首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Histopathologic and clinical findings suggest that small cell lung cancer is derived from a multipotent proximal airway epithelial cell. In order to investigate the histogenetic origin of small cell lung cancer, we compared stem cell marker expression in human fetal lung tissue, human adult bronchial tissue, and a cohort of 64 small cell lung cancers. Supporting derivation of a multipotent precursor cell, 87.5% (56/64) of small cell lung cancers showed a dot-like expression of podocalyxin-like protein 1 (PODXL-1), a marker of embryonic and hematopoetic stem cells. Of small cell lung cancers, 98.4% (63/64) ubiquitously expressed Bmi-1, a key player in self-renewal of stem cells. Oct4 and AP2gamma were not expressed. Although podocalyxin-like protein 1 did not correlate with p53 or Wilms tumor suppressor 1, known regulators of podocalyxin-like protein 1, we could demonstrate demethylated CpG islands in the podocalyxin-like protein 1 promoter in small cell lung cancer, indicating epigenetic regulation. During fetal lung development and within adult bronchial mucosa, Bmi-1 was expressed ubiquitously. In contrast, podocalyxin-like protein 1 was detected in few stromal cells during the pseudoglandular phase (n = 7) and, importantly, in clustered epithelial cells within proximal bronchi and the trachea during the canalicular phase (n = 10). Interestingly, podocalyxin-like protein 1 was not expressed in normal or metaplastic adult bronchial epithelium (n = 36) but was expressed in sparse epithelial cells in half of the cases of normal tumor adjacent bronchial mucosa (20/40). Taken together, we show that small cell lung cancers and clustered epithelial cells in developing proximal bronchi share the expression of stem cell markers, suggesting a possible histogenetic link.  相似文献   

15.
目的:探讨转化生长因子-β1(TGF-β1)与肺癌的发病关系及放疗对血清TGF-β1水平的影响。方法: 应用免疫组织化学技术检测肺癌组织中的TGF-β1表达;应用酶联免疫吸附法定量测定肺癌患者放疗前、放疗后及随访半年时肺癌患者血清TGF-β1水平,统计分析不同阶段TGF-β1含量变化。 结果: 肺癌组织中TGF-β1表达明显大于对照组;39例肺癌患者放疗前血清TGF-β1水平(11.0±1.5)μg/L高于对照组(3.8±0.2)μg/L(P<0.05);放疗结束后平均水平为(5.6±0.5)μg/L,明显低于放疗前(P<0.05),与对照组无明显差异(P>0.05);随访半年TGF-β1平均水平为(11.3±1.2)μg/L,明显高于放疗结束时(P<0.05),与放疗前无明显差异(P>0.05)。各组织类型间及各期病人间TGF-β1水平无明显差异。 结论: TGF-β1与肺癌发病有关,TGF-β1可能是肺癌患者的重要肿瘤标志物。  相似文献   

16.
17.
18.
p63 is a recently discovered member of the p53 family that has been shown to be important in the development of epithelial tissues. p63 may also play a role in squamous cell carcinomas of the lung, head and neck, and cervix, and its expression is increased in these tumors. The purpose of this study was to investigate the expression of p63 in a broad spectrum of histologic types of lung tumors. A total of 441 cases of primary lung tumors with follow-up data were identified, and the paraffin-embedded tissue blocks were used to construct a duplicate core tissue microarray. After review of the tissue cores, 408 cases, consisting of 123 squamous cell carcinomas, 93 adenocarcinomas, 68 large cell carcinomas, 68 classic carcinoids, 31 atypical carcinoids, 11 large cell neuroendocrine carcinomas, and 14 small cell carcinomas, were adequate for analysis. Immunohistochemistry was performed at 2 different laboratories using monoclonal antibody 4A4 to detect the expression of p63, using different staining protocols. p53 expression was also studied with immunohistochemistry using monoclonal antibody DO-7. Kaplan-Meier curves were plotted to compare the survival of p63-expressing versus nonexpressing tumors. A large proportion of squamous cell carcinomas expressed p63 (96.9%), most showing strong positive nuclear immunoreactivity. Expression in other nonsmall cell lung cancers was also present. Thirty percent of adenocarcinomas and 37% of large cell carcinomas showed p63 expression. In the neuroendocrine tumors, an increasing proportion of tumors stained for p63 as tumor grade increased; 1.9% of classic carcinoids, 30.8% of atypical carcinoids, 50% of large cell neuroendocrine carcinomas, and 76.9% of small cell carcinomas were positive. Approximately half of the positively staining neuroendocrine cases showed strong staining. Expression of p63 was of prognostic significance in neuroendocrine tumors (P < 0.0001), with higher-grade tumors more likely to express p63. Correlation between p63 and p53 expression was not observed (P = 0.18) in nonsmall cell lung cancer; however, a significant correlation between the 2 markers was found in neuroendocrine tumors (P < 0.0001). p63 staining was repeated with a different staining protocol, yielding similar results overall but a lower percentage of positive cases (34.2% vs. 48.4% of tumors positive). In conclusion, p63 expression is consistently expressed in squamous cell carcinoma in the lung, but is also expressed in a subset of adenocarcinomas and large cell carcinomas. Pulmonary neuroendocrine tumors also show p63 staining in some instances, particularly in higher-grade tumors, and the majority of small cell carcinomas are p63-positive. These results suggest that p63 may be involved in oncogenesis in a broader range of tumors than was previously thought.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号