首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
The diffuse brain injury model was conducted in Sprague-Dawley rats, according to Marmarou’s free-fall attack. The water content in brain tissue, expression of metabotropic glutamate receptor 1α mRNA and protein were significantly increased after injury, reached a peak at 24 hours, and then gradually decreased. After treatment with the competitive antagonist of metabotropic glutamate receptor 1α, (RS)-1-aminoindan-1, 5-dicarboxylic acid, the water content of brain tissues decreased between 12-72 hours after injury, and neurological behaviors improved at 2 weeks. These experimental findings suggest that the 1-aminoindan-1, 5-dicarboxylic acid may result in marked neuroprotection against diffuse brain injury.  相似文献   

2.
体外培养大鼠皮质神经元机械性损伤模型,伤后30min,损伤神经元存活率较正常神经元明显下降,且随损伤程度加重神经元存活率随之降低。RT-PCR结果,显示神经元重度损伤1h后代谢型谷氨酸受体1a mRNA的表达明显升高。免疫组化染色发现神经元机械性损伤后30min,代谢型谷氨酸受体1a阳性细胞较正常神经元明显增多。伤后12h,1-氨基茚满1,5-二羧酸处理的损伤神经元乳酸脱氢酶活性较单纯损伤的神经元明显降低。伤后1h后1-氨基茚满1,5-二羧酸处理的损伤神经元较单纯损伤神经元细胞内Ca2 +浓度明显降低。提示皮质神经元机械性损伤后代谢型谷氨酸受体1a表达明显增强,创伤引起的神经细胞内游离Ca2 +浓度升高可被代谢型谷氨酸受体1a 拮抗剂1-氨基茚满1,5-二羧酸阻断,说明1-氨基茚满1,5-二羧酸有显著的神经保护作用。  相似文献   

3.
The existence of long-term depression (LTD) in the dentate gyrus of freely moving rats, as well as the contribution of different types of metabotropic glutamate receptors (mGluRs) to this form of plasticity, has been the subject of much debate. Here, we describe two distinct forms of mGluR-dependent hippocampal LTD in the dentate gyrus of freely moving adult rats. LTD, induced by low-frequency stimulation (LFS) of the medial perforant path (LFS-LTD), was prevented by antagonism of the phospholipase C-coupled receptors, mGluR1 but not mGluR5. Chemical LTD, induced by intracerebral application of the group I mGluR agonist (R,S)-3,5-dihydroxyphenylglycine, was blocked by antagonism of both mGluR5 and mGluR1. Selective activation of mGluR5, using (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG), also led to chemical LTD. To test whether LFS-LTD and chemical LTD share common induction mechanisms, we applied LFS following the induction of chemical LTD by CHPG (CHPG-LTD). Surprisingly, LFS impaired CHPG-LTD. Further analysis revealed that induction of CHPG-LTD led to altered calcium dynamics sufficient for its reversal by LFS. We found that LTD induced by (R,S)-3,5-dihydroxyphenylglycine, but not by CHPG, is impaired by N-methyl-d-aspartate receptor antagonism. Both forms of chemical LTD strongly require calcium influx through L-type voltage-gated calcium channels. This contrasts with previous findings that LFS-LTD in the dentate gyrus is both N-methyl-d-aspartate receptor and voltage-gated calcium channel independent. LFS-LTD and LTD induced by group I mGluR agonists thus appear to comprise distinct forms of LTD that require the activation of specific group I mGluRs and recruit calcium from different sources.  相似文献   

4.
A rabbit model of traumatic optic nerve injury, established by occlusion of the optic nerve using a vascular clamp, was used to investigate the effects of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist GYKI 52466 on apoptosis of retinal ganglion cells following nerve injury. Hematoxylin-eosin staining and a terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that retinal ganglion cells gradually decreased with increasing time of optic nerve injury, while GYKI 52466 could inhibit this process. The results demonstrate that following acute optic nerve injury, apoptosis of retinal ganglion cells is a programmed process, which can be inhibited by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist.  相似文献   

5.
Glutamatergic neurotransmission in the dorsolateral periaqueductal gray (dlPAG) is related to defensive responses. However, the role of group I glutamate metabotropic receptors (mGluR) in these responses has been poorly investigated. The objective of the present study, therefore, was to test the hypothesis that interference with group I mGluR-mediated neurotransmission in dlPAG could modulate defensive responses. Male Wistar rats with cannulae aimed at the dlPAG were submitted to the following experiments: 1. intra dlPAG injections of vehicle (veh, 0.2 microL) or (RS)1-aminoindan-1,5-dicarboxylic acid (AIDA, 30-100 nmol, an mGluR1 receptor competitive antagonist) followed, 5 min later, by veh or trans-(+)-1-amino-1,3-ciclopentanedicarboxylic acid (tACPD, a group I and II mGluR agonist, 30 nmol); 2. intra-dlPAG injections of veh, AIDA (30 nmol) or 2-methyl-6-(phenylethynyl)-pyridine (MPEP, an mGluR5 receptor non-competitive antagonist, 50 nmol) followed by trans-azetidine-2,4-dicarboxylic acid (tADA, a group I mGluR agonist, 10 nmol); 3. and 4. intra-dlPAG injections of vehicle, AIDA (10-30 nmol) or MPEP (10-50 nmol) before the elevated plus maze (EPM) test; 5. intra-dlPAG injections of vehicle, AIDA (30 nmol) or MPEP (50 nmol) before the Vogel punished licking test. tACPD induced defensive responses characterized by jumps and an increased number of crossings in the observation box. These responses were attenuated by AIDA (30 nmol). tADA produced similar responses, although of lower intensity. tADA effects were prevented by AIDA and MPEP. Both drugs also produced anxiolytic-like effects in the EPM and Vogel tests when injected alone. The results suggest that group I metabotropic glutamate receptors in the dlPAG facilitate defensive responses and may also be involved in regulating anxiety-like behavior.  相似文献   

6.
Netrin-1 is currently one of the most highly studied axon guidance factors. Netrin-1 is widely expressed in the embryonic central nervous system, and together with the deleted in colorectal cancer and uncoordinated locomotion-5 homolog B receptors, netrin-1 plays a guiding role in the construction of neural conduction pathways and the directional migration of neuronal cells. In this study, we established a rat middle cerebral artery ischemia reperfusion model using the intraluminal thread technique. Immunofluorescence microscopy showed that the expression of netrin-1 and deleted in colorectal cancer in the ischemic penumbra was upregulated at 1 day after reperfusion, reached a peak at 14 days, and decreased at 21 days. There was no obvious change in the expression of uncoordinated locomotion-5 homolog B during this time period. Double immunofluorescence labeling revealed that netrin-1 was expressed in neuronal cells and around small vessels, but not in astrocytes and microglia, while deleted in colorectal cancer was localized in the cell membranes and protrusions of neurons and astrocytes. Our experimental findings indicate that netrin-1 may be involved in post-ischemic repair and neuronal protection via deleted in colorectal cancer receptors.  相似文献   

7.
背景:白细胞介素1受体拮抗剂对大鼠急性脊髓损伤后脊髓功能修复具有保护作用,但具体机制不明。 目的:观察白细胞介素1受体拮抗剂对大鼠急性脊髓损伤组织神经丝蛋白质200和胶质纤维酸性蛋白的影响。 方法:SD大鼠随机分成假手术组,生理盐水对照组和白细胞介素1受体拮抗剂治疗组。采用改良Allen氏打击法建立急性脊髓损伤大鼠模型。分别在建模后1,48和72 h获取损伤段8 mm脊髓标本。 结果和结论:免疫组织化学染色检测,白细胞介素1受体拮抗剂治疗组神经丝蛋白质200和胶质纤维酸性蛋白的表达较假手术组和生理盐水组高,差异有显著性意义(P < 0.05)。提示白细胞介素1受体拮抗剂可使急性脊髓损伤大鼠模型损伤段脊髓神经丝蛋白质200和胶质纤维酸性蛋白表达增加,对急性脊髓损伤发挥保护作用。  相似文献   

8.
The role of metabotropic glutamate receptors (mGluRs) in long-term potentiation (LTP) has remained controversial. However, it has recently been shown that group I mGluR activation, prior to high frequency stimulation (HFS), can facilitate or ‘prime' LTP in the area CA1 of the hippocampus. Here we report that, in the dentate gyrus in vitro, activation of both group I and group II mGluRs primes LTP. Control LTP, 60 min after HFS was 145.4±3.6% of control. The group I mGluR agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG, 100 μM), resulted in LTP of 180.1±12.1% of control, which was significantly greater than control LTP (n=4; P<0.05). The group I/II mGluR agonist 1S,3R-1-aminocyclopentate-1,3-dicarboxylic acid (1S,3R-ACPD, 10 μM), and the group II mGluR agonist (2S,3S,4S)-α-(carboxy-cyclopropyl)-glycine (L-CCG-1, 20 μM) also produced LTP that was significantly greater than control LTP (177.7±11.5% and 183.2±9.1% of control respectively; n=5; P<0.05). The group III mGluR agonist -2-amino-4-phosphonobutyric acid (L-AP4, 20 μM), failed to significantly prime LTP (153.8±5.9% of control; n=5). It also proved difficult to depotentiate the primed LTP. Following low frequency stimulation (LFS), control LTP was reduced to 101.1±3.6% of control, and to 145.0±2.1%, 141.2±14.7% and 134.0±8.7% of control for CHPG, ACPD and L-CCG-1 primed LTP respectively. We conclude that LTP may be primed by mGluR activation in the dentate gyrus and that this priming is mediated through group I and II mGluRs.  相似文献   

9.
Estrogen affects the generation and transmission of neuropathic pain,but the specific regulatory mechanism is still unclear.Activation of the N-methyl-D-aspartate acid receptor 1(NMDAR1) plays an important role in the production and maintenance of hyperalgesia and allodynia.The present study was conducted to determine whether a relationship exists between estrogen and NMDAR1 in peripheral nerve pain.A chronic sciatic nerve constriction injury model of chronic neuropathic pain was established in rats.These rats were then subcutaneously injected with 17β-estradiol,the NMDAR1 antagonist D(-)-2-amino-5-phosphonopentanoic acid(AP-5),or both once daily for 15 days.Compared with injured drug na?ve rats,rats with chronic sciatic nerve injury that were administered estradiol showed a lower paw withdrawal mechanical threshold and a shorter paw withdrawal thermal latency,indicating increased sensitivity to mechanical and thermal pain.Estrogen administration was also associated with increased expression of NMDAR1 immunoreactivity(as assessed by immunohistochemistry) and protein(as determined by western blot assay) in spinal dorsal root ganglia.This 17β-estradiol-induced increase in NMDAR1 expression was blocked by co-administration with AP-5,whereas AP-5 alone did not affect NMDAR1 expression.These results suggest that 17β-estradiol administration significantly reduced mechanical and thermal pain thresholds in rats with chronic constriction of the sciatic nerve,and that the mechanism for this increased sensitivity may be related to the upregulation of NMDAR1 expression in dorsal root ganglia.  相似文献   

10.
N-Acetyl-1-(4-chlorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (THIQ-10c) is a noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist that has been demonstrated to antagonize generalized tonic–clonic seizures in different animal models of epilepsy. In the study described here, we tested the potential effect of such a compound alone or co-administered with ethosuximide in a genetic animal model of absence epilepsy, the WAG/Rij rat. The intraperitoneal or intracerebroventricular microinjection of THIQ-10c alone was unable to significantly modify the number and duration of spike-and-wave discharges (SWDs). In contrast, intracerebroventricular administration of AMPA induced a dose-dependent increase in the number of SWDs. THIQ-10c dose-dependently antagonized this effect. Furthermore, co-administration of THIQ-1c with ethosuximide (50 mg/kg, intraperitoneally) was able to significantly increase the efficacy of the anti-absence drug. In conclusion, although noncompetitive AMPA receptor antagonists alone might not be useful in the treatment of absence epilepsy because of their low therapeutic index, combining them with ethosuximide might be helpful in controlling absence seizures in patients not tolerating this drug or in refractory patients.  相似文献   

11.
Traumatic brain injury (TBI) is a significant cause of mortality, morbidity, and disability. Microglial activation is commonly observed in response to neuronal injury which, when prolonged, is thought to be detrimental to neuronal survival. Activated microglia can be labeled using PK11195, a ligand that binds the peripheral benzodiazepine receptor (PBR), receptors which are increased in activated microglia and sparse in the resting brain. We compared the binding properties of two PBR ligands PK11195 and DAA1106 in rats using the controlled cortical impact (CCI) model of experimental TBI. While both ligands showed relative increases with specific binding in the cortex ipsilateral to injury compared to the contralateral side, [(3)H]DAA1106 showed higher binding affinity compared with [(3)H](R)-PK11195. Combined immunohistochemistry and autoradiography in brain tissues near the injury site showed that [(3)H]DAA1106 binding co-registered with activated microglia more than astrocytes. Further, increased [(3)H]DAA1106-specific binding positively correlated with the degree of microglial activation, and to a lesser degree with reactive astrocytosis. Finally, in vivo administration of each ligand in rats with TBI showed greater retention of [(11)C]DAA1106 compared to [(11)C](R)-PK11195 at the site of the contusion as assessed by ex vivo autoradiography. These results in a rat model of TBI indicate that [(11)C]DAA1106 binds with higher affinity to microglia when compared with PK11195, suggesting that [(11)C]DAA1106 may represent a better ligand than [(11)C](R)-PK11195 for in vivo PET imaging of activated microglia in TBI.  相似文献   

12.
We have studied the effects of AMPA/kainate receptor agonists on GABA(A) receptor subunit mRNA expression in vitro in cultured rat cerebellar granule cells (CGCs). Kainate (KA) (100 microM) and high K(+) (25 mM) dramatically up-regulated delta subunit mRNA expression to 500-700% of that in control cells grown in low K(+) (5 mM). KA or high K(+) had no effect on the expression of the other major GABA(A) receptor subunits alpha1, alpha6, beta2, beta3 or gamma2. Up-regulation of delta mRNA was also detected with the AMPA receptor-selective agonist CPW-399 and to a lesser extent with the KA receptor-selective agonist ATPA. AMPA/kainate receptor-selective antagonist DNQX completely inhibited KA-, CPW-399- and ATPA-induced delta mRNA up-regulation indicating that the effects were mediated via AMPA and KA receptor activation. NMDA receptor-selective antagonist MK-801 inhibited 76% of the KA- and 57% of the CPW-399-induced delta up-regulation suggesting that KA and CPW-399 treatments may induce glutamate release resulting in NMDA receptor activation, and subsequently to delta mRNA up-regulation. In CGCs, delta subunit is a component of extrasynaptic alpha6betadelta receptors that mediate tonic inhibition. Up-regulation of delta during prolonged glutamate receptor activation or cell membrane depolarization may be a mechanism to increase tonic inhibition to counteract excessive excitation.  相似文献   

13.
Luo P  Fei F  Zhang L  Qu Y  Fei Z 《Brain research bulletin》2011,85(6):313-320
Traumatic brain injury (TBI) is the major cause of death and disability, and the incidence of TBI continues to increase rapidly. In recent years, increasing attention has been paid to an important structure at the postsynaptic membrane: the postsynaptic density (PSD). Glutamate receptors, as major components of the PSD, are highly responsive to alterations in the glutamate concentration at excitatory synapses and activate intracellular signal transduction via calcium and other second messengers following TBI. PSD scaffold proteins (PSD-95, Homer, and Shank), which anchor glutamate receptors and form a network structure, also have potential effects on these downstream signaling pathways. The changes in the function and structure of these major PSD proteins are also induced by TBI, indicating that there is a more complicated mechanism associated with PSD proteins in the pathophysiological process of TBI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号