首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improvement-related functional plasticity following pitch memory training   总被引:3,自引:0,他引:3  
Gaab N  Gaser C  Schlaug G 《NeuroImage》2006,31(1):255-263
Functional activation patterns of an auditory working memory task were examined prior to and after 5 days of training (1 h/day). A control group with no training was scanned twice at the same intervals to assess test-retest effects. Based on behavioral improvement scores, the training group (n = 14) was divided into "Strong-Learners (SL)" and "Weak-Learners (WL)". No significant functional or structural brain differences were seen between the SL and WL groups prior to training. Imaging contrasts comparing post- with pre-training sessions showed a significant signal increase in the left Heschl's gyrus (HG) as well as in the left posterior superior temporal and supramarginal gyrus for the SL group, while the WL group showed significant signal increases in the left HG and anterior insular cortex as well as in a lingual-orbitofrontal-parahippocampal network. The test-retest analysis in the control group revealed only minimal signal increases in a right dorsolateral prefrontal region. A random effects analysis comparing the SL group with the WL group using the post- and pre-training contrast images showed increased activation only in the left supramarginal gyrus but not in HG. The importance of HG in pitch discrimination has been established in previous studies. The pitch memory component differentiated our task from a straight pitch discrimination task. It is most likely that the activation of the SMG reflects its importance in the short-term storage of auditory material, and it was this activation that best differentiated between subjects' levels of performance.  相似文献   

2.
Lee KM  Wade AR  Lee BT 《NeuroImage》2006,32(1):307-315
Temporal processing underlies many aspects of human perception, performance and cognition. The present study used fMRI to examine the functional neuroanatomy of a temporal discrimination task and to address two questions highlighted by previous studies: (1) the effect of task difficulty on neuronal activation and (2) the involvement of the dorsolateral prefrontal cortex (DLPFC) in timing. Twenty healthy subjects were scanned while either judging whether the second in a pair of tones was shorter or longer in duration than the standard tone or simply responding to the presentation of two identical tones as a control condition. Two levels of difficulty were studied. Activation during the less difficult condition was observed only in the cerebellum and superior temporal gyrus. As difficulty increased, additional activation of the supplementary motor area, insula/operculum, DLPFC, thalamus and striatum was observed. These results suggest the cerebellum plays a critical role in timing, particularly in gross temporal discrimination. These results also suggest that recruitment of frontal and striatal regions during timing tasks is load-dependent. Additionally, robust activation of the dorsolateral prefrontal cortex under conditions of minimal working memory involvement supports the specific involvement of this region in temporal processing rather than a more general involvement in working memory.  相似文献   

3.
To investigate cortical auditory and motor coupling in professional musicians, we compared the functional magnetic resonance imaging (fMRI) activity of seven pianists to seven non-musicians utilizing a passive task paradigm established in a previous learning study. The tasks involved either passively listening to short piano melodies or pressing keys on a mute MRI-compliant piano keyboard. Both groups were matched with respect to age and gender, and did not exhibit any overt performance differences in the keypressing task. The professional pianists showed increased activity compared to the non-musicians in a distributed cortical network during both the acoustic and the mute motion-related task. A conjunction analysis revealed a distinct musicianship-specific network being co-activated during either task type, indicating areas involved in auditory-sensorimotor integration. This network is comprised of dorsolateral and inferior frontal cortex (including Broca's area), the superior temporal gyrus (Wernicke's area), the supramarginal gyrus, and supplementary motor and premotor areas.  相似文献   

4.
Ten young adults (aged 20 to 25 years) participated in a functional Magnetic Resonance Imaging (fMRI) study to investigate neural substrates of cross-modal olfactory recognition memory. Before entering the scanner, participants were presented with 16 familiar odors selected from the COLT (Murphy, C., Nordin, S., Acosta, L., 1997. Odor learning, recall, and recognition memory in young and elderly adults. Neuropsychology 11, 126-137) and were then scanned for 3 runs according to a paradigm derived from Stark and Squire (Stark, C.E., Squire, L.R., 2000. Functional magnetic resonance imaging (fMRI) activity in the hippocampal region during recognition memory. J. Neurosci. 20, 7776-7781). During each run, participants were shown names of odors presented (targets) or not presented (foils) at encoding. Participants distinguished targets from foils via button press. Each run alternated 4 'ON' periods containing 7 targets and 2 foils (36 s) and 4 'OFF' periods with 7 foils and 2 targets (36 s). Data were processed with AFNI (Cox, R.W., 1996. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162-173) and compared ON and OFF periods, extracting activation in regions that responded during the cross-modal olfactory recognition memory task. Group analysis showed that regions activated during the first run included right hippocampus, piriform/amygdalar area, superior temporal gyrus, anterior cingulate gyrus, inferior frontal/orbitofrontal gyrus, superior/medial frontal gyrus, and bilateral parahippocampal gyrus, inferior parietal lobule, supramarginal gyrus, cerebellum, lingual/fusiform area and middle/posterior cingulate gyrus. Region of interest analysis showed that degree of activation significantly decreased from run 1 to run 3 in the right hippocampus, fusiform gyrus, lingual gyrus, parahippocampal gyrus and middle frontal gyrus but not in other regions, suggesting that these regions sustain a specific function in olfactory recognition memory that attenuates as foils become more familiar with repeated presentation.  相似文献   

5.
In the present experiment, 25 adult subjects discriminated speech tokens ([ba]/[da]) or made pitch judgments on tone stimuli (rising/falling) under both binaural and dichotic listening conditions. We observed that when listeners performed tasks under the dichotic conditions, during which greater demands are made on auditory selective attention, activation within the posterior (parietal) attention system and at primary processing sites in the superior temporal and inferior frontal regions was increased. The cingulate gyrus within the anterior attention system was not influenced by this manipulation. Hemispheric differences between speech and nonspeech tasks were also observed, both at Broca's Area within the inferior frontal gyrus and in the middle temporal gyrus.  相似文献   

6.
Functional anatomy of intra- and cross-modal lexical tasks   总被引:6,自引:0,他引:6  
Functional magnetic resonance imaging (fMRI) was used to examine lexical processing in normal adults (20-35 years). Two tasks required only intramodal processing (spelling judgments with visual input and rhyming judgments with auditory input) and two tasks required cross-modal processing between phonologic and orthographic representations (spelling judgments with auditory input and rhyming judgments with visual input). Each task led to greater activation in the unimodal association area concordant with the modality of input, namely fusiform gyrus (BA 19, 37) for written words and superior temporal gyrus (BA 22, 42) for spoken words. Cross-modal tasks generated greater activation in posterior heteromodal regions including the supramarginal and angular gyri (BA 40, 39). Cross-modal tasks generated additional activation in unimodal areas representing the target of conversion, superior temporal gyrus for visual rhyming and fusiform gyrus for auditory spelling. Our findings suggest that the fusiform gyrus processes orthographic word forms, the superior temporal gyrus processes phonologic word forms, and posterior heteromodal regions are involved in the conversion between orthography and phonology.  相似文献   

7.
Voice production involves precise, coordinated movements of the intrinsic and extrinsic laryngeal musculature. A component of normal voice production is the modification of pitch. The underlying neural networks associated with these complex processes remains poorly characterized. However, several investigators are currently utilizing neuroimaging techniques to more clearly delineate these networks associated with phonation. The current study sought to identify the central cortical mechanism(s) associated with pitch variation during voice production using event-related functional MRI (fMRI). A single-trial design was employed consisting of three voice production tasks (low, comfortable, and high pitch) to contrast brain activity during the generation of varying frequencies. For whole brain analysis, volumes of activation within regions activated during each task were measured. Bilateral activations were shown in the cerebellum, superior temporal gyrus, insula, precentral gyrus, postcentral gyrus, inferior parietal lobe, and post-cingulate gyrus. In the left hemisphere, activations in the medial and middle frontal gyri were also observed. Regions active during high pitch production when compared to comfortable pitch were evident in the bilateral cerebellum, left inferior frontal gyrus, left cingulate gyrus, and left posterior cingulate. During low pitch generation, activations were present in the inferior frontal gyrus, insula, putamen, and cingulate gyrus in the left hemisphere. The inferior frontal gyrus in the right hemisphere produced greater activity than the area of the left hemisphere during high and low pitch generation. These results suggest that a single-trial design is sensitive enough to begin to delineate a widespread network of activations in both hemispheres associated with vocal pitch variation.  相似文献   

8.
Adults and children processing music: an fMRI study   总被引:5,自引:0,他引:5  
Koelsch S  Fritz T  Schulze K  Alsop D  Schlaug G 《NeuroImage》2005,25(4):1068-1076
The present study investigates the functional neuroanatomy of music perception with functional magnetic resonance imaging (fMRI). Three different subject groups were investigated to examine developmental aspects and effects of musical training: 10-year-old children with varying degrees of musical training, adults without formal musical training (nonmusicians), and adult musicians. Subjects made judgements on sequences that ended on chords that were music-syntactically either regular or irregular. In adults, irregular chords activated the inferior frontal gyrus, orbital frontolateral cortex, the anterior insula, ventrolateral premotor cortex, anterior and posterior areas of the superior temporal gyrus, the superior temporal sulcus, and the supramarginal gyrus. These structures presumably form different networks mediating cognitive aspects of music processing (such as processing of musical syntax and musical meaning, as well as auditory working memory), and possibly emotional aspects of music processing. In the right hemisphere, the activation pattern of children was similar to that of adults. In the left hemisphere, adults showed larger activations than children in prefrontal areas, in the supramarginal gyrus, and in temporal areas. In both adults and children, musical training was correlated with stronger activations in the frontal operculum and the anterior portion of the superior temporal gyrus.  相似文献   

9.
目的引入声调因素,运用功能磁共振成像技术进一步研究汉字规则性效应的脑激活模式.方法13名被试在磁共振扫描过程中执行视觉方式呈现的汉字出声阅读任务,根据形声字声旁与整字间读音及声调相同与否,将刺激材料细分为同音同调字、同音异调字、异音同调字和异音异调字,每类20字.结果四种条件均激活双侧额中回、额下回、前运动区及辅助运动区、左侧顶下小叶、双侧颞上回、双侧岛叶和右侧小脑,同时还各自激活了梭状回、颞中回、左内侧额叶等区域.另外,本实验还观察到这四种条件在右侧颞上回、双侧额下回等区域激活模式的特征性变化.结论存在汉字加工的半规则效应,声调的作用不应忽略.  相似文献   

10.
The role of attention in speech comprehension is not well understood. We used fMRI to study the neural correlates of auditory word, pseudoword, and nonspeech (spectrally rotated speech) perception during a bimodal (auditory, visual) selective attention task. In three conditions, Attend Auditory (ignore visual), Ignore Auditory (attend visual), and Visual (no auditory stimulation), 28 subjects performed a one-back matching task in the assigned attended modality. The visual task, attending to rapidly presented Japanese characters, was designed to be highly demanding in order to prevent attention to the simultaneously presented auditory stimuli. Regardless of stimulus type, attention to the auditory channel enhanced activation by the auditory stimuli (Attend Auditory>Ignore Auditory) in bilateral posterior superior temporal regions and left inferior frontal cortex. Across attentional conditions, there were main effects of speech processing (word+pseudoword>rotated speech) in left orbitofrontal cortex and several posterior right hemisphere regions, though these areas also showed strong interactions with attention (larger speech effects in the Attend Auditory than in the Ignore Auditory condition) and no significant speech effects in the Ignore Auditory condition. Several other regions, including the postcentral gyri, left supramarginal gyrus, and temporal lobes bilaterally, showed similar interactions due to the presence of speech effects only in the Attend Auditory condition. Main effects of lexicality (word>pseudoword) were isolated to a small region of the left lateral prefrontal cortex. Examination of this region showed significant word>pseudoword activation only in the Attend Auditory condition. Several other brain regions, including left ventromedial frontal lobe, left dorsal prefrontal cortex, and left middle temporal gyrus, showed Attention x Lexicality interactions due to the presence of lexical activation only in the Attend Auditory condition. These results support a model in which neutral speech presented in an unattended sensory channel undergoes relatively little processing beyond the early perceptual level. Specifically, processing of phonetic and lexical-semantic information appears to be very limited in such circumstances, consistent with prior behavioral studies.  相似文献   

11.
The analysis of auditory deviant events outside the focus of attention is a fundamental capacity of human information processing and has been studied in experiments on Mismatch Negativity (MMN) and the P3a component in evoked potential research. However, generators contributing to these components are still under discussion. Here we assessed cortical blood flow to auditory stimulation in three conditions. Six healthy subjects were presented with standard tones, frequency deviant tones (MMN condition), and complex novel sounds (Novelty condition), while attention was directed to a nondemanding visual task. Analysis of the MMN condition contrasted with thestandard condition revealed blood flow changes in the left and right superior temporal gyrus, right superior temporal sulcus and left inferior frontal gyrus. Complex novel sounds contrasted with the standard condition activated the left superior temporal gyrus and the left inferior and middle frontal gyrus. A small subcortical activation emerged in the left parahippocampal gyrus and an extended activation was found covering the right superior temporal gyrus. Novel sounds activated the right inferior frontal gyrus when controlling for deviance probability. In contrast to previous studies our results indicate a left hemisphere contribution to a frontotemporal network of auditory deviance processing. Our results provide further evidence for a contribution of the frontal cortex to the processing of auditory deviance outside the focus of directed attention.  相似文献   

12.
Cortical regions engaged by sentence processing were mapped using functional MRI. The influence of input modality (spoken word vs. print input) and parsing difficulty (sentences containing subject-relative vs. object-relative clauses) was assessed. Auditory presentation was associated with pronounced activity at primary auditory cortex and across the superior temporal gyrus bilaterally. Printed sentences by contrast evoked major activity at several posterior sites in the left hemisphere, including the angular gyrus, supramarginal gyrus, and the fusiform gyrus in the occipitotemporal region. In addition, modality-independent regions were isolated, with greatest overlap seen in the inferior frontal gyrus (IFG). With respect to sentence complexity, object-relative sentences evoked heightened responses in comparison to subject-relative sentences at several left hemisphere sites, including IFG, the middle/superior temporal gyrus, and the angular gyrus. These sites showing modulation of activity as a function of sentence type, independent of input mode, arguably form the core of a cortical system essential to sentence parsing.  相似文献   

13.
Zarate JM  Zatorre RJ 《NeuroImage》2008,40(4):1871-1887
Proper singing requires the integration of auditory feedback mechanisms with the vocal motor system, such that vocal pitch can be precisely controlled. To determine the neural substrates involved in audio-vocal integration, non-musicians and experienced singers underwent fMRI scanning while they sang a single tone with either unaltered (“simple”) or pitch-shifted auditory feedback; in pitch-shifted trials, subjects were instructed either to ignore or compensate for the shifted feedback. We hypothesized that the anterior cingulate cortex (ACC), superior temporal gyrus (STG), and anterior insula may be involved in audio-vocal integration due to their functional roles during singing and their anatomical connectivity. Although singers were more accurate than non-musicians in simple singing, both groups recruited similar functional networks. Singers ignored the shifted feedback better than non-musicians, and both groups also displayed different patterns of neural activity for this task: singers recruited bilateral auditory areas and left putamen, while non-musicians recruited the left supramarginal gyrus and primary motor cortex. While there were no significant group differences in performing the compensate task, singers displayed enhanced activity in the ACC, superior temporal sulcus, and putamen, whereas non-musicians exhibited increased activity in the dorsal premotor cortex, a region involved with sensorimotor interactions. We propose two neural substrates for audio-vocal integration: the dorsal premotor cortex may act as a basic interface, but with vocal training and practice, the ACC, auditory cortices, and putamen may be increasingly recruited as people learn to monitor their auditory feedback and adjust their vocal output accordingly.  相似文献   

14.
Luks TL  Simpson GV 《NeuroImage》2004,22(4):1515-1522
We used event-related fMRI to test the hypothesis that preparatory attention modulations occur in higher-order motion-processing regions when subjects deploy attention to internally driven representations in a complex motion-processing task. Using a cued attention-to-motion task, we found preparatory increases in fMRI activity in visual motion regions in the absence of visual motion stimulation. The cue, a brief enlargement of the fixation cross, directed subjects to prepare for a complex motion discrimination task. This preparation activated higher-order and lower-order motion regions. The motion regions activated included temporal regions consistent with V5/MT+, occipital regions consistent with V3+, parietal-occipital junction regions, ventral and dorsal intraparietal sulcus, superior temporal sulcus (STS), posterior insular cortex (PIC), and a region of BA 39/40 superior to V5/MT+ involving the angular gyrus and supramarginal gyrus (A-SM). Consistent with our hypothesis that these motion sensory activations are under top-down control, we also found activation of an extensive frontal network during the cue period, including anterior cingulate and multiple prefrontal regions. These results support the hypothesis that anticipatory deployment of attention to internally driven representations is achieved via top-down modulation of activity in task-relevant processing areas.  相似文献   

15.
Honey GD  Bullmore ET  Sharma T 《NeuroImage》2000,12(5):495-503
We used multislice functional magnetic resonance imaging (fMRI) to investigate the association between behavioral and neurophysiological measures of working memory task performance in 20 right-handed male healthy volunteers. Images were acquired over a 5-min period at 1.5 Tesla. We used a periodic design, alternating 30-s blocks of the "n-back" working memory task with 30-s blocks of a sensorimotor control task to activate verbal working memory systems. The power of functional response to the task was estimated by sinusoidal regression at each voxel. The relationship between power of fMRI response and mean reaction time over all 11 working memory trials was explored by multiple regression, with age and mean reaction time to the control task as covariates, at voxel and regional levels of analysis. All subjects were able to perform the n-back task accurately. A spatially distributed network was activated, including dorsolateral prefrontal cortex, inferior frontal gyrus, lateral premotor cortex, and supplementary motor area (SMA) in the frontal lobes. More posteriorly, there were major foci of activation in parietal and occipitoparietal cortex, precuneus, lingual, and fusiform gyri of the ventral occipital lobe, inferior temporal gyrus, and cerebellum. The power of functional response was positively correlated with reaction time in bilateral posterior parietal cortex (Talairach coordinates in x, y, z (mm) 35, -44, 37 and -32, -56, 42), indicating that subjects who found the task difficult, and responded with a slower reaction time, tended to activate these regions more powerfully. One interpretation of this regionally specific relationship between prolonged reaction time and increased power of posterior parietal activation is consistent with prior studies identifying similar areas of parietal cortex as the site of the phonological storage function in verbal working memory.  相似文献   

16.
The synchronization of the human cortical working memory network   总被引:2,自引:0,他引:2  
A verbal reasoning problem at the intersection of verbal working memory, problem-solving, and language comprehension was examined using event-related fMRI to distinguish differences in the differential timing of the response of the various cortical regions that compose the working memory network. Problems were developed such that the process demand as well as the timing of the manipulation of the contents of working memory (i.e., a demanding computation) was varied. Activation was observed in several regions including the dorsolateral prefrontal cortex, the inferior frontal gyrus, and the parietal lobe. Examination of the MR amplitude response revealed that the regions do not all activate simultaneously; instead, their activation time courses reveal differential responses that correspond to their theoretical processing role in the problem-solving task. The coordination of cortical area responses reveals how the various cortical regions synchronize and collaborate in order to accomplish a given cognitive function.  相似文献   

17.
Rimol LM  Specht K  Weis S  Savoy R  Hugdahl K 《NeuroImage》2005,26(4):97-1067
The objective of this study was to investigate phonological processing in the brain by using sub-syllabic speech units with rapidly changing frequency spectra. We used isolated stop consonants extracted from natural speech consonant-vowel (CV) syllables, which were digitized and presented through headphones in a functional magnetic resonance imaging (fMRI) paradigm. The stop consonants were contrasted with CV syllables. In order to control for general auditory activation, we used duration- and intensity-matched noise as a third stimulus category. The subjects were seventeen right-handed, healthy male volunteers. BOLD activation responses were acquired on a 1.5-T MR scanner. The auditory stimuli were presented through MR compatible headphones, using an fMRI paradigm with clustered volume acquisition and 12 s repetition time. The consonant vs. noise comparison resulted in unilateral left lateralized activation in the posterior part of the middle temporal gyrus and superior temporal sulcus (MTG/STS). The CV syllable vs. noise comparison resulted in bilateral activation in the same regions, with a leftward asymmetry. The reversed comparisons, i.e., noise vs. speech stimuli, resulted in right hemisphere activation in the supramarginal and superior temporal gyrus, as well as right prefrontal activation. Since the consonant stimuli are unlikely to have activated a semantic-lexical processing system, it seems reasonable to assume that the MTG/STS activation represents phonetic/phonological processing. This may involve the processing of both spectral and temporal features considered important for phonetic encoding.  相似文献   

18.
We examined changes in relative cerebral flood flow (relCBF) using PET during a sustained attention paradigm which included auditory stimulation and different tasks of mental counting. Ten normal volunteers underwent PET (15O water) during a baseline state and under experimental conditions which included listening to clicks, serial counting with auditory stimulation, counting with no auditory stimulation, and an additional component of working memory and time estimation. All subjects performed within normal limits in a battery of neurocognitive tests, which included measures of attention and working memory. Both counting with auditory stimulation and counting with no auditory stimulation engaged motor cortex, putamen, cerebellum, and anterior cingulate. Furthermore, counting with no auditory stimulation relative to counting while listening resulted in significantly increased relCBF in the inferior parietal, dorsolateral prefrontal, and anterior cingulate. The findings obtained in this study support the notion that the parietal and dorsolateral prefrontal cortex are involved when time estimation and working memory are taking part in a task requiring sustained attention.  相似文献   

19.
Gonzalo D  Shallice T  Dolan R 《NeuroImage》2000,11(3):243-255
Functional imaging studies of learning and memory have primarily focused on stimulus material presented within a single modality (see review by Gabrieli, 1998, Annu. Rev. Psychol. 49: 87-115). In the present study we investigated mechanisms for learning material presented in visual and auditory modalities, using single-trial functional magnetic resonance imaging. We evaluated time-dependent learning effects under two conditions involving presentation of consistent (repeatedly paired in the same combination) or inconsistent (items presented randomly paired) pairs. We also evaluated time-dependent changes for bimodal (auditory and visual) presentations relative to a condition in which auditory stimuli were repeatedly presented alone. Using a time by condition analysis to compare neural responses to consistent versus inconsistent audiovisual pairs, we found significant time-dependent learning effects in medial parietal and right dorsolateral prefrontal cortices. In contrast, time-dependent effects were seen in left angular gyrus, bilateral anterior cingulate gyrus, and occipital areas bilaterally. A comparison of paired (bimodal) versus unpaired (unimodal) conditions was associated with time-dependent changes in posterior hippocampal and superior frontal regions for both consistent and inconsistent pairs. The results provide evidence that associative learning for stimuli presented in different sensory modalities is supported by neural mechanisms similar to those described for other kinds of memory processes. The involvement of posterior hippocampus and superior frontal gyrus in bimodal learning for both consistent and inconsistent pairs supports a putative function for these regions in associative learning independent of sensory modality.  相似文献   

20.
We used functional magnetic resonance imaging (fMRI) to localize the brain areas involved in the imagery analogue of the verbal transformation effect, that is, the perceptual changes that occur when a speech form is cycled in rapid and continuous mental repetition. Two conditions were contrasted: a baseline condition involving the simple mental repetition of speech sequences, and a verbal transformation condition involving the mental repetition of the same items with an active search for verbal transformation. Our results reveal a predominantly left-lateralized network of cerebral regions activated by the verbal transformation task, similar to the neural network involved in verbal working memory: the left inferior frontal gyrus, the left supramarginal gyrus, the left superior temporal gyrus, the anterior part of the right cingulate cortex, and the cerebellar cortex, bilaterally. Our results strongly suggest that the imagery analogue of the verbal transformation effect, which requires percept analysis, form interpretation, and attentional maintenance of verbal material, relies on a working memory module sharing common components of speech perception and speech production systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号