共查询到20条相似文献,搜索用时 9 毫秒
1.
Aging is associated with an impaired ability to maintain long-term potentiation (LTP), but the underlying cause of the impairment remains unclear. To gain a better understanding of the cellular and molecular mechanisms responsible for this impairment, the synaptic transmission and plasticity were studied in the CA1 region of hippocampal slices from adult (6-8 months) and poor-memory (PM)-aged (23-24 months) rats. The one-way inhibitory avoidance learning task was used as the behavioral paradigm to screen PM-aged rats. With intracellular recordings, CA1 neurons of PM-aged rats exhibited a more hyperpolarized resting membrane potential, reduced input resistance, and increased amplitude of afterhyperpolarization and spike threshold, compared with those in adult rats. Although a reduction in the size of excitatory synaptic response was observed in PM-aged rats, no obvious differences were found between adult and PM-aged rats in the pharmacological properties of excitatory synaptic response, paired-pulse facilitation, or frequency-dependent facilitation, which was tested with trains of 10 pulses at 1, 5, and 10 Hz. Slices from the PM-aged rats displayed significantly reduced early-phase long-term potentiation (E-LTP) and late-phase LTP (L-LTP), and the entire frequency-response curve of LTP and LTD is modified to favor LTD induction. The susceptibility of time-dependent reversal of LTP by low-frequency afferent stimulation was also facilitated in PM-aged rats. Bath application of the protein phosphatase inhibitor, calyculin A, enhanced synaptic response in slices from PM-aged, but not adult, rats. In contrast, application of the cAMP-dependent protein kinase inhibitors, Rp-8-CPT-cAMPS and KT5720, induced a decrease in synaptic transmission only in slices from the adult rats. Furthermore, the selective beta-adrenergic receptor agonist, isoproterenol, and pertussis toxin-sensitive G-protein inhibitor, N-ethylmaleimide, effectively restored the deficit in E-LTP and L-LTP of PM-aged rats. These results demonstrate that age-related impairments of synaptic transmission and LTP may result from alterations in the balance of protein kinase/phosphatase activities. 相似文献
2.
Repeated exposure to amphetamine disrupts dopaminergic modulation of excitatory synaptic plasticity and neurotransmission in nucleus accumbens 总被引:4,自引:0,他引:4
The mesolimbic dopamine system is essential for reward-seeking behavior, and drugs of abuse perturb the normal functioning of this pathway. The nucleus accumbens (NAc) is a major terminal field of the mesolimbic dopamine neurons and modifications in neuronal structure and function in NAc accompany repeated exposure to psychomotor stimulants and other addictive drugs. Glutamatergic afferents to the NAc are thought to be crucial to the development of several aspects of addictive behavior, including behavioral sensitization and relapse to cocaine self-administration. Here we examine glutamatergic neurotransmission and synaptic plasticity in NAc neurons in vitro before and after repeated amphetamine treatment in vivo. We find that dopamine attenuates the response of NAc neurons to repetitive activation of glutamatergic afferents and thereby blocks long-term potentiation (LTP) induced by high-frequency afferent stimulation. Dopamine's effects are mimicked by dopamine receptor agonists and by amphetamine. In a second set of experiments, animals were treated with amphetamine daily for 6 days and brain slices were prepared after 8-10 days of withdrawal. In these slices, LTP in the NAc appears normal. However, acute exposure of such slices to amphetamine no longer modulates synaptic transmission or LTP induction. Thus, repeated exposure to amphetamine produces long-lasting changes in the modulation of glutamatergic synaptic transmission by amphetamine in the NAc. Our results support the notion that after psychostimulant exposure, excitatory synapses on NAc neurons alter their response to further psychostimulant for long periods of time. 相似文献
3.
Different synaptic stimulation patterns influence the local androgenic and estrogenic neurosteroid availability triggering hippocampal synaptic plasticity in the male rat 下载免费PDF全文
Michela Di Mauro Alessandro Tozzi Paolo Calabresi Vito Enrico Pettorossi Silvarosa Grassi 《The European journal of neuroscience》2017,45(4):499-509
Electrophysiological recordings were used to investigate the role of the local synthesis of 17β‐estradiol (E2) and 5α‐dihydrotestosterone (DHT) on synaptic long‐term effects induced in the hippocampal CA1 region of male rat slices. Long‐term depression (LTD) and long‐term potentiation (LTP), induced by different stimulation patterns, were examined under the block of the DHT synthesis by finasteride (FIN), and the E2 synthesis by letrozole (LET). We used low frequency stimulation (LFS) for LTD, high frequency stimulation (HFS) for LTP, and intermediate patterns differing in duration or frequency. We found that FIN reverted the LFS‐LTD into LTP and enhanced LTP induced by intermediate and HFSs. These effects were abolished by exogenous DHT at concentration higher than the basal one, suggesting a stimulus dependent increase in DHT availability. No effect on the synaptic responses was observed giving DHT alone. Moreover, we found that the inhibition of E2 synthesis influenced the HFS‐LTP by reducing its amplitude, and the exogenous E2 either enhanced HFS‐LTP or reverted the LFS‐LTD into LTP. The equivalence of the E2 concentration for rescuing the full HFS‐LTP under LET and reverting the LFS‐LTD into LTP suggests an enhancement of the endogenous E2 availability that is specifically driven by the HFS. No effect of FIN or LET was observed on the responses to stimuli that did not induce either LTD or LTP. This study provides evidence that the E2 and DHT availability combined with specific stimulation patterns is determinant for the sign and amplitude of the long‐term effects. 相似文献
4.
The role of adiponectin receptors in the regulation of synaptic transmission in the hippocampus 下载免费PDF全文
Filippo Weisz Sonia Piccinin Dalila Mango Richard Teke Ngomba Nicola B. Mercuri Ferdinando Nicoletti Robert Nisticò 《Synapse (New York, N.Y.)》2017,71(5)
In the last two decades adiponectin, member of the adipokines family, gained attention because of its unique antidiabetic effects. However, the presence in the brain of adiponectin receptors and adiponectin itself raised interest because of the possible association with neuropsychiatric diseases. Indeed, clinical studies found altered concentration of adiponectin both in plasma and cerebrospinal fluid in several pathologies including depression, multiple sclerosis, Alzheimer's disease and stroke. Moreover, recent preclinical studies also suggest its involvement in different physiological functions. Despite this evidence very few studies attempted to elucidate the functional role of adiponectin at the synapse. To address this question, here we investigated the effect of Adiporon, an agonist of both adiponectin receptors on synaptic transmission and LTP at Schaffer‐collateral CA1 pathway. Surprisingly, increasing concentration of Adiporon correlated with lower CA1–LTP levels and paired‐pulse ratio, whereas basal transmission was always preserved. Collectively, our data show that the adiponectin system, beyond its involvement in metabolic diseases, plays also a critical role in synaptic activity thereby representing a putative target for the treatment of synaptic pathologies. 相似文献
5.
Performance in hippocampus-dependent and other tasks can be improved by exposure to an enriched environment (EE), but the physiological changes in neural function that may mediate these effects are poorly understood. To date, there have been conflicting reports regarding potential mechanisms, such as an increase in basal synaptic transmission, an increase in cell excitability, or altered synaptic plasticity. Here, we reexamined in freely moving animals the conditions under which varying degrees of EE exposure might lead to increases in synaptic or neural function in the dentate gyrus of the hippocampus. Adult male Sprague-Dawley rats were chronically implanted with stimulating and recording electrodes in the perforant path and dentate gyrus, respectively, and housed singly in standard cages. After stable recordings were established for field excitatory postsynaptic potentials (fEPSPs) and population spikes (PSs), the effects of various degrees of periodic novel environment exposure for 19 days were assessed. Exposure to an EE increased fEPSPs, but only when animals were kept in nominally low-stress housing conditions. An increase in granule-cell excitability, as evidenced by PS increases, was induced by all environmental treatments with the greatest effect being induced by overnight EE exposure. EE exposure did not change the level of long-term potentiation (LTP) induced by a moderate high-frequency tetanus, but continued EE exposure post-tetanus produced a significantly faster decay of LTP relative to control animals. These results suggest that, in adult animals, EE exposure may augment hippocampal information processing, but may also speed turnover of information in the hippocampus during the maintenance period. 相似文献
6.
Deletion of the amyloid precursor‐like protein 1 (APLP1) enhances excitatory synaptic transmission,reduces network inhibition but does not impair synaptic plasticity in the mouse dentate gyrus 下载免费PDF全文
Matej Vnencak Mandy H. Paul Meike Hick Stephan W. Schwarzacher Domenico Del Turco Ulrike C. Müller Peter Jedlicka 《The Journal of comparative neurology》2015,523(11):1717-1729
7.
Sunifiram is a novel pyrrolidone nootropic drug structurally related to piracetam, which was developed for neurodegenerative disorder like Alzheimer's disease. Sunifiram is known to enhance cognitive function in some behavioral experiments such as Morris water maze task. To address question whether sunifiram affects N‐methyl‐D ‐aspartate receptor (NMDAR)‐dependent synaptic function in the hippocampal CA1 region, we assessed the effects of sunifiram on NMDAR‐dependent long‐term potentiation (LTP) by electrophysiology and on phosphorylation of synaptic proteins by immunoblotting analysis. In mouse hippocampal slices, sunifiram at 10–100 nM significantly enhanced LTP in a bell‐shaped dose‐response relationship which peaked at 10 nM. The enhancement of LTP by sunifiram treatment was inhibited by 7‐chloro‐kynurenic acid (7‐ClKN), an antagonist for glycine‐binding site of NMDAR, but not by ifenprodil, an inhibitor for polyamine site of NMDAR. The enhancement of LTP by sunifilam was associated with an increase in phosphorylation of α‐amino‐3‐hydroxy‐5‐methylisozazole‐4‐propionate receptor (AMPAR) through activation of calcium/calmodulin‐dependent protein kinase II (CaMKII) and an increase in phosphorylation of NMDAR through activation of protein kinase Cα (PKCα). Sunifiram treatments at 1–1000 nM increased the slope of field excitatory postsynaptic potentials (fEPSPs) in a dose‐dependent manner. The enhancement was associated with an increase in phosphorylation of AMPAR receptor through activation of CaMKII. Interestingly, under the basal condition, sunifiram treatments increased PKCα (Ser‐657) and Src family (Tyr‐416) activities with the same bell‐shaped dose‐response curve as that of LTP peaking at 10 nM. The increase in phosphorylation of PKCα (Ser‐657) and Src (Tyr‐416) induced by sunifiram was inhibited by 7‐ClKN treatment. The LTP enhancement by sunifiram was significantly inhibited by PP2, a Src family inhibitor. Finally, when pretreated with a high concentration of glycine (300 μM), sunifiram treatments failed to potentiate LTP in the CA1 region. Taken together, sunifiram stimulates the glycine‐binding site of NMDAR with concomitant PKCα activation through Src kinase. Enhancement of PKCα activity triggers to potentiate hippocampal LTP through CaMKII activation. © 2013 Wiley Periodicals, Inc. 相似文献
8.
The physiological effects of α1‐adrenoceptors (α1‐ARs) have been examined in many brain regions. However, little is known about the mechanism of modulation on synaptic transmission by α1‐ARs in the medial prefrontal cortex (mPFC). The present study investigated how α1‐AR activation regulates glutamatergic synaptic transmission in layer V/VI pyramidal cells of the rat mPFC. We found that the α1‐AR agonist phenylephrine (Phe) induced a significant enhancement of the amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs). The facilitation effect of Phe on the frequency of mEPSCs involved a presynaptic protein kinase C‐dependent pathway. Phe produced a significant enhancement on the amplitude of α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPA‐R)‐ and N‐methyl‐d ‐aspartic acid receptor (NMDA‐R)‐mediated evoked excitatory postsynaptic currents (eEPSCs). Phe enhanced inward currents evoked by puff application of glutamate or NMDA. The Phe‐induced facilitation of AMPA‐R‐ and NMDA‐R‐mediated eEPSCs required, in part, postsynaptic Gq, phospholipase C and PKC. These findings suggest that α1‐AR activation facilitates excitatory synaptic transmission in mPFC pyramidal cells via both pre‐ and post‐synaptic PKC‐dependent mechanisms. 相似文献
9.
10.
Hong‐Bin Li Michael F. Jackson Kai Yang Catherine Trepanier Michael W. Salter Beverley A. Orser John F. MacDonald 《Hippocampus》2011,21(10):1053-1061
The induction of long‐term potentiation (LTP) of CA3‐CA1 synapses requires activation of postsynaptic N‐methyl‐D ‐aspartate receptors (GluNRs). At resting potential, the contribution of GluNRs is limited by their voltage‐dependent block by extracellular Mg2+. High‐frequency afferent stimulation is required to cause sufficient summation of excitatory synaptic potentials (EPSPs) to relieve this block and to permit an influx of Ca2+. It has been assumed that this relief of Mg2+ block is sufficient for induction. We postulated that the induction of LTP also requires a Src‐dependent plasticity of GluNRs. Using whole‐cell recordings, LTP (GluARs) of α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptors‐EPSCS was induced by pairing postsynaptic depolarization with presynaptic stimulation. This LTP was both GluNR and Src‐dependent, being sensitive to AP‐5, a GluNR selective antagonist, or to SU6656, a Src‐selective inhibitor. When CNQX was used to block all GluARs, we observed a long‐lasting potentiation of GluNR‐mediated EPSCs. This plasticity was prevented by transiently blocking GluNRs during the induction protocol or by chelating intracellular Ca2+. GluNRs plasticity was also prevented by bath applications of SU6656 or intracellular applications of the Src‐selective inhibitory peptide, Src(40–58). It was also blocked by preventing activation of protein kinase C, a kinase that is upstream of Src‐kinase‐dependent regulation of GluNRs. Both GluN2A and GluN2B receptors were found to contribute to the plasticity of GluNRs. The contribution of GluNRs and, in particular, their plasticity to the maintenance of LTP was explored using AP5 and SU6656, respectively. When applied >20 min after induction neither drug influenced the magnitude of LTP. However, when applied immediately after induction, treatment with either drug caused the initial magnitude of LTP to progressively decrease to a sustained phase of reduced amplitude. Collectively, our findings suggest that GluNR plasticity, although not strictly required for induction, is necessary for the maintenance of a nondecrementing component of LTP. © 2010 Wiley‐Liss, Inc. 相似文献
11.
Changik Lee Kayoung Joo Myung‐Jun Kim Duck‐Joo Rhie Hyun‐Jong Jang 《Journal of neuroscience research》2015,93(9):1405-1412
In the visual cortex, synaptic plasticity is very high during the early developmental stage known as the critical period and declines with development after the critical period. Changes in the properties of N‐methyl‐D‐aspartate receptor (NMDAR) and γ‐aminobutyric acid type A receptor (GABAAR) have been suggested to underlie the changes in the characteristics of plasticity. However, it is largely unknown how the changes in the two receptors interact to regulate synaptic plasticity. The present study investigates the changes in the properties of NMDAR and GABAAR from 3 to 5 weeks of age in layer 2/3 pyramidal neurons of the rat visual cortex. The impact of these changes on the characteristics of long‐term potentiation (LTP) is also investigated. The amplitude and decay time constant of GABAAR‐mediated currents increased during this period. However, the decay time constant of NMDAR‐mediated currents decreased as a result of the decrease in the proportion of the GluN2B subunit‐mediated component. Induction of NMDAR‐dependent LTP at 3 weeks depended on the GluN2B subunit, but LTP at 5 weeks did not. Enhancement of GABAAR‐mediated inhibition suppressed the induction of LTP only at 5 weeks. However, partial inhibition of the GluN2B subunit with a low concentration of ifenprodil allowed the GABAAR‐mediated suppression of LTP at 3 weeks. These results suggest that changes in the properties of NMDAR‐ and GABAAR‐mediated synaptic transmission interact to determine the characteristics of synaptic plasticity during the critical period in the visual cortex. © 2015 Wiley Periodicals, Inc. 相似文献
12.
Colivelin ameliorates amyloid β peptide‐induced impairments in spatial memory,synaptic plasticity,and calcium homeostasis in rats 下载免费PDF全文
Zhao‐Jun Wang Wei‐Na Han Jun Zhang Xiao‐Jie Liu Jia‐Qing Tong Jin‐Shun Qi 《Hippocampus》2015,25(3):363-372
Amyloid β peptide (Aβ) has been thought to be neurotoxic and responsible for the impairment of learning and memory in Alzheimer's disease (AD). Humanin (HN), a 24 amino acid polypeptide first identified from the unaffected occipital lobe of an AD patient, is believed to be neuroprotective against the AD‐related neurotoxicity. In this study, we investigated the neuroprotective effects of Colivelin (CLN), a novel HN derivative, against Aβ by using behavioral test, in vivo electrophysiological recording, and intracellular calcium imaging. Our results showed that intrahippocampal injection of CLN (0.2 nmol) effectively prevented Aβ25–35 (4 nmol)‐induced deficits in spatial learning and memory of rats in Morris water maze test; the suppression of in vivo hippocampal long term potentiation (LTP) by Aβ25–35 was nearly completely prevented by CLN; in addition, CLN pretreatment also effectively inhibited Aβ25–35–induced calcium overload in primary cultured hippocampal neurons. These results indicate that CLN has significant neuroprotective properties against Aβ, and CLN may holds great promise for the treatment and prevention of AD. © 2014 Wiley Periodicals, Inc. 相似文献
13.
Juan Ahumada David Fernández de Sevilla Alejandro Couve Washington Buño Marco Fuenzalida 《Hippocampus》2013,23(12):1439-1452
The precise timing of pre‐postsynaptic activity is vital for the induction of long‐term potentiation (LTP) or depression (LTD) at many central synapses. We show in synapses of rat CA1 pyramidal neurons in vitro that spike timing dependent plasticity (STDP) protocols that induce LTP at glutamatergic synapses can evoke LTD of inhibitory postsynaptic currents or STDP‐iLTD. The STDP‐iLTD requires a postsynaptic Ca2+ increase, a release of endocannabinoids (eCBs), the activation of type‐1 endocananabinoid receptors and presynaptic muscarinic receptors that mediate a decreased probability of GABA release. In contrast, the STDP‐iLTD is independent of the activation of nicotinic receptors, GABABRs and G protein‐coupled postsynaptic receptors at pyramidal neurons. We determine that the downregulation of presynaptic Cyclic adenosine monophosphate/protein Kinase A pathways is essential for the induction of STDP‐iLTD. These results suggest a novel mechanism by which the activation of cholinergic neurons and retrograde signaling by eCBs can modulate the efficacy of GABAergic synaptic transmission in ways that may contribute to information processing and storage in the hippocampus. © 2013 Wiley Periodicals, Inc. 相似文献
14.
Shemer I Holmgren C Min R Fülöp L Zilberter M Sousa KM Farkas T Härtig W Penke B Burnashev N Tanila H Zilberter Y Harkany T 《The European journal of neuroscience》2006,23(8):2035-2047
Cognitive decline in Alzheimer's disease (AD) stems from the progressive dysfunction of synaptic connections within cortical neuronal microcircuits. Recently, soluble amyloid beta protein oligomers (Abeta(ol)s) have been identified as critical triggers for early synaptic disorganization. However, it remains unknown whether a deficit of Hebbian-related synaptic plasticity occurs during the early phase of AD. Therefore, we studied whether age-dependent Abeta accumulation affects the induction of spike-timing-dependent synaptic potentiation at excitatory synapses on neocortical layer 2/3 (L2/3) pyramidal cells in the APPswe/PS1dE9 transgenic mouse model of AD. Synaptic potentiation at excitatory synapses onto L2/3 pyramidal cells was significantly reduced at the onset of Abeta pathology and was virtually absent in mice with advanced Abeta burden. A decreased alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/N-methyl-D-aspartate (NMDA) receptor-mediated current ratio implicated postsynaptic mechanisms underlying Abeta synaptotoxicity. The integral role of Abeta(ol)s in these processes was verified by showing that pretreatment of cortical slices with Abeta((25-35)ol)s disrupted spike-timing-dependent synaptic potentiation at unitary connections between L2/3 pyramidal cells, and reduced the amplitude of miniature excitatory postsynaptic currents therein. A robust decrement of AMPA, but not NMDA, receptor-mediated currents in nucleated patches from L2/3 pyramidal cells confirmed that Abeta(ol)s perturb basal glutamatergic synaptic transmission by affecting postsynaptic AMPA receptors. Inhibition of AMPA receptor desensitization by cyclothiazide significantly increased the amplitude of excitatory postsynaptic potentials evoked by afferent stimulation, and rescued synaptic plasticity even in mice with pronounced Abeta pathology. We propose that soluble Abeta(ol)s trigger the diminution of synaptic plasticity in neocortical pyramidal cell networks during early stages of AD pathogenesis by preferentially targeting postsynaptic AMPA receptors. 相似文献
15.
Subtle alterations of excitatory transmission are linked to presynaptic changes in the hippocampus of PINK1‐deficient mice 下载免费PDF全文
Sonia Piccinin Paola Imbriani Filomena Iannuzzi Alessandra Caruso Francesca De Angelis Fabio Blandini Nicola B. Mercuri Robert Nisticò 《Synapse (New York, N.Y.)》2016,70(6):223-230
Homozygous or heterozygous mutations in the PTEN‐induced kinase 1 (PINK1) gene have been linked to early‐onset Parkinson's disease (PD). Several neurophysiological studies have demonstrated alterations in striatal synaptic plasticity along with impaired dopamine release in PINK1‐deficient mice. Using electrophysiological methods, here we show that PINK1 loss of function causes a progressive increase of spontaneous glutamate‐mediated synaptic events in the hippocampus, without influencing long‐term potentiation. Moreover, fluorescence analysis reveals increased neurotrasmitter release although our biochemical results failed to detect which presynaptic proteins might be engaged. This study provides a novel role for PINK1 beyond the physiology of nigrostriatal dopaminergic circuit. Specifically, PINK1 might contribute to preserve synaptic function and glutamatergic homeostasis in the hippocampus, a brain region underlying cognition. The subtle changes in excitatory transmission here observed might be a pathogenic precursor to excitotoxic neurodegeneration and cognitive decline often observed in PD. Using electrophysiological and fluorescence techniques, we demonstrate that lack of PINK1 causes increased excitatory transmission and neurotransmitter release in the hippocampus, which might lead to the cognitive decline often observed in Parkinson's disease. Synapse 70:223–230, 2016 . © 2016 Wiley Periodicals, Inc. 相似文献
16.
Chen L Xing T Wang M Miao Y Tang M Chen J Li G Ruan DY 《The European journal of neuroscience》2011,33(2):266-275
Ghrelin, an orexigenic hormone, is mainly produced by the stomach and released into the circulation. Ghrelin receptors (growth hormone secretagogue receptors) are expressed throughout the brain, including the hippocampus. The activation of ghrelin receptors facilitates high-frequency stimulation (HFS)-induced long-term potentiation (LTP) in vitro, and also improves learning and memory. Herein, we report that a single infusion of ghrelin into the hippocampus led to long-lasting potentiation of excitatory postsynaptic potentials (EPSPs) and population spikes (PSs) in the dentate gyrus of anesthetized rats. This potentiation was accompanied by a reduction in paired-pulse depression of the EPSP slope, an increase in paired-pulse facilitation of the PS amplitude, and an enhancement of EPSP-spike coupling, suggesting the involvement of both presynaptic and postsynaptic mechanisms. Meanwhile, ghrelin infusion time-dependently increased the phosphorylation of Akt-Ser473, a downstream molecule of phosphoinositide 3-kinase (PI3K). Interestingly, PI3K inhibitors, but not NMDA receptor antagonist, inhibited ghrelin-induced potentiation. Although ghrelin had no effect on the induction of HFS-induced LTP, it prolonged the expression of HFS-induced LTP through extracellular signal-regulated kinase (ERK)1/2. The Morris water maze test showed that ghrelin enhanced spatial memory, and that this was prevented by pretreatment with PI3K inhibitor. Taken together, the findings show that: (i) a single infusion of ghrelin induced a new form of synaptic plasticity by activating the PI3K signaling pathway, without HFS and NMDA receptor activation; (ii) a single infusion of ghrelin also enhanced the maintenance of HFS-induced LTP through ERK activation; and (iii) repetitive infusion of ghrelin enhanced spatial memory by activating the PI3K signaling pathway. Thus, we propose that the ghrelin signaling pathway could have therapeutic value in cognitive deficits. 相似文献
17.
Yang H Courtney MJ Martinsson P Manahan-Vaughan D 《The European journal of neuroscience》2011,33(9):1647-1655
Synaptic plasticity is regarded as the major candidate mechanism for synaptic information storage and memory formation in the hippocampus. Mitogen‐activated protein kinases have recently emerged as an important regulatory factor in many forms of synaptic plasticity and memory. As one of the subfamilies of mitogen‐activated protein kinases, extracellular‐regulated kinase is involved in the in vitro induction of long‐term potentiation (LTP), whereas p38 mediates metabotropic glutamate receptor‐dependent long‐term depression (LTD) in vitro. Although c‐Jun N‐terminal kinase (JNK) has also been implicated in synaptic plasticity, the in vivo relevance of JNK activity to different forms of synaptic plasticity remains to be further explored. We investigated the effect of inhibition of JNK on different forms of synaptic plasticity in the dentate gyrus of freely behaving adult rats. Intracereboventricular application of c‐Jun N‐terminal protein kinase‐inhibiting peptide (D‐JNKI) (96 ng), a highly selective JNK inhibitor peptide, did not affect basal synaptic transmission but reduced neuronal excitability with a higher dose (192 ng). Application of D‐JNKI, at a concentration that did not affect basal synaptic transmission, resulted in reduced specific phosphorylation of the JNK substrates postsynaptic density 95kD protein (PSD 95) and c‐Jun, a significant enhancement of LTD and a facilitation of short‐term depression into LTD. Both LTP and short‐term potentiation were unaffected. An inhibition of depotentiation (recovery of LTP) occurred. These data suggest that suppression of JNK‐dependent signalling may serve to enhance synaptic depression, and indirectly promote LTP through impairment of depotentiation. 相似文献
18.
Ghiam Yamin 《Journal of neuroscience research》2009,87(8):1729-1736
Alzheimer's disease (AD), the most common neurodegenerative disease in the elderly population, is characterized by the hippocampal deposition of fibrils formed by amyloid β‐protein (Aβ), a 40‐ to 42‐amino‐acid peptide. The folding of Aβ into neurotoxic oligomeric, protofibrillar, and fibrillar assemblies is believed to mediate the key pathologic event in AD. The hippocampus is especially susceptible in AD and early degenerative symptoms include significant deficits in the performance of hippocampal‐dependent cognitive abilities such as spatial learning and memory. Transgenic mouse models of AD that express C‐terminal segments or mutant variants of amyloid precursor protein, the protein from which Aβ is derived, exhibit age‐dependent spatial memory impairment and attenuated long‐term potentiation (LTP) in the hippocampal CA1 and dentate gyrus (DG) regions. Recent experimental evidence suggests that Aβ disturbs N‐methyl‐D ‐aspartic acid (NMDA) receptor–dependent LTP induction in the CA1 and DG both in vivo and in vitro. Furthermore, these studies suggest that Aβ specifically interferes with several major signaling pathways downstream of the NMDA receptor, including the Ca2+‐dependent protein phosphatase calcineurin, Ca2+/calmodulin‐dependent protein kinase II (CaMKII), protein phosphatase 1, and cAMP response element–binding protein (CREB). The influence of Aβ on each of these downstream effectors of the NMDA receptor is reviewed in this article. Additionally, other mechanisms of LTP modulation, such as Aβ attenuation of α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) receptor currents, are briefly discussed. © 2009 Wiley‐Liss, Inc. 相似文献
19.
Kim YH Choi MY Kim YS Han JM Lee JH Park CH Kang SS Choi WS Cho GJ 《Neurobiology of disease》2007,28(3):293-303
We investigated the relationship between phosphorylation of alphaB-crystallin (alphaBC) and retinal apoptosis in type 2 diabetes. The retinas of male Otsuka Long-Evans Tokushima fatty (OLETF) rats at 24 and 35 weeks were used as an animal model for type 2 diabetes and sex- and age-matched Long-Evans Tokushima Otsuka (LETO) rats were used as controls. In the retinas of 35-week OLETF rats, the interaction between alphaBC and protein kinase C delta (PKC delta) among the PKC isozymes, alphaBC phosphorylation at Ser45 (S45p-alphaBC), TUNEL-positive apoptotic ganglion cells, several apoptotic signs, and co-localization of S45p-alphaBC and TUNEL significantly increased as compared with other groups while the alphaBC-Bax interaction greatly decreased. These changes were abolished by rottlerin treatment, a highly specific PKC delta inhibitor. These results suggest that PKC delta is involved in regulation of anti-apoptotic function of alphaBC in the retina of type 2 diabetes. 相似文献
20.
Methamphetamine‐induced enhancement of hippocampal long‐term potentiation is modulated by NMDA and GABA receptors in the shell–accumbens 下载免费PDF全文
Soomaayeh Heysieattalab Nasser Naghdi Narges Hosseinmardi Mohammad‐Reza Zarrindast Abbas Haghparast Habibeh Khoshbouei 《Synapse (New York, N.Y.)》2016,70(8):325-335
Addictive drugs modulate synaptic transmission in the meso‐corticolimbic system by hijacking normal adaptive forms of experience‐dependent synaptic plasticity. Psychostimulants such as METH have been shown to affect hippocampal synaptic plasticity, albeit with a less understood synaptic mechanism. METH is one of the most addictive drugs that elicit long‐term alterations in the synaptic plasticity in brain areas involved in reinforcement learning and reward processing. Dopamine transporter (DAT) is one of the main targets of METH. As a substrate for DAT, METH decreases dopamine uptake and increases dopamine efflux via the transporter in the target brain regions such as nucleus accumbens (NAc) and hippocampus. Due to cross talk between NAc and hippocampus, stimulation of NAc has been shown to alter hippocampal plasticity. In this study, we tested the hypothesis that manipulation of glutamatergic and GABA‐ergic systems in the shell‐NAc modulates METH‐induced enhancement of long term potentiation (LTP) in the hippocampus. Rats treated with METH (four injections of 5 mg/kg) exhibited enhanced LTP as compared to saline‐treated animals. Intra‐NAc infusion of muscimol (GABA receptor agonist) decreased METH‐induced enhancement of dentate gyrus (DG)‐LTP, while infusion of AP5 (NMDA receptor antagonist) prevented METH‐induced enhancement of LTP. These data support the interpretation that reducing NAc activity can ameliorate METH‐induced hippocampal LTP through a hippocampus‐NAc‐VTA circuit loop. Synapse 70:325–335, 2016 . © 2016 Wiley Periodicals, Inc. 相似文献