首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
More than 20 years of research have firmly established important roles of the diffusible messenger molecule, nitric oxide (NO), in cerebellar development and function. Granule neurons are main players in every NO-related mechanism involving cerebellar function and dysfunction. Granule neurons are endowed with remarkable amounts of the Ca2+-dependent neuronal isoform of nitric oxide synthase and can directly respond to endogenously produced NO or induce responses in neighboring cells taking advantage of the high diffusibility of the molecule. Nitric oxide acts as a negative regulator of granule cell precursor proliferation and promotes survival and differentiation of these neurons. Nitric oxide is neuroprotective towards granule neurons challenged with toxic insults. Nitric oxide is a main regulator of bidirectional plasticity at parallel fiber-Purkinje neuron synapses, inducing long-term depression (LTD) or long-term potentiation (LTP) depending on postsynaptic Ca2+ levels, thus playing a central role in cerebellar learning related to motor control. Granule neurons cooperate with glial cells, in particular with microglia, in the regulation of NO production through the respective forms of NOS present in the two cellular types. Aim of the present paper is to review the state of the art and the improvement of our understanding of NO functions in cerebellar granule neurons obtained during the last two decades and to outline possible future development of the research.  相似文献   

2.
Arginine, the nitric oxide precursor, is predominantly localized in glial cells, whereas the constitutive nitric oxide synthase is mainly found in neurons. Therefore, a transfer of arginine from glial cells to neurons is needed to replenish the neuronal precursor pool. This is further supported by the finding that arginine is released upon selective pathway stimulation both in vitro and in vivo . We investigated the mechanism underlying this glial-neuronal interaction by analysing the effect of glutamate receptor agonists on the extracellular [3H]arginine level in cerebellar and cortical slices and in cultures of either cortical astroglial cells or neurons. We present data indicating that arginine is released from cerebellar and cortical slices and astroglial cell cultures upon activation of ionotropic non-NMDA glutamate receptors. Glutamate had no effect on the extracellular [3H]arginine level in neuronal cultures. Moreover, the effect of glutamate in cerebellar slices was tetrodotoxin-insensitive, and the calcium ionophore A23187 evoked the release of [3H]arginine from astroglial cell cultures. Thus, nitric oxide synthesis and nitric oxide transmission may be based on the glial-neuronal transfer of arginine which is induced by activation of excitatory amino acid receptors on glial cells.  相似文献   

3.
Endogenous generation of nitric oxide and its congeners, including peroxynitrite (ONOO-), has been implicated in the mechanism of neuron loss in neurodegenerative diseases. Accordingly, nitric oxide donors and ONOO-can elicit both apoptosis and necrosis in neuron cultures. Here we show that nitric oxide donors and ONOO- are each able to trigger apoptosis of mouse cerebellar granule cells by an excitotoxic mechanism requiring exocytosis and NMDA receptor-mediated intracellular Ca2+ overload. This conclusion is supported by the following findings. Apoptosis was induced by various nitric oxide donors or by direct addition of ONOO- to differentiated cerebellar granule cell cultures that were sensitive to NMDA toxicity, but not in cerebellar granule cells that did not display NMDA-induced cell death (i.e. early days in culture) or in various glial cell populations. Donors of ONOO- or nitric oxide stimulated a sustained increase in intracellular Ca2+, which was prevented by inhibitors of NMDA receptors, such as MK-801 and 5-phospho-aminovaleric acid, or by dampening neuronal electrical activity with high concentrations of extracellular Mg2+. Moreover, these treatments and the exposure of cerebellar granule cells in nominally Ca2+-free media prevented apoptotic cell death. Both the intracellular Ca2+ increase and apoptosis elicited by ONOO- or the nitric oxide donors were prevented by blocking exocytosis with tetanus toxin or botulinum neurotoxin C.  相似文献   

4.
Primary cultures of granule neurons derived from cerebella of postnatal rats are endowed with Glu receptors. Glu receptor agonists exert a trophic influence on differentiating granule cells but, with maturation, the cells become vulnerable to excitatory amino acids. Here we show that the P2 purinoceptor antagonist basilen blue abolishes in rat cerebellar granule neurons the cytotoxic action of glutamate with an IC50 in the 10–20 μM range. Within the same concentrations, basilen blue inhibits binding of [3H]ATP to cerebellar granule cells, glutamate-evoked release (but not uptake) of [3H] D-aspartate and Ca2+ uptake. Furthermore, the extracellular phosphorylation of a major 45-kDa endogenous ecto-protein substrate of cerebellar granule neurons is inhibited with an IC50 of about 1 μM. Similar effects are elicited by 5-adenylylimidodiphosphate, a P2 purinoceptor agonist, when supplied to the neurons for 8 days previously to the addition of glutamate. Our data point to the use of P2 purinoceptor modulators as novel elements for understanding and controlling glutamate-mediated excitatory neurotoxicity and neurotransmission. We suggest a possible involvement of P2 purinoceptors in these actions. © 1996 Wiley-Liss, Inc.  相似文献   

5.
To probe the effect of glutamine and GABA on metabolism of [U-(13)C]glutamate, cerebellar astrocytes were incubated with [U-(13)C]glutamate (0.5 mM) in the presence and absence of glutamine (2.5 mM) or GABA (0.2 mM). It could be shown that consumption of [U-(13)C]glutamate was decreased in the presence of glutamine and release of labeled aspartate and [1,2,3-(13)C]glutamate decreased as well, whereas the concentrations of these metabolites increased inside the cells. Glutamine decreased energy production from [U-(13)C]glutamate presumably by substituting for glutamate as an energy substrate. No additional effect was seen in the presence of both glutamine and GABA. When cerebellar granule neurons were incubated with [U-(13)C]glutamate (0.25 mM) and GABA (0.05 mM), less [U-(13)C]glutamate was used for energy production than in controls. Because the barbiturate thiopental did not elicit such response (Qu et al., 2000, Neurochem Int 37:207-215) it appears that GABA also has a metabolic function in the glutamatergic cerebellar granule neurons in contrast to the astrocytes.  相似文献   

6.
High levels of nitric oxide synthase and cyclic 3′,5′-guanosine monophosphate (cGMP) in the olfactory bulb suggest that nitric oxide, acting as a diffusible intercellular messenger molecule inducing increased synthesis of cGMP, plays an important role in olfaction. The localization of cGMP after sodium nitroprusside stimulation of in vitro slices of rat olfactory bulb was compared with the distribution of nicotinamide adenine dinucleotide phosphate-diaphorase, nitric oxide synthase, and glial fibrillary acidic protein. cGMP was detected immunohistochemically in cryostat sections. In the presence of the phosphodiesterase blocker isobutyl methylxanthine, cGMP was present in neurons in the glomerular layer, axons in the external and internal plexiform layers, and in a few somata and axons of the granule cell layer. This staining was blocked by NG-nitro-L-arginine methylester hydrochloride or hemoglobin. After sodium nitroprusside stimulation, the olfactory nerve layer was intensely stained, as were the glomeruli and periglomerular cells. In the external plexiform layer, axonal staining was increased substantially, and there were occasional multipolar cGMP-positive neurons. In the internal plexiform and granule cell layers, axonal staining was greatly increased. Many granule cells were also cGMP positive after sodium nitroprusside stimulation. cGMP and nitric oxide synthase-positive neuronal elements overlapped in the glomerular and granule cell layers, but staining was not colocalized. cGMP was not found in astrocytes. The glutamatergic antagonists D-2-amino-5-phosphonovalerate and 6-cyano-7-nitroquinoxaline caused differential inhibition of cGMP accumulation in layers of the olfactory bulb. These findings support the hypothesis that nitric oxide is an intercellular messenger in the olfactory bulb (Breer and Shepherd [1993] Trends Neurosci. 16:5–9). © 1996 Wiley-Liss, Inc.  相似文献   

7.
To assess the role of nicotinic cholinergic receptors (nAChR) on neuronal maturation, nAChR expression and the direct effects of nAChR activation were examined in cerebellar external granular layer (EGL) precursors isolated in vitro. Treatment of EGL neuroblasts with nicotine elicited a concentration-dependent increase in DNA content and synthesis, implying an increase in cell numbers. Pretreatment of cultures with the nAChR antagonist dihydro-beta-erythroidine (DHBE) attenuated nicotine-induced changes in DNA abundance and synthesis. Furthermore, chronic nicotine treatment for 4-7 days promoted EGL cell survival. Epibatidine but not cytisine stimulated granule neuroblast DNA synthesis and survival. Survival effects mediated by nicotine and epibatidine were attenuated by pretreating cultures with DHBE. Immunocytochemical analysis revealed that EGL neurons possessed alpha3, but not alpha4, nAChR immunoreactivity. Quantitative autoradiography was used to determine which nAChRs are present during the period of granule cell neurogenesis in vivo. On postnatal day 5, the EGL was intensely labelled by [3H]-epibatidine but virtually devoid of [3H]-A85380 binding, suggesting that a high concentration of alpha3 AChRs is present in granule neuroblasts. The pharmacology of [3H]-epibatidine displacement from EGL neurons also suggested an interaction with the alpha3-nAChR subunits. Together these data provide novel evidence that the activation of nAChRs directly affect the development of primary cerebellar neuroblasts and further suggest that the effects are mediated through the alpha3-nAChR subtype.  相似文献   

8.
9.
Gamma-ainobutyric acid type A (GABA(A)) receptor ionophore ligand t-[35S]butylbicyclophosphorothionate ([35S]TBPS) was used in an autoradiographic assay on brain cryostat sections to visualize and characterize atypical GABA-insensitive [35S]TBPS binding previously described in certain recombinant GABA(A) receptors and the cerebellar granule cell layer. Picrotoxinin-sensitive but 1-mM GABA-insensitive [35S]TBPS binding was present in the rat cerebellar granule cell layer, many thalamic nuclei, subiculum and the internal rim of the cerebral cortex, amounting in these regions up to 6% of the basal binding determined in the absence of exogenous GABA. Similar binding properties were detected also in human and chicken brain sections. Like the GABA-sensitive [35S]TBPS binding, GABA-insensitive binding was profoundly decreased by pentobarbital, pregnanolone, loreclezole and Mg2+. The binding was reversible and apparently dependent on Cl- ions. Localization of the GABA-insensitive [35S]TBPS binding was not identical to that of high-affinity [3H]muscimol binding and diazepam-insensitive [3H]Ro 15-4513 binding, two previously established receptor subtype-dependent binding heterogeneities in the rat brain. The present study reveals a component of the GABA-ionophore enriched in the thalamus and cerebellar granule cells, possibly representing poorly desensitized or desensitizing receptors.  相似文献   

10.
The mammalian cerebellum is built around an array of parasagittal bands of Purkinje cells that can be demonstrated by immunocytochemical staining for the differentiation antigen zebrin II. Climbing and Mossy fiber afferents also terminate in bands, and the afferent terminal fields and the Purkinje cell bands are aligned. The convergence of mossy and climbing fiber pathways onto the Purkinje cells, which are the sole output of the cerebellar cortex, is a characteristic feature of cerebellar circuitry. Previous studies showed that when both afferent pathways are activated synchronously there develops a long-term depression of synaptic efficacy at the parallel fiber-Purkinje cell synapse. Two second messenger pathways mediate long-term depression: one involves diacylglyceroland protein kinase C, and the other involves nitric oxide that is generated by a nitric oxide synthase. We have studied the distribution of nitric oxide synthase in the adult Mouse cerebellum by using nicatinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry. NADPH-diaphorase activity is found mainly in the granule and basket cells. Within the granular layer NADPH-diaphorase activity is expressed nonuniformly patches of granule cells and synaptic glomeruli. The patches are yseen in all lobules, are reproducible from individual to individual, and are topographically ordered with respect to the Purkinje cell compartments as revealed by using anti-zebrin II immunocytochemistry. These data imply that nitric oxide-dependent, long-term depression may only involve a subset of mossy fiber/granule cell projections, and that one role for nitric oxide may be to refine cerebellar receptive fields. © 1994 Wiley-Liss, Inc.  相似文献   

11.
The present study investigated the temporal relationship between neuronal nitric oxide synthase (nNOS) activity and expression and the development of neuronal damage occurring during anoxia and anoxia followed by reoxygenation. For this purpose, cerebellar granule cells were exposed to 2 hr of oxygen and glucose deprivation (OGD) and 24 hr of reoxygenation. To clarify the consequences of nNOS activity inhibition on neuronal survival, cerebellar granule cells were exposed to OGD, both in the absence of extracellular Na(+) ([Na(+)](e)), a condition that by reducing intracellular Ca(2+) ([Ca(2+)](I)) prevents Ca(2+)-dependent nNOS activation, and in the presence of selective and nonselective nNOS inhibitors, such as N(omega)-L-allyl-L-arginine (L-ALA), N(omega)-propyl-L-arginine (NPLA), and L-nitro-arginine-methyl-ester (L-NAME), respectively. The results demonstrated that the removal of [Na(+)](e) hampered the [Ca(2+)](i) increase and decreased expression and activity of nNOS. Similarly, the increase of free radical production present in cerebellar neurons, exposed previously to OGD and OGD/reoxygenation, was abolished completely in the absence of [Na(+)](e). Furthermore, the absence of [Na(+)](e) in cerebellar neurons exposed to 2 hr of OGD led to the improvement of mitochondrial activity and neuronal survival, both after the OGD phase and after 24 hr of reoxygenation. Finally, the exposure of cerebellar neurons to L-ALA (200 nM), and L-NAME (500 microM) was able to effectively reduce NO(*) production and caused an increase in mitochondrial oxidative activity and an improvement of neuronal survival not only during OGD, but also during reoxygenation. Similar results during OGD were obtained also with NPLA (5 nM), another selective nNOS inhibitor. These data suggest that the activation of nNOS is highly accountable for the neuronal damage occurring during the OGD and reoxygenation phases.  相似文献   

12.
We have reported previously that intracerebellar nicotine attenuates ethanol ataxia via nicotinic-cholinergic receptors. We report now that attenuation of ethanol ataxia by intracerebellar nicotine is modulated by cerebellar nitric oxide-guanylyl cyclase (GC) messenger system. Intracerebellar microinfusion of SNP (sodium nitroprusside, a nitric oxide donor; 15, 30, and 60 pg) and SMT (S-methylisothiourea; 70, 140, and 280 fg; an inhibitor of inducible nitric oxide synthase), significantly enhanced and reduced, respectively, intracerebellar nicotine-induced attenuation of ethanol ataxia in a dose-related manner. Similarly, intracerebellar isoliquiritigenin (an activator of GC; 1, 2, and 4 pg) and ODQ (1H [1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, an inhibitor of GC; 375, 750, and 1500 fg), significantly enhanced and reduced, respectively, intracerebellar nicotine-induced attenuation of ethanol ataxia in a dose-related fashion. These results suggest that the functional interaction between nicotine and ethanol may involve modulation by cerebellar nitric oxide and cGMP. Intracerebellar microinfusion of isoliquiritigenin (4, 8, and 16 pg) in the absence of nicotine significantly attenuated ethanol ataxia dose-dependently indicating a tonic involvement of cGMP in ethanol ataxia. Finally, intracerebellar nicotine (5 ng) significantly increased and ethanol 2 g/kg i.p. decreased levels of total cerebellar nitrite+nitrate (NOx) which were functionally correlated with ethanol ataxia and its attenuation by intracerebellar nicotine. The ethanol-induced decrease in NOx was significantly antagonized by intracerebellar nicotine. The NOx data further supported an involvement of nitric oxide in the behavioral interaction between nicotine and ethanol. Overall, the results of the present investigation demonstrate a functional correlation between cerebellar nitric oxide messenger system and the behavioral interaction between nicotine and ethanol.  相似文献   

13.
Nitric oxide has been investigated widely both during neurodevelopment and in neurological diseases. However, whilst it has been established that nitric oxide-producing enzymes of nitric oxide synthase family are expressed in cerebellar Purkinje neurons, the effects of nitric oxide on the viability and morphology of these neurons remain unknown. Here, we have demonstrated that the activity of neuronal nitric oxide synthase, but not the inducible or endothelial forms of this enzyme, is required to support the survival of a proportion of cerebellar Purkinje neurons in vitro. We discovered that donation of high concentrations of exogenous nitric oxide reduces Purkinje neuron survival in culture and that peroxynitrite is also toxic to these cells. Finally, we demonstrated that exogenous nitric oxide and peroxynitrite reduce both the magnitude and the complexity of the neurite arbour extended by cerebellar Purkinje neurons. Taken together, these findings reveal that whilst a low level of endogenous nitric oxide, released by the activity of neuronal nitric oxide synthase, is beneficial to cerebellar Purkinje neurons in vitro, high levels of exogenous nitric oxide and peroxynitrite are detrimental to both the survival of these neurons and to their ability to extend processes and form functional neural networks.  相似文献   

14.
The metabolism of [U-13C]aspartate was studied in cultured cortical astrocytes and cerebellar granule neurons in the presence of glucose and during inhibition of glycolysis. Redissolved, lyophilized cell extracts and incubation media were analyzed by 13C nuclear magnetic resonance spectroscopy for the determination of metabolites labeled from aspartate. Uniformly labeled lactate was prominent in control media of astrocytes and cerebellar granule neurons. In both cell types, aspartate entered the tricarboxylic acid (TCA) cycle, as shown by labeling patterns in glutamate and, in astrocytes, in glutamine. From the complex labeling patterns in aspartate in astrocytic perchloric acid extracts it was clear that acetylcoenzyme A (acetyl-CoA) derived from aspartate via oxaloacetate and pyruvate could enter the TCA cycle. Such “recycling,” however, could not be detected in cerebellar granule neurons. Inhibition of glycolysis reduced aspartate uptake and metabolism in both cell types. Most notably, lactate derived from aspartate showed a large reduction, and in astrocytes, incorporation of labeled acetyl-CoA into the TCA cycle was significantly reduced. Thus, astrocytes and cerebellar granule neurons differ in their handling of aspartate. Furthermore, inhibition of glycolysis clearly affected aspartate metabolism by such cells. GLIA 23:271–277, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
The distribution of cerebellar [3H]muscimol binding sites was studied autoradiographically in normal C57BL/6J mice and in the weaver, reeler, Purkinje cell degeneration and staggerer mutant mice. In the normal 79-day-old mouse cerebellum, the highest concentration of [3H]muscimol binding sites was observed in the granule cell layer. A much lower grain density was present over the Purkinje cell and molecular layers and negligible numbers of binding sites were seen over the deep cerebellar nuclei and white matter. A significant decrease in [3H]muscimol labeling was observed over the cerebellar cortex of the 81-86-day-old weaver mutant; this was most pronounced in the vermis where granule cell loss was the greatest. Over the hemispheres, where fewer granule cells degenerate, a higher density of binding sites remained. In the 27-29-old reeler cerebellum, where Purkinje cells are malpositioned, no labeling was seen over the deep Purkinje cell masses. In the quasi-normal superficial cortex, labeling density over the surviving granule cell layer was only slightly decreased. In the 54-57-day-old Purkinje cell degeneration mutant, where essentially all Purkinje cells have disappeared by day 45, a 29% decrease in grain density over the granule cell layer was observed, while labeling was still present in the molecular layer. Virtually no [3H]muscimol labeling was detected over any part of the cerebellar cortex of the 25-27-day-old staggerer mutant (which lacks parallel fiber-Purkinje cell synapses), although clusters of surviving granule cells were present in significant numbers in the lateral aspects of the cortex. Our autoradiographic data indicate that GABAA receptors are associated with granule cells in both the molecular and granule cell layers. Furthermore, our results raise the possibility that the maintenance of receptor levels may be dependent upon synaptic contacts between the granule cell and its main postsynaptic target, the Purkinje cell.  相似文献   

16.
Glia over-stimulation associates with amyloid deposition contributing to the progression of central nervous system neurodegenerative disorders. Here we analyze the molecular mechanisms mediating microglia-dependent neurotoxicity induced by prion protein (PrP)90–231, an amyloidogenic polypeptide corresponding to the protease-resistant portion of the pathological prion protein scrapie (PrPSc). PrP90–231 neurotoxicity is enhanced by the presence of microglia within neuronal culture, and associated to a rapid neuronal [Ca++] i increase. Indeed, while in “pure” cerebellar granule neuron cultures, PrP90–231 causes a delayed intracellular Ca++ entry mediated by the activation of NMDA receptors; when neuron and glia are co-cultured, a transient increase of [Ca++] i occurs within seconds after treatment in both granule neurons and glial cells, then followed by a delayed and sustained [Ca++] i raise, associated with the induction of the expression of inducible nitric oxide synthase and phagocytic NADPH oxidase. [Ca++] i fast increase in neurons is dependent on the activation of multiple pathways since it is not only inhibited by the blockade of voltage-gated channel activity and NMDA receptors but also prevented by the inhibition of nitric oxide and PGE2 release from glial cells. Thus, Ca++ homeostasis alteration, directly induced by PrP90–231 in cerebellar granule cells, requires the activation of NMDA receptors, but is greatly enhanced by soluble molecules released by activated glia. In glia-enriched cerebellar granule cultures, the activation of inducible nitric oxide (iNOS) and NADPH oxidase represents the main mechanism of toxicity since their pharmacological inhibition prevented PrP90–231 neurotoxicity, whereas NMDA blockade by d(?)-2-amino-5-phosphonopentanoic acid is ineffective; conversely, in pure cerebellar granule cultures, NMDA blockade but not iNOS inhibition strongly reduced PrP90–231 neurotoxicity. These data indicate that amyloidogenic peptides induce neurotoxic signals via both direct neuron interaction and glia activation through different mechanisms responsible of calcium homeostasis disruption in neurons and potentiating each other: the activation of excitotoxic pathways via NMDA receptors and the release of radical species that establish an oxidative milieu.  相似文献   

17.
Kim HS  Choi HS  Lee SY  Oh S 《Brain research》2000,880(1-2):28-37
In the present study, we have investigated the effects of prolonged inhibition of NMDA receptor by infusion of subtoxic dose of MK-801 to examine the modulation of GABAA receptor binding and GABAA receptor subunit mRNA level in rat brain. It has been reported that NMDA-selective glutamate receptor stimulation alters GABAA receptor pharmacology in cerebellar granule neurons in vitro by altering the levels of selective subunit. However, we have investigated the effect of NMDA antagonist, MK-801, on GABAA receptor binding characteristics in discrete brain regions by using autoradiographic and in situ hybridization techniques. The GABAA receptor bindings were analyzed by quantitative autoradiography using [3H]muscimol, [3H]flunitrazepam, and [35S]TBPS in rat brain slices. Rats were infused with MK-801 (1 pmol/10 μl per h, i.c.v.) for 7 days, through pre-implanted cannula by osmotic minipumps (Alzet, model 2ML). The levels of [3H]muscimol binding were highly elevated in almost all of brain regions including cortex, caudate putamen, thalamus, hippocampus, and cerebellum. However, the [3H]flunitrazepam binding and [35S]TBPS binding were increased only in specific regions; the former level was increased in parts of the cortex, thalamus, and hippocampus, while the latter binding sites were only slightly elevated in parts of thalamus. The levels of β2-subunit were elevated in the frontal cortex, thalamus, hippocampus, brainstem, and cerebellar granule layers while the levels of β3-subunit were significantly decreased in the cortex, hippocampus, and cerebellar granule layers in MK-801-infused rats. The levels of 6- and δ-subunits, which are highly localized in the cerebellum, were increased in the cerebellar granule layer after MK-801 treatment. These results show that the prolonged suppression of NMDA receptor function by MK-801-infusion strongly elevates [3H]muscimol binding throughout the brain, increases regional [3H]flunitrazepam and [35S]TBPS binding, and alters GABAA receptor subunit mRNA levels in different directions. The chronic MK-801 treatment has differential effect on various GABAA receptor subunits, which suggests involvement of differential regulatory mechanisms in interaction of NMDA receptor with the GABA receptors.  相似文献   

18.
Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a biologically active lipid mediator. We have previously shown the expression of PAF receptor in neurons and microglia. PAF is produced in the brain from its precursor, and degraded by the enzyme PAF acetylhydrolase. LIS1 is a regulatory subunit of PAF acetylhydrolase, and is identical to a gene whose deletion causes the human neuronal migration disorder, type I lissencephaly. Indeed, Lis1 mutant mice display defects in neuronal migration and layering in vivo, and also in cerebellar granule cell migration in vitro. However, the roles of PAF and the PAF receptor in the neuronal migration remain to be determined. Here, we show that PAF receptor-deficient mice exhibited histological abnormalities in the embryonic cerebellum. PAF receptor-deficient cerebellar granule neurons migrated more slowly in vitro than wild-type neurons, consistent with the observation that a PAF receptor antagonist reduced the migration of wild-type neurons in vitro. Synergistic reduction of neuronal migration was observed in a double mutant of PAF receptor and LIS1. Unexpectedly, PAF affected the migration of PAF receptor-deficient neurons, suggesting a receptor-independent pathway for PAF action. The PAF receptor-independent response to PAF was abolished in granule neurons derived from the double mutant mice. Thus, our results suggest that the migration of cerebellar granule cells is regulated by PAF through receptor-dependent and receptor-independent pathways, and that LIS1 is a pivotal molecule that links PAF action and neuronal cell migration both in vivo and in vitro.  相似文献   

19.
Ischemic hypoxia provokes alterations in the production system of nitric oxide in the cerebellum. We hypothesize that the nitric oxide system may undergo modifications due to hypobaric hypoxia and that may play a role in high altitude pathophysiology. Therefore, changes in the nitric oxide system of the cerebellum of rats submitted to acute hypobaric hypoxia were investigated. Adult rats were exposed for 7 h to a simulated altitude of 8235 m (27000 ft.) and then killed after 0 h or 1, 3, 5 and 10 days of reoxygenation. Nitric oxide synthase calcium-dependent and -independent activity, immunoblotting and immunohistochemistry of neuronal, endothelial, and inducible nitric oxide synthase, and nitrotyrosine were evaluated. Immunoreactivity for neuronal nitric oxide synthase slightly increased in the baskets of the Purkinje cell layer and in the granule cells, after 0 h of reoxygenation, although no changes in neuronal nitric oxide synthase immunoblotting densitometry were detected. Calcium-dependent activity significantly rose after 0 h of reoxygenation, reaching control levels in the following points, and being coincident with a peak of eNOS expression. Nitrotyrosine formation showed significant increments after 0 h and 1 day of reoxygenation. Nitrotyrosine immunoreactivity showed an intracellular location change in the neurons of the cerebellar nuclei and in addition, an appearance of nitration in the soma of the Purkinje cells was detected. No changes in inducible nitric oxide synthase activity, immunoblotting or immunohistochemistry were detected. We conclude that at least part of the nitric oxide system is involved in cerebellum responses to hypobaric hypoxia.  相似文献   

20.
The properties of [3H]glycine uptake and release were studied with cerebellar granule cells, 7-9 days in vitro, (DIV) and astrocytes, 14-15 DIV, in primary cultures. The uptake of glycine in both cell types consisted of a saturable high-affinity transport and nonsaturable diffusion. The transport constant (Km) and maximal velocity (V) were significantly higher in granule cells than in astrocytes. Uptake was strictly Na+-dependent and also markedly diminished in low-Cl medium. The specificity of the uptake was similar in both cell types. The spontaneous release of glycine from granule cells and astrocytes was fast. Homoexchange with extracellularly added glycine in granule cells suggests that the efflux is at least partly mediated via membrane transport sites in these cells. Kainate stimulated the release more effectively in neurons than in glial cells, the effect apparently being mediated by specific kainate-sensitive receptors in both cell types. The release was enhanced by veratridine and by depolarization of cell membranes by high K (50 mM) in both neurons and astrocytes. The potassium-stimulated release was partially Ca-dependent in neurons but Ca-independent in glial cells. The results suggest a functional role for glycine in both cerebellar astrocytes and glutamatergic granule cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号