共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inhibition of T lymphocyte mitogenesis by 1,25-dihydroxyvitamin D3 (calcitriol). 总被引:6,自引:5,他引:6 下载免费PDF全文
Recent studies have suggested that vitamin D may have other important biologic activities in addition to its well-characterized role in the maintenance of calcium homeostasis. Discovery of cytosolic receptors for vitamin D in human peripheral blood monocytes and lectin-stimulated lymphocytes prompted us to study the effects of 1,25-dihydroxyvitamin D3 (calcitriol), the most biologically active metabolite of vitamin D, upon phytohemagglutinin (PHA)-induced lymphocyte blast transformation. We have found that calcitriol is a potent inhibitor of PHA-induced lymphocyte proliferation, achieving 70% inhibition of tritiated thymidine incorporation after 72 h in culture. Furthermore, calcitriol suppressed interleukin-2 (IL-2) production by PHA-stimulated peripheral blood mononuclear cells in a concentration-dependent fashion. Lastly, the suppressive effect of calcitriol on cellular proliferation was partially reversed by the addition of saturating amounts of purified IL-2. We conclude that calcitriol is a potent inhibitor of PHA-induced lymphocyte blast transformation and that this effect is mediated, in part, through suppression of IL-2 production. Thus, calcitriol appears to possess immunoregulatory properties that have been unappreciated heretofore. 相似文献
3.
R Kumar S Nagubandi V R Mattox J M Londowski 《The Journal of clinical investigation》1980,65(2):277-284
After intravenous administration of radiolabeled 1,25-dihydroxyvitamin D3 to rats, approximately 25% of the administered radioactivity appeared in the bile within 24 h. Instillation of the biliary radioactivity into the duodena of other rats was followed by recovery of 15% of the radioactivity in newly secreted bile within 24 h. The process by which products of 1,25-dihydroxyvitamin D3 were excreted in bile was not saturable in the dose range tested (0.275-650 ng). The metabolites of 1,25-dihydroxyvitamin D3 present in bile were found to be much more polar than 1,25-dihydroxyvitamin D3 and were resolved into three fractions on high performance liquid chromatography. 60% of the radioactivity present in bile was retained selectively by DEAE-cellulose; the radioactive material could be eluted from the gel at a low pH or at high salt concentrations. When bile containing the radiolabeled metabolites was incubated at 37 degrees C and pH 5 with beta-glucuronidase, there was an increase in the amount of radioactivity comigrating with 1,25-dihydroxyvitamin D3. Treatment of the products of radiolabeled 1,25-dihydroxyvitamin D3 in bile with diazomethane, an agent which converts acids into methyl esters, transformed one of the metabolites into a less polar compound. These results demonstrate that there is a quantitatively important enterophepatic circulation of the products of 1,25-dihydroxyvitamin D3 in the rat. 相似文献
4.
Isolated renal tubules prepared from vitamin D-deficient chicks catalyze the 1 alpha-hydroxylation of 25-hydroxyvitamin D3 (250HD3) in vitro. The effect of calcium and phosphate on the rate of synthesis of the product, 1, 25-dihydroxyvitamin D3 (1,25(OH)2D3), was studied at two levels: the long-term effects of various dietary calcium and phosphate contents on the ability of the tubules to produce 1, 25 (OH)2D3, and the acute effects of different calcium and phosphate concentrations in the incubation medium on the rate of synthesis of 1,25(OH)2D3 by the tubules. Manipulation of dietary calcium and phosphate sufficient to produce marked changes in the concentration of calcium and phosphate in the serum led to altered rates of 1,25(OH)2D3 synthesis by the isolated renal tubules. The renal tubules isolated from chicks raised on a vitamin D-deficient diet containing 0.43% calcium and 0.3% P as inorganic phosphate showed the highest rate of synthesis of 1,25(OH)2D3. Diets containing more or less of either calcium or phosphate produced chicks whose renal tubules had a slower rate of 1,25(OH)2D3 production. The calcium, phosphate, and hydrogen ion content of the incubation medium were manipulated to determine the possible factors concerned with the immediate regulation of 1,25(OH)2D3 production. A calcium concentration of 0.5-1.0 mM was necessary for optimal enzymatic activity. Concentrations of calcium greater than this optimal concentration inhibited 1,25(OH)2D3 production if phosphate was also present, and this inhibition was more pronounced as the phosphate concentration was increased. The stimulation of 1,25(OH)2D3 production by calcium was less at pH 6.7 than at 7.4. Raising the phosphate concentration from 0 to 6 mM in the absence of calcium also stimulated the rate of synthesis of 1,25(OH)2D3. This stimulatory effect was blocked by 4 mM calcium. However, at 1-2 mM calciu, phosphate had a biphasic influence on 1,25(OH)2D3 production; extracellular concentrations of phosphate from 0.6 to 1.2 mM resulted in less 1,25(OH)2D3 production than higher or lower phosphate concentrations. This biphasic effect was seen both at pH 7.4 and 6.8. 相似文献
5.
Evidence that 1,25-dihydroxyvitamin D3 inhibits the hepatic production of 25-hydroxyvitamin D in man 总被引:2,自引:5,他引:2 下载免费PDF全文
Previous in vitro studies in rachitic rat liver suggested that 1,25-dihydroxyvitamin D inhibits the hepatic production of 25-hydroxyvitamin D (25-OHD). An investigation therefore was carried out in eight normal subjects to determine whether concomitant administration of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] would alter the response of serum 25-OHD to challenge with vitamin D. In control studies, vitamin D, 100,000 U/d for 4 d, significantly increased mean serum 25-OHD, from 26.3 +/- 2.9 to 66.7 +/- 12.6 ng/ml (P less than 0.01). In contrast, 1,25(OH)2D3, 2 micrograms/d for 4 d, completely prevented an increase in serum 25-OHD in response to the same dose of vitamin D in the same individuals (25.1 +/- 2.2 vs. 27.4 +/- 5.3 ng/ml, NS). In a post-control study in seven of the normal subjects, vitamin D again significantly increased mean serum 25-OHD, from 18.2 +/- 3.1 to 42.8 +/- 4.7 ng/ml (P less than 0.001). In each of the three studies, mean serum calcium, phosphorus, and creatinine did not change and remained within the normal range. Whereas mean urinary calcium did not change in response to vitamin D alone during the 4 d of the two control studies, it increased significantly in the study in which vitamin D and 1,25(OH)2D3 were given together. A dose-response inhibition of the response of serum 25-OHD to vitamin D by 1,25(OH)2D3 was demonstrated in two of the normal subjects. The results provide evidence that 1,25(OH)2D3 inhibits the hepatic synthesis of its precursor 25-OHD in man. 相似文献
6.
7.
Defective binding and function of 1,25-dihydroxyvitamin D3 receptors in peripheral mononuclear cells of patients with end-organ resistance to 1,25-dihydroxyvitamin D. 总被引:1,自引:3,他引:1 下载免费PDF全文
R Koren A Ravid U A Liberman Z Hochberg Y Weisman A Novogrodsky 《The Journal of clinical investigation》1985,76(5):2012-2015
Lectin-induced DNA synthesis by peripheral mononuclear cells from 17 normal donors was inhibited (40-60%) by 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) at physiological concentrations (10(-10)-10(-9) M). The lymphocytes acquire specific receptors for 1,25(OH)2D3 upon activation by the lectins. This process precedes the inhibitory effect of 1,25(OH)2D3. We studied lymphocytes from six patients from four different kindreds with the syndrome of hereditary end-organ resistance to 1,25(OH)2D (the so-called vitamin D-dependent rickets type II). In five patients (three kindreds) peripheral blood mononuclear cells did not acquire receptors for 1,25(OH)2D3 upon phytohemagglutinin-induced activation. Moreover, in contrast to normal lymphocytes, the mitogenic stimulation of these patients' lymphocytes by phytohemagglutinin and concanavalin A was not inhibited by 1,25(OH)2D3. Activated lymphocytes of the sixth patient from a fourth kindred exhibited normal binding of [3H]1,25(OH)2D3 but the hormone failed to inhibit the mitogenic stimulation. A similar pattern of the vitamin D effector system was previously observed in fibroblasts cultured from skin biopsies of the same group of patients. The conclusions from these findings are: (a) the inhibition of mitogenic stimulation by 1,25(OH)2D3 is mediated by specific functional receptors to the hormone; and (b) the receptors for 1,25(OH)2D3 in mononuclear cells are probably controlled genetically by the same mechanisms as the effector system in well-characterized target organs of the hormone, such as intestine and kidney. 相似文献
8.
Production of 1,25-dihydroxyvitamin D3 by human T cell lymphotrophic virus-I-transformed lymphocytes. 总被引:3,自引:2,他引:1
D A Fetchick D R Bertolini P S Sarin S T Weintraub G R Mundy J F Dunn 《The Journal of clinical investigation》1986,78(2):592-596
The human T cell lymphotrophic virus type I (HTLV-I) has recently been identified in a T cell lymphoma associated with hypercalcemia and increased bone turnover. Since increased serum concentrations of 1,25-dihydroxyvitamin D have been reported in this disease, we have examined the capacity of HTLV-I-infected cord blood lymphocytes to metabolize 25-hydroxyvitamin D3. Our results demonstrate that HTLV-I-infected cells have the capacity to metabolize 25-hydroxyvitamin D3 to a substance that co-migrates with 1,25-dihydroxyvitamin D3 by high performance liquid chromatography over a silica column using either 12% isopropanol in hexane or 5% isopropanol in dichloromethane. The metabolite binds to the 1,25-dihydroxyvitamin D3 receptor in rat osteosarcoma cells and stimulates bone resorption in cultures of fetal rat long bones. Mass spectrometric analysis of the metabolite confirmed the presence of 1,25-dihydroxyvitamin D3. Production of 1,25-dihydroxyvitamin D by lymphoma cells may contribute to the pathogenesis of the hypercalcemia seen in patients with HTLV-I-associated T cell lymphomas. 相似文献
9.
10.
Effect of age on the conversion of 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 by kidney of rat. 下载免费PDF全文
The decreased absorption of calcium by the small intestine of the adult may reflect changes in vitamin D metabolism with age. The purpose of this study was to compare the capacity of young (1.5 mo of age) and adult (12 mo of age) vitamin D-deficient rats to convert 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D, the physiologically active form of vitamin D. Young rats responded to an oral dose of 25-hydroxyvitamin D3 with significantly increased intestinal absorption of calcium and a three-fold increase in the intestinal content of vitamin D-stimulated calcium-binding protein. Adult rats showed no significant increase in these parameters. The conversion of 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 was measured in the whole animal by administering a dose of tritiated 25-hydroxyvitamin D3 and determining the appearance of tritiated metabolites in plasma and small intestine. In the adult rat, only 2.1 +/- 0.6% of the plasma radioactivity was in the form of 1,25-dihydroxyvitamin D3 after 24 h compared with 20.8 +/- 3.0% in the young. The conversion of tritiated 25-hydroxyvitamin D3 to its products was also measured directly in isolated slices of renal cortex. 1,25-Dihydroxyvitamin D3 production by adult renal slices was found to be less than one-tenth that of slices from the young. These results indicate that there is a marked decrease in the capacity of the vitamin D-deficient adult rat to convert 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3. This is probably due to the decreased capacity of the adult kidney to 1-hydroxylate 25-hydroxyvitamin D3. These studies also demonstrate the usefulness of renal slices in measuring changes in the renal conversion of 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 in the mammal. 相似文献
11.
12.
1,25-dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. 下载免费PDF全文
The hormone, 1,25-dihydroxyvitamin D3 (1,25-[OH]2-D3), inhibits lymphocyte activation in vitro. We studied the ability of the vitamin D metabolite to interfere in vivo with a primary T cell-mediated model of autoimmunity, murine experimental autoimmune encephalomyelitis (EAE). Within 2 wk of antigenic challenge, immunized animals will develop acute paralysis with central nervous tissue inflammation. If mice survive, a rise in antibody titer develops within a month. The administration of 0.1 microgram 1,25-(OH)2-D3 i.p. given every other day for 15 d, starting 3 d before immunization, significantly prevented the development of EAE. The rise in antibody titer to myelin basic protein was also abrogated. Histopathologic lesions of EAE were inhibited by treatment with the sterol. These results suggest a potent immunosuppressive role for 1,25-(OH)2-D3 in vivo in the modulation of a cell-mediated model of autoimmunity. 相似文献
13.
Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries 总被引:3,自引:2,他引:3 下载免费PDF全文
J Merke P Milde S Lewicka U Hügel G Klaus D J Mangelsdorf M R Haussler E W Rauterberg E Ritz 《The Journal of clinical investigation》1989,83(6):1903-1915
Because 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has been shown to play roles in both proliferation and differentiation of novel target cells, the potential expression of 1,25(OH)2D3 receptor (VDR) activity was investigated in cultured bovine aortic endothelial cells (BAEC). Receptor binding assays performed on nuclear extracts of BAEC revealed a single class of specific, high-affinity VDR that displayed a 4.5-fold increase in maximal ligand binding (Nmax) in rapidly proliferating BAEC compared with confluent, density-arrested cells. When confluent BAEC were incubated with activators of protein kinase C (PKC), Nmax increased 2.5-fold within 6-24 h and this upregulation was prevented by sphingosine, an inhibitor of PKC, as well as by actinomycin D or cycloheximide. Immunohistochemical visualization using a specific MAb disclosed nuclear localized VDR in venular and capillary endothelial cells of human skin biopsies, documenting the expression of VDR, in vivo, and validating the BAEC model. Finally, additional experiments indicated that BAEC formed the 1,25(OH)2D3 hormonal metabolite from 25(OH)D3 substrate, in vitro, and growth curves of BAEC maintained in the presence of 10(-8) M 1,25(OH)2D3 showed a 36% decrease in saturation density. These data provide evidence for the presence of a vitamin D microendocrine system in endothelial cells, consisting of the VDR and a 1 alpha-hydroxylase enzyme capable of producing 1,25(OH)2D3. That both components of this system are coordinately regulated, and that BAEC respond to the 1,25(OH)2D3 hormone by modulating growth kinetics, suggests the existence of a vitamin D autocrine loop in endothelium that may play a role in the development and/or functions of this pathophysiologically significant cell population. 相似文献
14.
Transpleural gradient of 1,25-dihydroxyvitamin D in tuberculous pleuritis. 总被引:1,自引:1,他引:1 下载免费PDF全文
P F Barnes R L Modlin D D Bikle J S Adams 《The Journal of clinical investigation》1989,83(5):1527-1532
We used tuberculous pleuritis as a model to study the compartmentalization and potential immunoregulatory role of 1,25-dihydroxyvitamin D [1,25-(OH)2-D] in human granulomatous disease. In tuberculous pleuritis, mean concentrations of total 1,25-(OH)2-D were elevated in pleural fluid, compared to blood (67 pg/ml vs. 35 pg/ml). Concentrations of albumin, protein and 25-hydroxyvitamin D (25-OH-D) were lower in pleural fluid than blood, suggesting that accumulation of binding proteins does not explain the transpleural gradient of 1,25-(OH)2-D. The mean free 1,25-(OH)2-D concentration in pleural fluid was increased 5.3-fold over that in serum. 1,25-(OH)2-D3 inhibited PPD-induced proliferation of pleural fluid mononuclear cells, antigen-reactive lines and T lymphocyte clones derived from a single cell. Patient-derived PPD-reactive lines expressed a high-affinity intracellular binding moiety for 1,25-(OH)2-D3. Pleural fluid mononuclear cells and PPD-reactive lines did not metabolize 25-OH-D3 to 1,25-(OH)2-D3. The sum of these data suggests that concentration of 1,25-(OH)2-D in pleural fluid of tuberculosis patients is probably due to local hormone production by pleural tissue-based inflammatory cells that are not present in significant numbers in pleural fluid. Elevated concentrations of 1,25-(OH)2-D in pleural fluid may exert receptor-mediated inhibition of antigen-induced proliferation by pleural fluid lymphocytes. Inhibition of lymphocyte proliferation and lymphokine production may prevent tissue destruction from an uncontrolled inflammatory response. 相似文献
15.
Toll-like receptor-dependent production of IL-12p40 causes chronic enterocolitis in myeloid cell-specific Stat3-deficient mice 总被引:11,自引:0,他引:11 下载免费PDF全文
Kobayashi M Kweon MN Kuwata H Schreiber RD Kiyono H Takeda K Akira S 《The Journal of clinical investigation》2003,111(9):1297-1308
Stat3 plays an essential role in IL-10 signaling pathways. A myeloid cell-specific deletion of Stat3 resulted in inflammatory cytokine production and development of chronic enterocolitis with enhanced Th1 responses in mice. In this study, we analyzed the mechanism by which a Stat3 deficiency in myeloid cells led to the induction of chronic enterocolitis in vivo. Even in the absence of Stat1, which is essential for IFN-gamma signaling pathways, Stat3 mutant mice developed chronic enterocolitis. TNF-alpha/Stat3 double-mutant mice developed severe chronic enterocolitis with enhanced Th1 cell development. IL-12p40/Stat3 double-mutant mice, however, showed normal Th1 responses and no inflammatory change in the colon. RAG2/Stat3 double-mutant mice did not develop enterocolitis, either. These findings indicate that overproduction of IL-12p40, which induces potent Th1 responses, is essential for the development of chronic enterocolitis in Stat3 mutant mice. Furthermore, enterocolitis was significantly improved and IFN-gamma production by T cells was reduced in TLR4/Stat3 double-mutant mice, indicating that TLR4-mediated recognition of microbial components triggers aberrant IL-12p40 production by myeloid cells, leading to the development of enterocolitis. Thus, this study clearly established a sequential innate and acquired immune mechanism for the development of Th1-dependent enterocolitis. 相似文献
16.
17.
Increased renal catabolism of 1,25-dihydroxyvitamin D3 in murine X-linked hypophosphatemic rickets. 总被引:1,自引:2,他引:1 下载免费PDF全文
The hypophosphatemic (Hyp) mouse, a murine homologue of human X-linked hypophosphatemic rickets, is characterized by renal defects in brush border membrane phosphate transport and vitamin D3 metabolism. The present study was undertaken to examine whether elevated renal 25-hydroxyvitamin D3-24-hydroxylase activity in Hyp mice is associated with increased degradation of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] by side chain oxidation. Metabolites of 1,25(OH)2D3 were separated by HPLC on Zorbax SIL and identified by comparison with standards authenticated by mass spectrometry. Production of 1,24,25-trihydroxyvitamin D3, 24-oxo-1,25-dihydroxyvitamin D3, and 24-oxo-1,23,25-trihydroxyvitamin D3 was twofold greater in mitochondria from mutant Hyp/Y mice than from normal +/Y littermates. Enzyme activities, estimated by the sum of the three products synthesized per milligram mitochondrial protein under initial rate conditions, were used to estimate kinetic parameters. The apparent Vmax was significantly greater for mitochondria from Hyp/Y mice than from +/Y mice (0.607 +/- 0.064 vs. 0.290 +/- 0.011 pmol/mg per protein per min, mean +/- SEM, P less than 0.001), whereas the apparent Michaelis-Menten constant (Km) was similar in both genotypes (23 +/- 2 vs. 17 +/- 5 nM). The Km for 1,25(OH)2D3 was approximately 10-fold lower than that for 25-hydroxyvitamin D3 [25(OH)D3], indicating that 1,25(OH)2D3 is perhaps the preferred substrate under physiological conditions. In both genotypes, apparent Vmax for 25(OH)D3 was fourfold greater than that for 1,25(OH)2D3, suggesting that side chain oxidation of 25(OH)D3 may operate at pharmacological concentrations of substrate. The present results demonstrate that Hyp mice exhibit increased renal catabolism of 1,25(OH)2D3 and suggest that elevated degradation of vitamin D3 hormone may contribute significantly to the clinical phenotype in this disorder. 相似文献
18.
19.
Evidence that calcitonin stimulates 1,25-dihydroxyvitamin D production and intestinal absorption of calcium in vivo. 下载免费PDF全文
Although it is well established that parathyroid hormone and phosphate are important regulators of 1,25-dihydroxyvitamin D [1,25(OH)2D] production, it remains unclear whether calcitonin affects vitamin D metabolism in vivo. Experiments were performed in the rat to determine the effect of chronic calcitonin infusion (0.2 U X h-1) on plasma levels of vitamin D metabolites and on calcium metabolism. Thyroparathyroidectomized animals fed a calcium-replete or calcium-free diet were studied for as long as 2 wk before they were killed. In control rats, a calcium-free diet alone for 12 d resulted in an increase in 1,25(OH)2D levels from 24 +/- 5 to 139 +/- 37 pg . ml-1, P = 0.025. The infusion of calcitonin also stimulated 1,25(OH)2D levels compared with controls on a regular diet (80 +/- 17 vs. 38 +/- 6 pg . ml-1, P less than 0.05) and on a calcium-free diet (460 +/- 50 vs. 139 +/- 37 pg . ml-1, P less than 0.001). In addition, calcitonin increased plasma calcium levels in animals on a regular diet by 50%; this effect was most likely due to increased intestinal absorption of calcium, because removal of calcium from the diet markedly blunted this effect. In contrast, calcitonin administration did not significantly affect 25(OH)D plasma levels. Collectively, these data suggest that calcitonin and calcium are independent regulators of 1,25(OH)2D production and that calcitonin stimulates intestinal absorption of calcium, by increasing circulating levels of 1,25(OH)2D. 相似文献
20.
1,25-Dihydroxyvitamin D3 production by human keratinocytes. Kinetics and regulation. 总被引:2,自引:0,他引:2 下载免费PDF全文
Human foreskin keratinocytes in vitro metabolize 25-hydroxyvitamin D3 to a number of metabolites, including 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). This metabolite remains mostly within the cell and does not accumulate in the medium under the conditions of these experiments. With time, 1,25(OH)2D3 is catabolized, and more polar metabolites appear in both the cells and the medium. The production of 1,25(OH)2D3 has an apparent Michaelis constant (Km) for 25-hydroxyvitamin D3 of 5.4 X 10(-8) M. The levels of 1,25(OH)2D3 within the cell are increased both by increased production and decreased catabolism when parathyroid hormone(1-34) and isobutylmethylxanthine are added. Exogenously added 1,25(OH)2D3 at concentrations as low as 10(-12) M reduces endogenous 1,25(OH)2D3 production, increases 1,25(OH)2D3 catabolism, and increases 24,25-dihydroxyvitamin D3 production by an actinomycin D-sensitive process. These data indicate that the regulation of 1,25(OH)2D3 production by keratinocytes is similar to, but not identical to the regulation of 1,25(OH)2D3 by the kidney. 相似文献