首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
PURPOSE: Interest in neuroprotection for optic neuropathies is, in part, based on the assumption that retinal ganglion cells (RGCs) die, not only as a result of direct (primary) injury, but also indirectly as a result of negative effects from neighboring dying RGCs (secondary degeneration). This experiment was designed to test whether secondary RGC degeneration occurs after orbital optic nerve injury in monkeys. METHODS: The superior one third of the orbital optic nerve on one side was transected in eight cynomolgus monkeys (Macaca fascicularis). Twelve weeks after the partial transection, the number of RGC bodies in the superior and inferior halves of the retina of the experimental and control eyes and the number and diameter of axons in the optic nerve were compared by detailed histomorphometry. Vitreous was obtained for amino acid analysis. A sham operation was performed in three additional monkeys. RESULTS: Transection caused loss of 55% +/- 13% of RGC bodies in the superior retina of experimental compared with fellow control eyes (mean +/- SD, t-test, P < 0.00,001, n = 7). Inferior RGCs, not directly injured by transection, decreased by 22% +/- 10% (P = 0.002). The loss of superior optic nerve axons was 83% +/- 12% (mean +/- SD, t-test, P = 0.0008, n = 5) whereas, the inferior loss was 34% +/- 20% (P = 0.02, n = 5). Intravitreal levels of glutamate and other amino acids in eyes with transected nerves were not different from levels in control eyes 12 weeks after injury. Fundus examination, fluorescein angiography, and histologic evaluation confirmed that there was no vascular compromise to retinal tissues by the transection procedure. CONCLUSIONS: This experiment suggests that primary RGC death due to optic nerve injury is associated with secondary death of surrounding RGCs that are not directly injured.  相似文献   

2.
PURPOSE: To use a rat model of optic nerve injury to differentiate primary and secondary retinal ganglion cell (RGC) injury. METHODS: Under general anesthesia, a modified diamond knife was used to transect the superior one third of the orbital optic nerve in albino Wistar rats. The number of surviving RGC was quantified by counting both the number of cells retrogradely filled with fluorescent gold dye injected into the superior colliculus 1 week before nerve injury and the number of axons in optic nerve cross sections. RGCs were counted in 56 rats, with 24 regions examined in each retinal wholemount. Rats were studied at 4 days, 8 days, 4 weeks, and 9 weeks after transection. The interocular difference in RGCs was also compared in five control rats that underwent no surgery and in five rats who underwent a unilateral sham operation. It was confirmed histologically that only the upper optic nerve had been directly injured. RESULTS: At 4 and 8 days after injury, superior RGCs showed a mean difference from their fellow eyes of -30.3% and -62.8%, respectively (P = 0.02 and 0.001, t-test, n = 8 rats/group), whereas sham-operation eyes had no significant loss (mean difference between eyes = 1.7%, P = 0.74, t-test). At 8 days, inferior RGCs were unchanged from control, fellow eyes (mean interocular difference = -4.8%, P = 0.16, t-test). Nine weeks after transection, inferior RGC had 34.5% fewer RGCs than their fellow eyes, compared with 41.2% fewer RGCs in the superior zones of the injured eyes compared with fellow eyes. Detailed, serial section studies of the topography of RGC axons in the optic nerve showed an orderly arrangement of fibers that were segregated in relation to the position of their cell bodies in the retina. CONCLUSIONS: A model of partial optic nerve transection in rats showed rapid loss of directly injured RGCs in the superior retina and delayed, but significant secondary loss of RGCs in the inferior retina, whose axons were not severed. The findings confirm similar results in monkey eyes and provide a rodent model in which pharmacologic interventions against secondary degeneration can be tested.  相似文献   

3.
Li HM  Lu SD  Xia X  Xu P  Wang F  Huang Q 《中华眼科杂志》2005,41(2):119-122
目的探讨移植表达睫状神经营养因子(CNTF)的细胞对SD大鼠视神经横断伤后视网膜节细胞的保护作用。方法通过脂质体将CNTF表达质粒转移至人胚肺成纤维细胞,建立稳定、高水平表达CNTF的细胞株。采用双侧背外侧膝状体及上丘核团注射3%荧光金逆行标记视网膜节细胞。将标记后的大鼠分为两组,于标记后7d手术切断眶内段视神经其中一组左眼不做手术作为正常对照组,右眼切断视神经作为手术对照组;另一组双眼均手术切断视神经,左眼注射PBS作为治疗对照组,右眼视网膜下移植表达CNTF的细胞作为实验组。术后5、14、17、21及28d取出眼球,铺片后荧光显微镜观察并计数视网膜内存活的节细胞。结果手术切断眶内段视神经后2周,视网膜内节细胞数减少6744%,视网膜下移植表达CNTF的细胞后第5、17、21d视网膜内存活的节细胞数明显多于治疗对照组(P<005)。结论视网膜下移植高水平表达CNTF的细胞对视网膜节细胞有保护作用。  相似文献   

4.
肌苷毫微粒对成年大鼠视网膜节细胞的保护作用   总被引:2,自引:0,他引:2  
目的 研究载有肌苷的毫微粒对视神经切断后视网膜节细胞(RGC)存活的影响。方法 制备肌苷毫微粒,体外测定理化性质。将等体积的肌苷毫微粒、空载毫微粒或生理盐水溶液分别注入成年大鼠左眼内,对照组未经任何治疗。1d后于眶内切断所有动物左侧视神经,术后7d取左视网膜,计数荧光金逆行标记的存活RGC。结果 肌苷毫微粒形态规整,具有缓释特点。同对照相比,肌苷毫微粒能显著提高存活RGC的密度,而空载体和生理盐水无此作用;空载毫微粒与生理盐水、对照之间以及空载毫微粒和肌苷毫微粒两组间RGC密度均无显著差异。结论 注入眼球的肌苷毫微粒至少在7d内能有效缓释肌苷,进而对轴突损伤RGC发挥显著的神经保护作用。  相似文献   

5.
PURPOSE: To detect alterations in amacrine cells associated with retinal ganglion cell (RGC) depletion caused by experimental optic nerve transection and glaucoma. METHODS: Intraocular pressure (IOP) was elevated unilaterally in 18 rats by translimbal trabecular laser treatment, and eyes were studied at 1 (n = 6), 2 (n = 5), and 3 (n = 7) months. Complete optic nerve transection was performed unilaterally in nine rats with survival for 1 (n = 4) and 3 (n = 5) months. Serial cryosections (five per eye) were immunohistochemically labeled with rabbit anti-gamma-aminobutyric acid (GABA) and anti-glycine antibodies. Cells in the ganglion cell and inner nuclear layers that labeled for GABA or glycine were counted in a masked fashion under bright-field microscopy. Additional labeling with other RGC and amacrine antigens was also performed. RGC loss was quantified by axon counts. RESULTS: Amacrine cells identified by GABA and glycine labeling were not significantly affected by experimental glaucoma, with a mean decrease of 15% compared with bilaterally untreated control cells (557 +/- 186 neurons/mm [glaucoma] versus 653.9 +/- 114.4 neurons/mm [control] of retina; P = 0.15, t-test). There was no significant trend for amacrine cell counts to be lower in eyes with fewer RGCs (r = -0.39, P = 0.11). By contrast, there was highly significant loss of GABA and glycine staining 3 months after nerve transection, both in the treated and the fellow eyes (P < 0.0001, t-test). However, there was a substantial number of remaining amacrine cells in transected retinas, as indicated by labeling for calretinin and calbindin. CONCLUSIONS: Experimental glaucoma causes minimal change in amacrine cells and their expression of neurotransmitters. After nerve transection, neurotransmitter presence declines, but many amacrine cell bodies remain. Differences among optic nerve injury models, as well as effects on "untreated" fellow eyes, should be recognized.  相似文献   

6.
PurposeTo evaluate the integrative potential of neural stem cells (NSCs) with the visual system and characterize effects on the survival and axonal regeneration of axotomized retinal ganglion cells (RGCs).MethodsFor in vitro studies, primary, postnatal rat RGCs were directly cocultured with human NSCs or cultured in NSC-conditioned media before their survival and neurite outgrowth were assessed. For in vivo studies, human NSCs were transplanted into the transected rat optic nerve, and immunohistology of the retina and optic nerve was performed to evaluate RGC survival, RGC axon regeneration, and NSC integration with the injured visual system.ResultsIncreased neurite outgrowth was observed in RGCs directly cocultured with NSCs. NSC-conditioned media demonstrated a dose-dependent effect on RGC survival and neurite outgrowth in culture. NSCs grafted into the lesioned optic nerve modestly improved RGC survival following an optic nerve transection (593 ± 164 RGCs/mm2 vs. 199 ± 58 RGCs/mm2; P < 0.01). Additionally, RGC axonal regeneration following an optic nerve transection was modestly enhanced by NSCs transplanted at the lesion site (61.6 ± 8.5 axons vs. 40.3 ± 9.1 axons, P < 0.05). Transplanted NSCs also differentiated into neurons, received synaptic inputs from regenerating RGC axons, and extended axons along the transected optic nerve to incorporate with the visual system.ConclusionsHuman NSCs promote the modest survival and axonal regeneration of axotomized RGCs that is partially mediated by diffusible NSC-derived factors. Additionally, NSCs integrate with the injured optic nerve and have the potential to form neuronal relays to restore retinofugal connections.  相似文献   

7.
Fu QL  Zhang Y  Su YH  Sun YQ  Sun SJ  Shi JB 《中华眼科杂志》2011,47(12):1084-1088
目的 研究大鼠视神经损伤后视网膜中小胶质细胞的表达情况.方法 实验研究.选取30只成年雌性健康SD大鼠,按照随机数字表法分为实验组和对照组各15只,分别用于细胞计数、免疫组织化学及免疫印迹实验.实验组在眼球后约1.5 ~2.0 mm处行右眼视神经鞘内切断术,术后5d于视神经断端处用荧光金逆行标记视网膜节细胞,手术后7d处死取材.对照组小鼠右眼行视神经切断术并标记,2d后处死取材.视网膜做铺片用于计数.用免疫组织化学法于视网膜切片上行小胶质细胞的表面标记物Iba-1染色,观察小胶质细胞的形态及数量,同时应用免疫印迹法检测视网膜内Iba-1蛋白含量的变化.两组间比较采用非配对student t-检验进行统计学分析.结果 对照组视网膜中有少量小胶质(Iba-1阳性)细胞表达,并呈非活化状态.视神经切断7d后小胶质细胞明显增多且呈半活化状态,免疫印迹结果显示损伤后Iba-1蛋白表达量明显增加到对照组的2.3倍(t=7.669,P=0.001).视视神经切断7d后节细胞数量为(1182±64)个/mm2,明显减少至对照组的51%(t=23.850,P<0.01).结论 大鼠视神经损伤后小胶质细胞表达增多且呈部分激活状态,可能是视网膜受损后自我保护的表现之一.  相似文献   

8.
9.
PURPOSE: LINGO-1 is a functional member of the Nogo66 receptor (NgR1)/p75 and NgR1/TROY signaling complexes that prevent axonal regeneration through RhoA in the central nervous system. LINGO-1 also promotes cell death after neuronal injury and spinal cord injury. The authors sought to examine whether blocking LINGO-1 function with LINGO-1 antagonists promotes retinal ganglion cell (RGC) survival after ocular hypertension and optic nerve transection. METHODS: An experimental ocular hypertension model was induced in adult rats using an argon laser to photocoagulate the episcleral and limbal veins. LINGO-1 expression in the retinas was investigated using immunohistochemistry and Western blotting. Soluble LINGO-1 protein (LINGO-1-Fc) and anti-LINGO-1 mAb 1A7 were injected into the vitreous body to examine their effects on RGC survival after ocular hypertension and optic nerve transection. Signal transduction pathways mediating neuroprotective LINGO-1-Fc effects were characterized using Western blotting and specific kinase inhibitors. RESULTS: LINGO-1 was expressed in RGCs and up-regulated after intraocular pressure elevation. Blocking LINGO-1 function with LINGO-1 antagonists, LINGO-1-Fc and 1A7 significantly reduced RGC loss 2 and 4 weeks after ocular hypertension and also promoted RGC survival after optic nerve transection. LINGO-1-Fc treatment blocked the RhoA, JNK pathway and promoted Akt activation. LINGO-1-Fc induced Akt phosphorylation, and the survival effect of LINGO-1 antagonists was abolished by Akt phosphorylation inhibitor. CONCLUSIONS: The authors demonstrated that blocking LINGO-1 function with LINGO-1 antagonists rescues RGCs from cell death after ocular hypertension and optic nerve transection. They also delineated the RhoA and PI-3K/Akt pathways as the predominant mediator of LINGO-1-Fc neuroprotection in this paradigm of RGC death.  相似文献   

10.
PURPOSE: To investigate changes in percentage of tyrosine kinase (trk)A-, trkB-, and trkC-immunopositive ((+)) retinal ganglion cells (RGCs) at various times after optic nerve (ON) axotomy; the proportion of RGCs regenerating axons into peripheral nerve (PN) grafts that are trkA(+), trkB(+), and trkC(+); whether intravitreal PN-ON implants affect trk immunoreactivity; and the levels of trk mRNAs in ON-injured retinas. METHODS: The ON was transected intraorbitally. Proportions of trkA(+), trkB(+), and trkC(+) RGCs and levels of trk mRNAs were studied by using immunocytochemistry and Northern blot methods, respectively, in injured and RGC-regenerating retinas. RESULTS: In normal retinas, only small numbers of trkB(+) and trkC(+), but not trkA(+), RGCs were seen. The optic fiber layer was intensively immunolabeled with trkB. After ON injury, the proportions of trkA(+), trkB(+), and trkC(+) RGCs rapidly increased and reached their peaks by 3 to 5 days. During the next 3 weeks, the proportion of trkA(+) or trkB(+) RGCs gradually decreased, but the proportion of trkC(+) RGCs remained high. Intravitreal implants of PN+ON segments transiently but significantly suppressed injury-induced increases in all these trk(+) RGC proportions for approximately 5 days. In contrast, 3 days after ON injury, quantitative retinal expression of trkA mRNA, and to a lesser extent trkC mRNA, was downregulated, whereas trkB mRNA expression remained unaffected. Higher proportions of trkA(+) and trkB(+) RGCs and higher levels of all trk mRNAs were seen in regenerating RGCs and retinas, respectively. CONCLUSIONS: This study provides a kinetic analysis of expression of trk in RGCs and retinas after ON injury and during regeneration.  相似文献   

11.
Despite the magnitude of the problem, no effective treatments exist to prevent retinal ganglion cell (RGC) death and optic nerve degeneration from occurring in diseases affecting the human eye. Animal models currently available for developing treatment strategies suffer from cumbersome procedures required to induce RGC death or rely on mutations that induce defects in developing retinas rather than in mature retinas of adults. Our objective was to develop a robust genetically engineered adult mouse model for RGC loss and optic nerve degeneration based on genetic ablation. To achieve this, we took advantage of Pou4f2 (Brn3b), a gene activated immediately as RGCs begin to differentiate and expressed throughout life. We generated adult mice whose genomes harbored a conditional Pou4f2 allele containing a floxed-lacZ-stop-diphtheria toxin A cassette and a CAGG-Cre-ER™ transgene. In this bigenic model, Cre recombinase is fused to a modified estrogen nuclear receptor in which the estrogen-binding domain binds preferentially to the estrogen agonist tamoxifen rather than to endogenous estradiol. Upon binding to the estrogen-binding domain, tamoxifen derepresses Cre recombinase, leading to the efficient genomic deletion of the floxed-lacZ-stop DNA sequence and expression of diphtheria toxin A. Tamoxifen administered to adult mice at different ages by intraperitoneal injection led to rapid RGC loss, reactive gliosis, progressive degradation of the optic nerve over a period of several months, and visual impairment. Perhaps more reflective of human disease, partial loss of RGCs was achieved by modulating the tamoxifen treatment. Especially relevant for RGC death and optic nerve degeneration in human retinal pathologies, RGC-ablated retinas maintained their structural integrity, and other retinal neurons and their connections in the inner and outer plexiform layers appeared unaffected by RGC ablation. These events are hallmarks of progressive optic nerve degeneration observed in human retinal pathologies and demonstrate the validity of this model for use in developing stem cell therapies for replacing dead RGCs with healthy ones.  相似文献   

12.
PURPOSE: The signaling of retinal ganglion cell (RGC) death after axotomy is partly dependent on the generation of reactive oxygen species. Shifting the RGC redox state toward reduction is protective in a dissociated mixed retinal culture model of axotomy. The hypothesis for the current study was that tris(2-carboxyethyl)phosphine (TCEP), a sulfhydryl reductant, would protect RGCs in a rat optic nerve crush model of axotomy. METHODS: RGCs of postnatal day 4 to 5 Long-Evans rats were retrogradely labeled with the fluorescent tracer DiI. At approximately 8 weeks of age, the left optic nerve of each rat was crushed with forceps and, immediately after, 4 muL of TCEP (or vehicle alone) was injected into the vitreous at the pars plana to a final concentration of 6 or 60 microM. The right eye served as the control. Eight or 14 days after the crush, the animals were killed, retinal wholemounts prepared, and DiI-labeled RGCs counted. Bandeiraea simplicifolia lectin (BSL-1) was used to identify microglia. RESULTS: The mean number of surviving RGCs at 8 days in eyes treated with 60 microM TCEP was significantly greater than in the vehicle group (1250 +/- 156 vs. 669 +/- 109 cells/mm(2); P = 0.0082). Similar results were recorded at 14 days. Labeling was not a result of microglia phagocytosing dying RGCs. No toxic effect on RGC survival was observed with TCEP injection alone. CONCLUSIONS: The sulfhydryl-reducing agent TCEP is neuroprotective of RGCs in an optic nerve crush model. Sulfhydryl oxidative modification may be a final common pathway for the signaling of RGC death by reactive oxygen species after axotomy.  相似文献   

13.
PURPOSE: To investigate the effect of ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) on retinal ganglion cell (RGC) survival and nitric oxide synthase (NOS) expression in the retina during the early phase of optic nerve (ON) injury, and to examine whether intraperitoneal application of the NOS scavenger nitro-l-arginine (l-NA) could protect the injured RGCs. METHODS: RGCs were retrogradely labeled with granular blue 3 days before the ON was intraorbitally transected. RGC survival was examined 1 week after ON transection and intraocular injection of CNTF and/or BDNF, or 1 to 2 weeks after daily intraperitoneal injection of the NOS inhibitor l-NA. NOS expression was examined by NADPH-diaphorase histochemistry and neuronal NOS (nNOS) immunohistochemistry, and nNOS-positive cells were identified by various staining approaches. RESULTS: Both CNTF and BDNF significantly increased RGC survival 1 week after ON injury. In the ganglion cell layer (GCL), CNTF did not increase the number of NADPH-diaphorase positive ((+)) cells but appeared to reduce the intensity of NADPH-diaphorase staining, whereas BDNF increased the number of NADPH-diaphorase(+) cells and also appeared to enhance the intensity of NADPH-diaphorase staining. In the GCL, amacrine cells but not RGCs were nNOS(+). Some macrophages were also nNOS(+). In contrast, no amacrine cells were nNOS(+) in the inner nuclear layer. Daily intraperitoneal injection of l-NA at appropriate concentrations promoted RGC survival for 1 or 2 weeks after ON injury. CONCLUSIONS: Both CNTF and BDNF protected RGCs after ON injury. CNTF and BDNF acted differently on NOS expression in the GCL. Intraperitoneal injections of l-NA at appropriate dosages enhance RGC survival.  相似文献   

14.
目的 探讨依托咪酯对成年大鼠视神经损伤后视网膜神经节细胞(retinalganglioncell,RGC)的保护作用及其机制。方法 应用大鼠视神经眶内段切断模型,荧光金逆行标记存活RGC;腹腔注射依托咪酯或玻璃体内注射蛋白激酶C(proteinki-naseC,PKC)抑制剂G6976干预,应用PepTag非同位素PKC检测试剂盒检测视网膜PKC活性,应用免疫印迹法分析视网膜核转录因子-κB(nuclearfactorkappaB,NF-κB)水平。结果 依托咪酯显著增加大鼠视神经损伤后7dRGC存活数量(P<0.05),而且显著降低视网膜PKC活性和NF-κB水平(均为P<0.05)。G6976同样显著增加大鼠视神经损伤后7dRGC存活数量(P<0.05),联合应用依托咪酯和G6976,其存活RGC数量与单纯应用依托咪酯差异无统计学意义(P>0.05);G6976显著降低视网膜NF-κB水平(P<0.05)。结论 依托咪酯可显著增加大鼠视神经损伤后RGC存活数量,其机制可能与抑制PKC/NF-κB信号通路有关。  相似文献   

15.
PURPOSE: Nonarteritic anterior ischemic optic neuropathy (NAION) is an optic nerve infarct involving axons of retinal ganglion cell (RGC) neurons. The rodent NAION model (rAION) can use transgenic mouse strains to reveal unique characteristics about the effects of sudden optic nerve ischemia on RGCs and their axons. The impact of rAION on RGC stress patterns, RGC loss, and their axons after axonal infarct were evaluated. METHODS: A double-transgenic mouse strain was used, containing a construct with cyan fluorescent protein (CFP) under Thy-1 promoter control, and a construct with beta-galactosidase (lacZ) linked to the stress gene c-fos promoter. Thy-1 in the retina is expressed predominantly in RGCs, enabling stereologic analysis of CFP(+) RGC numbers and loss post-rAION-using confocal microscopy. RGC loss was correlated with axonal counts using transmission electron microscopy (TEM). LacZ immunohistochemistry was used to evaluate retinal cell stress after rAION. RESULTS: The 45,000 CFP(+) cells in the RGC layer of control animals compared with previous RGC quantitative estimates. rAION produced RGC stress, defined as lacZ expression, in patterns corresponding with later RGC loss. rAION-associated RGC loss correlated with regional nerve fiber layer loss. Axonal loss correlates with stereologically determined RGC loss estimates in transgenic mice retinas. CONCLUSIONS: Post-ON infarct RGC stress patterns correlate with regional RGC loss. Cellular lacZ levels in most RGCs are low, suggesting rAION-affected RGCs express c-fos only transiently. CFP(+) cell loss correlates closely with quantitative axonal loss, suggesting that the Thy-1 (CFP) transgenic mouse strain is appropriate for RGC stereologic analyses.  相似文献   

16.
目的 探讨超声微泡造影剂联合美金胺对视神经损伤大鼠视网膜神经节细胞( RGC)的保护作用.方法 将Sprague-Dawley(SD)雄性成年大鼠40只随机分为正常对照组(A组),假手术组(B组),空白对照组(C组),玻璃体腔单独注射美金胺组(D组),玻璃体腔注射美金胺加超声微泡组(E组)5个组,每组8只大鼠,再将各组随机分为视神经损伤后1、2周2个亚组,各亚组4只大鼠.A组不做任何处理;B组只暴露视神经,不进行钳夹,玻璃体腔注射生理盐水,立即用超声波辐照大鼠眼球;C~E组建立视神经钳夹伤模型后,处理方式分别为C组玻璃体腔注射生理盐水,D组玻璃体腔注射美金胺,E组玻璃体腔注射超声微泡造影剂及美金胺,立即用超声波辐照大鼠眼球.视神经损伤1、2周时,各组行逆行荧光金标记RGC并计数;闪光视觉诱发电位(F-VEP)检测,记录P100波潜伏期及振幅;荧光电子显微镜下观察视网膜细胞形态学改变.结果 逆行荧光金标记RGC结果显示,各处理组视网膜定向铺片上均可见金黄色着染的RGC.A、B组RGC数间差异无统计学意义(q=0.018,0.011;P=0.986,0.873);C~E组RGC数均较A组减少,差异具有统计学意义(F=85.944,P=0.012);D组RGC数多于C组,差异具有统计学意义(q=1.721,1.924;P=0.043,0.037);E组RGC数明显高于C、D组,差异具有统计学意义(q=1.128,1.482,P=0.027,0.008;q=1.453,1.855,P=0.031,0.010).F-VEP检测发现,A、B组P100波潜伏期及振幅间差异无统计学意义(q=0.008,0.019,P=0.981,0.946;q=0.072,0.052,P=0.737,0.851) ;C~E组P100波潜伏期较A组延长,振幅较A组降低,差异具有统计学意义(F=134.312,106.312;P=0.017,0.009).荧光电子显微镜下观察发现,A、B组大鼠视网膜各层结构完整,排列整齐,RGC排列紧密整齐,细胞核均匀深染,胞核大小一致.C~E组大鼠的视网膜不同程度水肿变厚,RGC有不同程度的排列紊乱,空泡化及细胞数目减少.结论 超声微泡造影剂联合美金胺能抑制视神经损伤后大鼠RGC的丢失,促进其视功能的恢复,对视神经损伤大鼠的RGC具有保护作用.  相似文献   

17.
PURPOSE: We investigated whether lomerizine, a new diphenylmethylpiperazine calcium channel blocker, exerted a neuroprotective effect on axonal or retinal damage induced by optic nerve injury in the rat. METHODS: A partial crush lesion was inflicted unilaterally on the optic nerve, 2 mm behind the globe, in adult Wistar albino rats. Animals were treated with the vehicle, 10 or 30 mg/kg lomerizine. Each solution was given orally twice daily for 4 weeks. One week before euthanization, Fluoro-Gold (FG) was injected into both superior colliculi to retrogradely label surviving retinal ganglion cells (RGCs). Approximately 1 month after the optic nerve injury, the retinal damage was assessed morphologically, and the optic nerve axons surrounding the initial lesion were examined histologically. RESULTS: The mean RGC density in the control group decreased to 65.9 +/- 1.32% of the contralateral eye, whereas the systemic application of 10 or 30 mg/kg of lomerizine significantly enhanced the RGC survival to 88.1 +/- 0.38% and 89.8 +/- 0.28%, respectively. Histological examination of damaged axons revealed no significant enhancement of the density or total number of axons of the retinal ganglion cells in the lomerizine-treated group. The crush force we employed caused no significant morphological differences in the retinal layers between the sham-operated animals and the animals from the experimental groups. CONCLUSIONS: Our findings suggest that lomerizine alleviates secondary degeneration of RGCs induced by an optic nerve crush injury in the rat, presumably by improving the impaired axoplasmic flow.  相似文献   

18.
The DBA/2 mouse has been used as a model for spontaneous secondary glaucoma. We attempted to determine the in vivo time course and spatial distribution of retinal ganglion cells (RGCs) undergoing apoptotic death in DBA/2 mice. Female DBA/2 mice, 3, 9-10, 12, 15, and 18 months of age, received intravitreal injections of Annexin-V conjugated to AlexaFluor 1h prior to euthanasia. Retinas were fixed and flat-mounted. Annexin-V-positive RGCs in the hemiretina opposite the site of injection were counted, and their locations were recorded. Positive controls for detection of apoptotic RGCs by Annexin-V labeling included rats subjected to optic nerve ligation, and C57BL/6 mice subjected to either optic nerve ligation or intravitreal injection of NMDA. To verify that Annexin-V-labeled cells were RGCs, intravitreal Annexin-V injections were also performed on retinas pre-labeled retrogradely with FluoroGold or with DiI. Annexin-V-positive RGC locations were analyzed to determine possible clustering and areas of preferential loss. Annexin-V labeled apoptotic RGCs in eyes after optic nerve ligation, intravitreal NMDA injection, as well as in aged DBA/2 animals. In glaucomatous DBA/2 mice 95-100% of cells labeled with Annexin-V were also FluoroGold- and DiI-positive. This confirms that Annexin-V can be used to specifically detect apoptotic RGCs in rodent retinas. In DBA/2 mice, apoptotic RGC death is maximal from the 12th to the 15th month of age (ANOVA, p<0.001, Fisher's post hoc test) and occurs in clusters. These clusters are initially located in the midperipheral retina and progressively occur closer to the optic nerve head with increasing age. Retrograde axonal transport of FluoroGold in the glaucomatous mouse retina is functional until at least 2-3days prior to initiation of apoptotic RGC death.  相似文献   

19.
PURPOSE: To determine whether a scanning laser ophthalmoscope (SLO) is useful for in vivo imaging and counting of rat retinal ganglion cells (RGCs). METHODS: RGCs of Brown Norway rats were retrogradely labeled bilaterally with the fluorescent dye 4-(4-(dihexadecylamino)styryl)-N-methylpyridinium iodine (DiA). The unilateral optic nerve was crushed intraorbitally with a clip. RGCs were imaged in vivo with an SLO with an argon blue laser (488 nm) and optical filter sets for fluorescein angiography, before and 1, 2, and 4 weeks after the crush. Fluorescent cells were also counted in retinal flatmounts at baseline and 1, 2, and 4 weeks after the crush. An image overlay analysis was performed to check cell positions in the SLO images over time. Lectin histochemical analysis was performed to determine the relationship of microglia to the newly emerged DiA fluorescence detected by image overlay analysis after the optic nerve crush. RESULTS: Fluorescent RGCs were visible in vivo with an SLO. RGC survival decreased gradually after the crush. In the retina after the optic nerve crush, newly emerged DiA fluorescence detected by image overlay analysis corresponded to fluorescent cells morphologically different from RGCs in the retinal flatmount and was colocalized mostly with lectin-stained microglial processes. RGC counts by SLO were comparable to those in retinal flatmounts. CONCLUSIONS: The SLO is useful for in vivo imaging of rat RGCs and therefore may be a valuable tool for monitoring RGC changes over time in various rat models of RGC damage.  相似文献   

20.
PURPOSE: To evaluate the neuroprotective effect of memantine, an NMDA receptor channel blocker, in two retinal ganglion cell (RGC) injury models in rats. METHODS: Neuroprotective effect of memantine was tested in partial optic nerve injury and chronic ocular hypertensive models. In the optic nerve injury model, memantine (0.1 - 30 mg/kg) was injected intraperitoneally immediately after injury. Two weeks later, optic nerve function was determined by measuring compound action potential and surviving RGC was determined by retrograde labeling with dextran tetramethyl rhodamine. Chronic ocular hypertension was attained by laser photocoagulation of episcleral and limbal veins. Memantine (5 or 10 mg/kg) was administered continuously each day with an osmotic pump, either immediately after or 10 days after first laser photocoagulation, for 3 weeks, after which RGC survival was determined. RESULTS: Two weeks after partial optic nerve injury, there was approximately 80% reduction in RGC number. Memantine (5 mg/kg) caused a twofold increase in compound action potential amplitude and a 1.7-fold increase in survival of RGCs, respectively. In the chronic ocular hypertension model there was 37% decrease in RGCs after 3 weeks of elevated intraocular pressure. Memantine (10 mg/kg daily) reduced ganglion cell loss to 12% when applied immediately after first laser photocoagulation, and prevented any further loss when applied 10 days after first laser photocoagulation. CONCLUSION: The protective effect of memantine suggests that excessive stimulation of NMDA receptors by glutamate is involved in causing cell damage in these RGC injury models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号