in the FGF-2-treated rats. Because MMP-13 has potent proteolytic activity on cartilage components, the FGF-2 signal may inhibit angiogenesis and endochondral ossification of the growth plate by the suppression of MMP-13 expression in hypertrophic chondrocytes. Received: March 17, 2001 / Accepted: November 16, 2001  相似文献   

3.
Chondrocytes that were isolated from adult human articular cartilage changed phenotype during monolayer tissue culture, as characterized by a fibroblastic morphology and cellular proliferation. Increased proliferation was accompanied by downregulation of the cartilage-specific extracellular matrix proteoglycan, aggrecan, by cessation of type-II collagen expression, and by upregulation of type-I collagen and versican. This phenomenon observed in monolayer was reversible after the transfer of cells to a suspension culture system. The transfer of chondrocytes to suspension culture in alginate beads resulted in the rapid upregulation of aggrecan and type-II collagen and the downregulation of expression of versican and type-I collagen. Type-X collagen and osteopontin, markers of chondrocyte hypertrophy and commitment to endochondral ossification, were not expressed by adult articular chondrocytes cultured in alginate, even after 5 months. In contrast, type-X collagen was expressed within 2 weeks in a population of cells derived from a fetal growth plate. The inability of adult articular chondrocytes to express markers of chondrocyte hypertrophy has underscored the fundamental distinction between the differentiation pathways that lead to articular cartilage or to bone. Adult articular chondrocytes expressed only hyaline articular cartilage markers without evidence of hypertrophy.  相似文献   

4.
During endochondral ossification, proliferative activity of chondrocytes is arrested and the cells undergo terminal hypertrophic differentiation. We examined the expression of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1 in permanent cartilage (xyphoid and articular cartilage) and in cartilage undergoing endochondral ossification (growth plate, epiphyseal ossification centers, and costochondral junctions) to determine if p21 is up-regulated in chondrocytes during hypertrophic differentiation. Northern blot analyses demonstrated expression of p21 in chondrocytes undergoing endochondral ossification and from sites of permanent cartilage. Quantitative analyses of Northern data showed an association between expression of the hypertrophic-specific marker, collagen type X, and the level of 21 expression. In situ hybridization of rodent femoropatellar joints and costochondral junctions localized p21 mRNA to chondrocytes within both the proliferative and hypertrophic zones of the growth plates, in chondrocytes involved in formation of the epiphyseal ossification centers, and in articular chondrocytes. Immunohistochemical analyses of p21 expression in the same tissues demonstrated comparatively higher levels of p21 protein in postmitotic chondrocytes. These data suggest that p21 is active in cell cycle regulation in chondrocytes, and that increased p21 expression is associated with hypertrophic differentiation. Received: 11 October 1996 / Accepted: 23 April 1997  相似文献   

5.
OBJECTIVE: To examine the expression pattern of human cartilage glycoprotein 39 (HC gp-39) mRNA in human cartilage and bone. DESIGN: In-situ hybridization analysis was used to examine the expression pattern of human cartilage glycoprotein 39 (HC gp-39) mRNA in adult human osteoarthritic articular cartilage from various stages of disease, as well as in human osteophytic tissue and in human fetal bone. RESULTS: In cartilage from patients with mild osteoarthritic cartilage degeneration, HC gp-39 was expressed at moderate to high levels only in chondrocytes of the superficial zone. In advanced OA cartilage, cloning chondrocytes of the superficial zone expressed high levels of HC gp-39 and chondrocytes of the mid- and deep zones were also positive. HC gp-39 was undetectable in the chondrocytes of normal articular cartilage. In osteophytic tissue, the expression of HC gp-39 mRNA was intense in flattened, end-stage osteoblasts and in primary osteocytes in both endochondral and intramembranous bone formation. Proliferating osteoblasts expressed low to moderate levels. Notably, mature osteocytes were negative for HC gp-39 expression. Chondrocytes in the secondary ossification center of developing fetal cartilage demonstrated high expression while growth plate and mineralized cartilage chondrocytes had lower expression. Osteoblasts at sites of endochondral and intramembranous bone formation were positive for expression of HC gp-39. CONCLUSIONS: The stage-specific expression of HC gp-39 in fetal development and adult remodelling bone and cartilage provides evidence for a specific functional or structural role for HC gp-39 in bone and cartilage tissue. HC gp-39 is expressed in diseased human osteoarthritic cartilage and osteophyte, but not in non-diseased tissue, and its distribution within the tissue changes as disease progresses. OA is characterized not only by cartilage degeneration, but by increased subchondral bone formation and osteophytosis. The results from this study indicate that the increased HC gp-39 expression in OA serum and synovial fluid may reflect not only cartilage degeneration but increased osteogenesis.  相似文献   

6.
Strong short-term immunosuppression improved survival of cartilage formed by transplanted allogeneic epiphyseal chondrocytes in mice. The agents tested were cortisone acetate (CA), cyclophosphamide (CY), procarbazine (PCH), and antithymocyte serum (ATS). Their effect on syngeneic grafts was examined morphologically and histomorphometrically. In untreated recipients, chondrocytes formed cartilage nodules that underwent endochondral ossification. Except for high repetitive doses of CY, none of the other agents interfered with normal cartilage formation. However, all agents affected endochondral ossification. In the allogeneic system, the effect of immunosuppression was examined morphologically and by evaluation of specific humoral and cellular antigraft immunity. Allogeneic chondrocytes evoked a strong immune response in untreated mice, and cartilage was gradually destroyed by infiltrating cells. Endochondral ossification did not occur in this system. Neither agent given alone exerted a marked, long-lasting protective effect upon the graft. However, combined treatment with ATS and PCH inhibited immune response and completely prevented infiltrate formation and allowed endochondral ossification similar to that in the syngeneic control. Although some weak signs of antigraft immunity were seen after six weeks, it is possible that they were due to secondary exposure of antigen-bearing chondrocytes in the course of endochondral ossification.  相似文献   

7.
Developing cartilage serves as a template for long-bone development during endochondral ossification. Although the coupling of cartilage and bone development with angiogenesis is an important regulatory step for endochondral ossification, the molecular mechanisms are poorly understood. One possible mechanism involves the action of Dickkopf (DKK), which is a family of soluble canonical Wnt antagonists with four members (DKK1-4). We initially observed opposite expression patterns of Dkk1 and Dkk2 during angiogenesis and chondrocyte differentiation: downregulation of Dkk1 and upregulation of Dkk2. We examined the in vivo role of Dkk1 and Dkk2 in linking cartilage/bone development and angiogenesis by generating transgenic (TG) mice that specifically express Dkk1 or Dkk2 in chondrocytes, hypertrophic chondrocytes, or endothelial cells. Despite specific expression pattern during cartilage development, chondrocyte- and hypertrophic chondrocyte-specific Dkk1 and Dkk2 TG mice showed normal developmental phenotypes. However, Dkk1 misexpression in endothelial cells resulted in defects of endochondral ossification and reduced skeletal size. The defects are caused by the inhibition of angiogenesis in developing bone and subsequent inhibition of apoptosis of hypertrophic chondrocytes and cartilage resorption.  相似文献   

8.
Chondrocytes in the growth plate progress in an orderly fashion from resting through proliferating to hypertrophic cells. In the region of hypertrophic chondrocytes, the cartilage is invaded by capillary loops and endochondral ossification is initiated. It is currently believed that growth factors may regulate the proliferation and maturation of chondrocytes and the synthesis of extracellular matrix in the growth plate. The ordered sequence of proliferation and differentiation observed in the growth plate provides a unique opportunity to study the role of acidic fibroblast growth factor, basic fibroblast growth factor, and transforming growth factor-β1 in the regulation of these processes. In this study, expression of the mRNA of these growth factors was examined using total RNA extracted from the physis and epiphysis of rat tibias. Transforming growth factor-β1 mRNA was detected by Northern hybridization. Expression of the genes encoding acidic and basic fibroblast growth factors was demonstrated by polymerase chain reaction amplification. In addition, using polyclonal antibodies against these growth factors, we localized them by immunohistochemical analysis. Strong intracellular staining with a predominantly nuclear pattern was observed in chondrocytes from the proliferating and upper hypertrophic zones. In contrast, chondrocytes in the resting zone stained only faintly for the presence of these growth factors. Some chondrocytes in the resting zone adjacent to the proliferating zone stained with these antibodies, and the antibodies also stained cells in the zone of Ranvier, which regulates latitudinal bone growth. Lastly, the location of transforming growth factor-β1 was examined further with use of a polyclonal antipeptide antibody specific for its extracellular epitope. Interestingly, extracellular staining for transforming growth factor-β1 was observed only around chondrocytes in the hypertrophic zone. These results suggest a role for these growth factors in the regulation of proliferation and maturation of chondrocytes and in endochondral ossification.  相似文献   

9.
Vessel invasion is an important step in cartilage replacement that leads to bone formation, and vascular endothelial growth factor (VEGF) has been implicated as a key player in this process. Although grafted periosteum undergoes endochondral ossification, little is known about the role of VEGF in this process. In the current study the authors investigated by immunohistochemical, histochemical, and ultrastructural techniques the localization of VEGF during bone formation in periosteal grafts. At day 14 after grafting the tibias of Japanese white rabbits, periosteal cells in the grafted tissue had differentiated into chondrocytes to form cartilage. Some chondrocytes were immunopositive for VEGF expression, and subsequent vessel invasion occurred predominantly in these VEGF-positive areas. At day 45, the cartilage invaded by blood vessels had been replaced by newly formed bone. These findings suggest that VEGF is associated with the process of blood vessel invasion into cartilage before bone replacement in endochondral ossification from grafted periosteum.  相似文献   

10.
Modern tissue engineering concepts integrate cells, scaffolds, signaling molecules and growth factors. In tissue engineering of cartilage, the growth plate of the long bone represents an interesting, well-organized developmental structure, with a spatial distribution of chondrocytes in different proliferation and differentiation stages embedded in a scaffold of extracellular matrix components. The proliferation and differentiation of these chondrocytes is regulated by various hormonal and paracrine factors. This article discusses some important growth factors in the process of endochondral ossification and demonstrates how this information could be translated into a controlled release system for different tissue engineering strategies.  相似文献   

11.
Vascular and cellular invasion into cartilage are essential for endochondral ossification. Recently it has been shown that matrix metalloproteinase-9 (MMP-9)/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. To study vascular and cellular invasion into cartilage preceding primary endochondral ossification in long bones, precursor femurs from 13- to 16-day-old murine embryos were sectioned. Tartrate-resistant acid phosphatase (TRAP) activity, in situ hybridization for matrix metalloproteinase-9 (MMP-9), immunostaining for CD31, and in situ detection of apoptosis (TUNEL) were studied. TRAP activity, MMP-9 mRNA, and CD31 expression were initially detected in the intertrabecular spaces of the perichondral collar, and then in cells migrating into the cartilage. The first cells involved in the primary invasion into cartilage were CD31-positive vascular endothelial cells and MMP-9-positive cells, followed by TRAP-positive cells. At the cartilage-marrow interface, CD31-positive vascular endothelial cells and MMP-9-positive cells were predominant. These results suggest that MMP-9-positive cells cooperate with vascular endothelial cells in cartilage angiogenesis. TUNEL-positive staining was detected on chondrocytes attached to the inner surface of the perichondral collar, and also detected in the area where cartilage was removed. These results suggest that chondrocytes separated from the cartilage matrix may undergo apoptosis.  相似文献   

12.
BACKGROUND: The developing capital femoral epiphysis consists of a secondary center of ossification surrounded by epiphyseal cartilage. Between the epiphyseal cartilage and the secondary center of ossification is a growth plate, which contributes to the circumferential increase in size of the secondary center of ossification during development. The main objective of this study was to describe the histopathologic changes that occur in the growth plate surrounding the secondary center of ossification during the early and reparative phases following the induction of ischemic necrosis of the capital femoral epiphysis in immature pigs. METHODS: Ischemic necrosis of the capital femoral epiphysis was induced in eighteen piglets by placing a nonabsorbable suture ligature around the femoral neck following a capsulotomy and transection of the ligamentum teres. The animals were killed three days to eight weeks following the induction of ischemia, and visual, radiographic, and histologic assessments were performed. RESULTS: Two to four weeks after the induction of ischemic necrosis, the growth plate surrounding the secondary center of ossification became necrotic. The observed histopathologic changes included chondrocyte death, loss of safranin-O staining of the matrix of the necrotic growth-plate cartilage, an absence of vascular invasion of terminal hypertrophic chondrocytes, and a decrease in the amount of primary spongiosa, indicating cessation of endochondral ossification. In the reparative phase, at four to eight weeks postoperatively, chondrocyte clusters and intense safranin-O staining were observed in the epiphyseal cartilage around the necrotic growth-plate cartilage. In the peripheral region of the femoral head, necrotic growth-plate cartilage surrounding the secondary center of ossification was resorbed by a fibrovascular tissue from the marrow space. By six weeks, new accessory centers of ossification with restored endochondral ossification were observed in the peripheral epiphyseal cartilage. New ossification centers contributed to the fragmented radiographic appearance of the secondary center of ossification. The physis appeared essentially normal in most animals, although five of the eighteen piglets showed mild or moderate histopathologic changes. CONCLUSIONS: In this model, ischemic necrosis of the capital femoral epiphysis resulted in necrosis of the growth plate surrounding the secondary center of ossification. Small new ectopic centers of ossification appeared in the epiphyseal cartilage, explaining in part the fragmented radiographic appearance of the secondary center of ossification.  相似文献   

13.
The effects of cell density on the proliferation and chondroitin sulfate synthesis of chondrocytes embedded in Atelocollagen gel were examined. Chondrocytes of 21 10-week-old Japanese white rabbits isolated by collagenase digestion were embedded in Atelocollagen gel and cultured in Dulbecco's modified Eagles medium at cell densities of 2 x 105 cells/ml (105 group), 2 x 106 cells/ml (106 group), and 2 x 107 cells/ml (107 group) for 4 weeks. Chondrocytes in the 105 group gradually proliferated more than the other two groups. In contrast, most chondrocytes in the 107 group showed increased capability to produce chondroitin 6-sulfate. Cartilage-like tissue was produced from high-density cultures (107 cells/ml), although a decrease in cell number was seen. Even in three-dimensional cultures, the proliferation and chondroitin sulfate synthesis of chondrocytes were influenced by the cell density. These results are informative for the clinical application of chondrocyte transplantation in three-dimensional cultures for cartilage repair.  相似文献   

14.
Osteochondrosis is a condition involving defective endochondral ossification and retention of cartilage in subchondral bone. The pathophysiology of this condition is poorly characterized, but it has been proposed that the fundamental defect is failure of chondrocyte hypertrophy. The aim of the current study was to characterize phenotypic changes in chondrocytes associated with the initiation of osteochondrosis. Early lesions were induced in an equine model of osteochondrosis by feeding foals a high energy diet for 8 or 15 weeks. Lesions in articular‐epiphyseal growth cartilage were examined histologically and by quantitative PCR analysis of expression of a number of genes representative of pathways that regulate chondrocyte behavior during endochondral ossification. There were more cells present in clusters in the lesions compared to normal articular cartilage. Expression of matrix metalloproteinase‐13, type I collagen, type X collagen, and Runx2 mRNA was significantly greater in the lesions compared to normal cartilage from the same joint. Expression of vascular endothelial growth factor, type II collagen, connective tissue growth factor, aggrecan, Sox9, and fibroblast growth factor receptor 3 mRNA was not significantly different in lesions than in control cartilage. These observations suggest that osteochondrosis does not result from failure of chondrocytes to undergo hypertrophy. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 452–457, 2009  相似文献   

15.
16.
Loss of epidermal growth factor receptor (EGFR) activity in mice alters growth plate development, impairs endochondral ossification, and retards growth. However, the detailed mechanism by which EGFR regulates endochondral bone formation is unknown. Here, we show that administration of an EGFR-specific small-molecule inhibitor, gefitinib, into 1-month-old rats for 7 days produced profound defects in long bone growth plate cartilage characterized by epiphyseal growth plate thickening and massive accumulation of hypertrophic chondrocytes. Immunostaining demonstrated that growth plate chondrocytes express EGFR, but endothelial cells and osteoclasts show little to no expression. Gefitinib did not alter chondrocyte proliferation or differentiation and vascular invasion into the hypertrophic cartilage. However, osteoclast recruitment and differentiation at the chondro-osseous junction were attenuated owing to decreased RANKL expression in the growth plate. Moreover, gefitinib treatment inhibited the expression of matrix metalloproteinases (MMP-9, -13, and -14), increased the amount of collagen fibrils, and decreased degraded extracellular matrix products in the growth plate. In vitro, the EGFR ligand transforming growth factor α (TGF-α) strongly stimulated RANKL and MMPs expression and suppressed osteoprotegerin (OPG) expression in primary chondrocytes. In addition, a mouse model of cartilage-specific EGFR inactivation exhibited a similar phenotype of hypertrophic cartilage enlargement. Together our data demonstrate that EGFR signaling supports osteoclastogenesis at the chondro-osseous junction and promotes chondrogenic expression of MMPs in the growth plate. Therefore, we conclude that EGFR signaling plays an essential role in the remodeling of growth plate cartilage extracellular matrix into bone during endochondral ossification.  相似文献   

17.
Dyggve-Melchior-Clausen syndrome. A histochemical study of the growth plate   总被引:2,自引:0,他引:2  
The Dyggve-Melchior-Clausen syndrome is a rare inherited disorder in which a major feature, the skeletal dysplasia, is thought to result from a defect in endochondral ossification. To further characterize this disturbance, histochemical studies were performed on an iliac-crest biopsy specimen from a patient with disorder. The use of plastic embedding methods permitted previous observations, which were based on decalcified paraffin-embedded tissues, to be extended and a variety of new ones to be made. The resting cartilage matrix was very fibrous. In many areas it consisted of randomly oriented bundles of loosely woven fibers that stained as collagen. The chondrocytes in this region were excessively vacuolated and many contained cytoplasmic inclusions that stained non-specifically as protein. Cartilage canals were prominent in the resting cartilage. In many areas, clusters of degenerating chondrocytes and occasional vacuolar lesions replaced the columns of proliferating and maturing cells that normally occupy the growth-plate region. There was coarse and irregular calcification of these clusters at the chondro-osseous junction, and intracartilaginous ossification was also found. Clinical Relevance: These observations further define the histological criteria for the diagnosis of this disorder and provide new insights into its pathogenesis.  相似文献   

18.
19.
Most fundamental studies in cartilage tissue engineering investigate the ability of chondrocytes from young animals to produce cartilaginous matrix under various conditions, while current clinical applications such as autologous chondrocyte implantation, use chondrocytes from donors that are decades past skeletal maturity. Previous investigations have suggested that several characteristics of primary chondrocytes are age-dependent but none have quantified cell proliferation, proteoglycan synthesis and accumulation, collagen synthesis and accumulation, compressive and tensile mechanical properties in order to examine the effects of donor age on all of these parameters. We enzymatically isolated primary bovine chondrocytes from fetal, young and aged animals and cultured these cells in agarose gels to assess the above-mentioned properties. We found that fetal and young (but still skeletally mature i.e. 18-month-old bovine) chondrocytes behaved similarly, while aged chondrocytes (5- to 7-year-old bovine) displayed diminished proliferation ( approximately 2x less), a slightly reduced proteoglycan accumulation per cell ( approximately 20%), and significantly less collagen accumulation per cell ( approximately 55%) compared to the younger cells. Histological observations and mechanical properties supported these findings, where a particularly significant reduction in tensile stiffness produced by aged chondrocytes compared to younger cells was observed. Our findings suggest that donor age is an important factor in determining the outcome and potential success when tissue-engineered cartilage is produced from articular chondrocytes. More specifically, primary chondrocytes from aged donors may not possess sufficient capacity to produce the extracellular matrix that is required for a mechanically resilient tissue.  相似文献   

20.
Hypertrophic chondrocytes and osteoblasts produce alkaline phosphatase (ALPase)-enriched matrix vesicles in vivo and in vitro and, along with certain epithelial cell lines and osteoblast precursors, induce bone when implanted in mesenchymal tissues. This study examined whether ALPase-enriched matrix vesicle production in vitro was a general property of cells that induce bone in vivo. Epithelial cell lines FL, WISH, and OK 16; connective tissue cell lines HEPM 1 and HEPM 2; neonatal rat muscle cells; rat costochondral chondrocytes; and human fibroblasts were implanted intramuscularly into nude mice. The FL and WISH cells produced tumors and induced large islands of bone with focal areas of cartilage immediately adjacent to the tumors. The chondrocytes formed cartilage nodules but did not induce bone, indicating that the ability of the cells to form a solid mass was not an a priori requirement for bone formation. No other cell type produced tumors or nodules or induced bone formation, although connective tissue cells have been shown to induce chondrogenesis in vitro and osteogenesis in vivo. Only matrix vesicles from normal chondrocytes, FL, WISH, and OK16 cultures exhibited enriched ALPase-specific activity. Matrix vesicles from FL and WISH cultures exhibited ALPase specific activities similar to those isolated from osteoblast or chondrocyte cultures. These data suggest that the ability to produce ALPase-enriched matrix vesicles in culture may be associated with the ability of cells to induce bone or cartilage in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号