首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the specific N-methyl-D-aspartic acid (NMDA) receptor antagonist MK-801 (0.075 mg/kg), and the specific opiate receptor antagonist naloxone (10 mg/kg), on swim stress-induced analgesia (SSIA) were studied in opiate receptor-deficient (CXBK) and opiate receptor-rich (CXBH) mice. Animals were subjected to forced swimming, and analgesia was assessed using the hot-plate test. In CXBK mice SSIA was blocked by MK-801 but was completely insensitive to naloxone. In CXBH mice SSIA was partially attenuated both by naloxone and MK-801, and it was nearly abolished by a combination of these drugs. Morphine analgesia (10 mg/kg) was abolished by naloxone but completely unaffected by MK-801 in CXBH mice. These findings suggest that the NMDA receptor is critically involved in the non-opioid component of SSIA.  相似文献   

2.
Recent evidence from our laboratory suggests that the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 (dizocilpine) selectively antagonizes non-opioid (i.e. naloxone-insensitive) mechanisms of stress-induced analgesia in mice. For example, we have recently demonstrated that a low dose of MK-801 (0.075 mg/kg, i.p.) antagonizes the non-opioid component of a mixed opioid/non-opioid swim stress-induced analgesia (SSIA) resulting from forced swimming for 3 min in 20°C water. Since ethanol-induced analgesia (EIA) has been found to be only partially attenuated by naloxone, we hypothesized that MK-801 would similarly block the non-opioid component of EIA. The effects of MK-801 and of the opioid receptor antagonist naloxone (10 mg/kg, i.p.) on analgesia produced by ethanol (2.5 g/kg in 20% vol/vol, i.p.) were studied in control mice and in mice selectively bred for high (HA) or low (LA) SSIA. HA mice showed significantly more, and LA mice significantly less, EIA than controls. Naloxone and MK-801 significantly attenuated EIA in control and HA mice, and in these lines the combined administration of both antagonists blocked EIA completely. In LA mice, which displayed very little EIA, naloxone but not MK-801 reversed EIA completely. These findings provide additional evidence for the role of the NMDA receptor in non-opioid mechanisms of analgesia. The finding that mice selectively bred for high and low SSIA also display high and low EIA suggests common mediation of the effects of stress and ethanol on antinociceptive processes.  相似文献   

3.
The effects of the specific N-methyl-D-aspartic acid (NMDA) receptor antagonist MK-801 (dizocilpine, 0.075 mg/kg, i.p.) on swim-stress-induced analgesia (SSIA) were studied in control (C) mice and in mice selectively bred for high (HA) or low (LA) SSIA. In three consecutive experiments, animals were subjected to forced swimming at water temperature of 20 degrees C, 32 degrees C and 15 degrees C and the resulting analgesia (hot-plate test) was found to be mixed opioid/non-opioid, opioid and non-opioid, respectively, as a function of the degree of antagonism by naloxone (10 mg/kg, i.p.). The major finding of this study is that MK-801 attenuated 15 degrees C SSIA, against which naloxone was ineffective, but had no effect on 32 degrees C SSIA, which naloxone blocked completely. A combination of naloxone and MK-801 significantly attenuated 20 degrees C SSIA in C and HA mice and in HA mice this attenuation was significantly larger than that produced by either drug alone. Morphine analgesia (10 mg/kg, i.p.) was unaffected by MK-801. It is concluded that low doses of MK-801 selectively block non-opioid mechanisms of SSIA.  相似文献   

4.
The effect of dizocilpine (MK-801), anN-methyl-D-aspartate (NMDA) receptor antagonist, on the analgesic response to U-50,488H, a κ-opioid receptor agonist, and tolerance to the analgesic effect of U-50,488H was determined in mice. The doses of MK-801 used were 0.03–0.30 mg/kg, whereas U-50,488H was administered at a dose of 25 mg/kg. Intraperitoneal (i.p.) administration of U-50,488H (25 mg/kg) produced analgesia as evidenced by the delay in the tail-flick latency in the mouse and lasted for a period of 240 min. MK-801 (0.03–0.30 mg/kg, i.p.) given 30 min prior to the injection of U-50,488H did not modify U-50,488H-induced analgesia. Twice daily administration of U-50,488H (25 mg/kg) for 9 days produced tolerance to its analgesic action. Administration of MK-801 (0.03 and 0.10 mg/kg) injected 30 min before each injection of U-50,488H prevented the development of tolerance to its analgesic effect. The higher dose, 0.3 mg/kg, of MK-801 had a minimal effect on U-50,488H tolerance. It is concluded that MK-801 in doses which do not affect U-50,488H-induced analgesia blocks the development of tolerance to its analgesic action in mice. These studies suggest that NMDA receptors play a crucial role in the development of tolerance to κ-opioid agonist in mice.  相似文献   

5.
In the present study, the effects of bilateral injections of N-methyl-d-aspartate (NMDA) receptor agonist and/or antagonist into the central amygdala (CeA) on the acquisition and expression of morphine-induced conditioned place preference (CPP) were investigated in male Wistar rats. Animals that received 3 daily subcutaneous (s.c.) injections of morphine (1-9 mg/kg) or saline (1.0 ml/kg) indicated a significant preference for compartment paired with morphine in a dose dependent manner. Intra-CeA administration of the NMDA (0.01, 0.1 or 1 microg/rat) with an ineffective dose of morphine (1 mg/kg, s.c.) elicited a significant CPP. Administration of the non-competitive NMDA receptor antagonist, MK-801 (0.1, 0.3 or 0.5 microg/rat), into the central amygdala dose-dependently inhibited the morphine (6 mg/kg, s.c.)-induced place preference. Furthermore, intra-CeA administration of MK-801 (0.25, 0.5 or 1 microg/rat) reduced the response induced by NMDA (1 microg/rat, intra-CeA) plus morphine (1 mg/kg, s.c.). Neither NMDA nor MK-801 alone produce a significant place preference or place aversion. Moreover, intra-CeA injection of NMDA but not MK-801 before testing significantly increased the expression of morphine (6 mg/kg, s.c.)-induced place preference. NMDA or MK-801 injections into the CeA had no effects on locomotor activity on the testing sessions. These results suggest that the NMDA receptor mechanisms in the central amygdala may be involved in the acquisition and expression of morphine-induced place preference.  相似文献   

6.
Acute administration of morphine (10 mg/kg) to rats elicited an increase in locomotion that became sensitized upon repeated treatment over 14 days. Administration of the noncompetitive N-methyl-D-aspartate receptor (NMDA) antagonist MK-801 (0.1 or 0.25 mg/kg) prior to each morphine injection prevented the development of behavioral sensitization to morphine, an effect that persisted even after a 7-day withdrawal from repeated treatment. Sensitization was also prevented by coadministration of the competitive NMDA receptor antagonist CGS 19755 (10 mg/kg). In contrast, acute pretreatment with MK-801 did not alter the response of sensitized rats to morphine challenge, indicating that MK-801 does not prevent the expression of sensitization. When administered alone, MK-801 produced stereotyped movements at moderate doses (0.25 rng/kg) and horizontal locomotion at higher- doses, (0.5 mg/kg). Repeated administration of 0.25 mg/kg MK-801 elicited sensitization to its own locomotor stimulatory effects, such that this dose became capable of eliciting horizontal locomotion. Sensitization was not seen during repeated administration of 0.1 mg/kg MK-801 or 10 mg/kg CGS 19755, although both of these pretreatments did produce a sensitized response to subsequent challenge with 0.25 mg/kg MK-801. This effect was enhanced by coadministration of morphine, even though repeated administration of morphine alone failed to sensitize rats to MK-801 challenge. These results suggest a complex interplay between NMDA and opioid receptors, such that NMDA antagonists prevent morphine sensitization while morphine enhances the ability of NMDA antagonists to elicit sensitization to their own locomotor stimulatory effects. © 1994 Wiley-Liss, Inc.  相似文献   

7.
《Brain research》1994,667(1):77-82
The present studies examined the hypothesis that the N-methyl- d-aspartate (NMDA) receptor-nitric oxide (NO) pathway might be involved in the acute and chronic actions of Δ9-tetrahydrocannabinol (THC). The ability of dizocilpine (MK-801), a competitive NMDA receptor antagonist and NG-monomethyl- l-arginine (l-NMMA), an inhibitor of NO synthase enzyme to modify the analgesic and hypothermic responses following the acute and chronic treatment of animals with THC was determined in male Swiss-Webster mice. Intraperitoneal administration of THC (5, 10 and 20 mg/kg) produced dose-dependent analgesic and hypothermic effects. MK-801 at 0.1 gg/kg i.p. attenuated the analgesic but not the hypothermic responses to THC (10 and 20 mg/kg, i.p.). The effects of various doses of MK-801 (0.03, 0.1 and 0.3 mg/kg, i.p.) on the analgesic and hypothermic responses to a 10 mg/kg, i.p. dose of THC was also determined. All the doses of MK-801 antogonized the analgesic but not the hypothermic effects of THC. The chronic treatment of animals with THC (10 mg/kg, i.p.) twice daily for 4 days produced tolerance to its analgesic and hypothermic effects. Pretreatment of animals with MK-801 (0.03–0.30 mg/kg, i.p.) did not affect the development of tolerance to the analgesic or the hypothermic action of THC. The pretreatment of animals with l-NMMA (2–8 mg/kg, i.p.), did not alter the analgesic or hypothermic effects of THC. Also, it did not modify the tolerance to its pharmacological actions. It is concluded that non-competitive antagonism of NMDA receptor by MK-801 selectively antagonized the analgesic action of THC and that the mechanisms in the analgesic response and tolerance to THC may be different. Finally, NO does not appear to be involved in the acute or chronic actions of THC.  相似文献   

8.
The present studies examined the hypothesis that the N-methyl- d-aspartate (NMDA) receptor-nitric oxide (NO) pathway might be involved in the acute and chronic actions of Δ9-tetrahydrocannabinol (THC). The ability of dizocilpine (MK-801), a competitive NMDA receptor antagonist and NG-monomethyl- l-arginine (l-NMMA), an inhibitor of NO synthase enzyme to modify the analgesic and hypothermic responses following the acute and chronic treatment of animals with THC was determined in male Swiss-Webster mice. Intraperitoneal administration of THC (5, 10 and 20 mg/kg) produced dose-dependent analgesic and hypothermic effects. MK-801 at 0.1 gg/kg i.p. attenuated the analgesic but not the hypothermic responses to THC (10 and 20 mg/kg, i.p.). The effects of various doses of MK-801 (0.03, 0.1 and 0.3 mg/kg, i.p.) on the analgesic and hypothermic responses to a 10 mg/kg, i.p. dose of THC was also determined. All the doses of MK-801 antogonized the analgesic but not the hypothermic effects of THC. The chronic treatment of animals with THC (10 mg/kg, i.p.) twice daily for 4 days produced tolerance to its analgesic and hypothermic effects. Pretreatment of animals with MK-801 (0.03–0.30 mg/kg, i.p.) did not affect the development of tolerance to the analgesic or the hypothermic action of THC. The pretreatment of animals with l-NMMA (2–8 mg/kg, i.p.), did not alter the analgesic or hypothermic effects of THC. Also, it did not modify the tolerance to its pharmacological actions. It is concluded that non-competitive antagonism of NMDA receptor by MK-801 selectively antagonized the analgesic action of THC and that the mechanisms in the analgesic response and tolerance to THC may be different. Finally, NO does not appear to be involved in the acute or chronic actions of THC.  相似文献   

9.
Ibogaine (IBO) is an alkaloid with putative antiaddictive properties, alleviating opiates dependence and withdrawal. The glutamate N-methyl-D-aspartate (NMDA) receptors have been implicated in the physiological basis of drug addiction; accordingly, IBO acts as a noncompetitive NMDA antagonist. The purpose of this study was to evaluate the effects of IBO on naloxone-induced withdrawal syndrome in morphine-dependent mice, focusing on the role of NMDA receptors. Jumping, a major behavioral expression of such withdrawal, was significantly (P<.01) inhibited by IBO (40 and 80 mg/kg, 64.2% and 96.9% inhibition, respectively) and MK-801 (0.15 and 0.30 mg/kg, 67.3% and 97.7%, respectively) given prior to naloxone. Coadministration of the lower doses of IBO (40 mg/kg) and MK-801 (0.15 mg/kg) results in 94.7% inhibition of jumping, comparable to the effects of higher doses of either IBO or MK-801. IBO and MK-801 also significantly inhibited NMDA-induced (99.0% and 71.0%, respectively) jumping when given 30 min (but not 24 h) prior to NMDA in nonaddictive mice. There were no significant differences in [3H]MK-801 binding to cortical membranes from naive animals, morphine-dependent animals, or morphine-dependent animals treated with IBO or MK-801. This study provides further evidence that IBO does have an inhibitory effect on opiate withdrawal symptoms and suggests that the complex process resulting in morphine withdrawal includes an IBO-sensitive functional and transitory alteration of NMDA receptor.  相似文献   

10.
The motor impairment (tilt-plane test) responses to ethanol were significantly reduced on days 2, 3, 4, or 5 in rats receiving ethanol (2.3 and 1.7 g/kg) 24 and 22 h earlier, compared to the control group pretreated with saline. Administration of (+)MK-801, prior to behavioral testing with ethanol on day 1, inhibited the development of tolerance on all these days. Tolerance and the inhibitory effect of (+)MK-801 could no longer be seen if the second injection of ethanol was given on day 7, 8 or 11. Administration of (+)MK-801 on day 1 but after behavioral testing with ethanol did not block the development of rapid tolerance to ethanol on day 2. Administration of another commonly employed NMDA antagonist, i.e., ketamine, prior to ethanol on day 1, also blocked the development of rapid tolerance to ethanol. The findings suggest that NMDA antagonists block rapid tolerance by preventing some adaptation that occurs during intoxicated practice.  相似文献   

11.
Summary In the present study we compared the effects of the atypical neuroleptic zotepine to haloperidol and clozapine on stereotypies and locomotion induced in rats by the N-methyl-D-aspartate (NMDA) antagonist MK-801. Zotepine caused a dose-dependent reduction of MK-801-induced stereotypies and locomotion. Zotepine at a dosis of 2.5 mg/kg body weight showed a similar effect to 0.25 mg/kg haloperidol in reducing sterotypies and locomotion. Clozapine (5.0 mg/kg) reduced significantly locomotion and non-significantly stereotypies. These results add support to the assumption that MK-801-induced behavior provides an adequate animal model to test the potential efficacy of typical and atypical neuroleptics in the treatment of psychoses.  相似文献   

12.
The present study was performed to examine the analgesic effects of the intrathecal administration of agents acting at various sites in the N -methyl- d -aspartic acid (NMDA) receptor complex on the nociceptive responses to s.c. formalin injection in rats. Both the competitive NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV) and the non-competitive NMDA antagonist dizocilpine maleate (MK-801) produced dose-dependent analgesic effects in the late, but not the early, phase of the formalin test. The polyamine antagonist ifenprodil, and the strychnine-insensitive glycine antagonists DCQX and 7-chlorokynurenic acid, failed to produce any analgesic effects in either the early or the late phase of the formalin test. The analgesic effects of APV were enhanced slightly by combined administration with a non-analgesic dose of glycine, and the analgesic effects of MK-801 were dramatically potentiated by combined adminstration of a non-analgesic dose of the polyamine spermine. The results indicate that much more potent analgesia can be produced in the formalin test by a combination of open channel blockers (such as MK-801) with agonists acting at the polyamine site, than by a single treatment with antagonists to either glycine allosteric or polyamine sites within the NMDA receptor complex.  相似文献   

13.
Anticonvulsant action of MK-801, a novel non-competitive antagonist of N-methyl-d-aspartate (NMDA) receptors, was investigated in the kindling model of epilepsy in rats. The results obtained were as follows. (1) Both the seizure stage and afterdischarge duration of previously kindled seizures from the amygdala were significantly suppressed following systemic injection of MK-801 (0.25–4 mg/kg) in a dose-dependent manner. The maximum effects were observed between 2 and 4 h after the injection. (2) The MK-801 also showed significant anticonvulsant effedts on kindled seizures from the frontal cortex and the ventral and dorsal hippocampus. The efficacy however, significantly differed between these kindled sites. (3) Daily treatment of MK-801 (0.25 and 1 mg/kg) prior to each electrical stimulation of the amygdala significantly retarded kindling seizure development and increased the total amount of afterdischarge (accumulated AD) required to reach the first stage 5 seizure. During drug sessions of 1 mg/kg MK-801 for 19 days, all rats showed only partial seizures and the growth of afterdischarge was strongly prevented. (4) Pretreatment with reserpine did not antagonize the anticonvulsant effects of MK-801 on previously kindled seizures from the amydala, suggesting that the effects may not be mediated by catecholaminergic systems. These results indicate that MK-801 has potent anticonvulsant actions on kindled seizures from both limbic and cortical foci, the NMDA system may play a critical role in the seizure-triggering mechanism of kindling. The possible application of NMDA antagonists in clinical epilepsy is suggested.  相似文献   

14.
In rodents, noncompetitive and competitive NMDA receptor antagonists have been shown to attenuate and, in some cases, reverse tolerance to the analgesic effects of morphine. However, the ability of these same excitatory amino acid (EAA) receptor antagonists to modulate morphine dependence is controversial, and very little is known about the role of AMPA receptors in morphine dependence. LY293558, a novel, systemically active, competitive AMPA receptor antagonist and the NMDA receptor antagonists, MK-801 and/or LY235959, were evaluated in tolerant or dependent CD-1 mice. In mice rendered tolerant by morphine injection or pellet implantation, continuous s.c. infusion of LY293558 (60 mg/kg per 24 h) or MK-801 (1 mg/kg per 24 h) attenuated the development of tolerance. Neither LY293558 nor MK-801 produced analgesia or altered the ED50 value of morphine. Continuous s.c. infusion of LY293558 (60 mg/kg per 24 h), MK-801 (1 mg/kg per 24 h) or LY235959 (12 mg/kg per 24 h) attenuated the development of acute (3 h) morphine dependence (i.e., decreased naloxone-precipitated withdrawal jumping). In contrast, continuous s.c. infusion of LY293558 (60 mg/kg per 24 h) or LY235959 (12 mg/kg per 24 h) did not significantly attenuate the development of chronic dependence produced by morphine pellet implantation. These data indicate that the development of morphine tolerance is more sensitive to modulation by EAA receptor antagonists than is the development of morphine dependence as assessed by naloxone-precipitated withdrawal jumping.  相似文献   

15.
Effects of MK-801 and ketamine, N-methyl-D-aspartate (NMDA) receptor blockers, on cocaine-stimulated locomotor activity were investigated in male Swiss-Webster mice. MK-801 (0.25, 0.5, 1.0 and 2.5 mg/kg), ketamine (10, 25 and 50 mg/kg) or saline was injected 20 min before cocaine (5, 10 and 20 mg/kg i.p.). Locomotor activity was measured for 30 min immediately following cocaine treatment. All doses of the drugs were also tested for ability to depress or stimulate locomotor activity in the naive (no cocaine-treated) mice. Cocaine produced a dose-dependent increase in locomotor activity that was blocked dose-dependently by MK-801 or ketamine. The blockade by MK-801 was more prominent than by ketamine. Our results may suggest that cocaine-induced locomotor stimulation in mice is modulated via NMDA receptor mediated mechanisms.  相似文献   

16.
To investigate the possible involvement of enduring or delayed changes at the N-methyl-D-aspartic acid (NMDA) receptor in the mechanisms of morphine tolerance, rats were treated with the specific NMDA receptor antagonist, MK-801 (0.15 mg/kg) 2 h after morphine injection (20 mg/kg) during a 4-day induction period of tolerance. On the fifth day rats were injected only with morphine (15 mg/kg), and analgesia was assessed using the hot-plate test. Morphine tolerance was significantly reduced by MK-801. These findings suggest that long-lasting or delayed changes at the NMDA receptor underlie the development of morphine tolerance. Moreover, because MK-801 was delivered 2 h after morphine and therefore could not serve as a cue for morphine administration, these findings indicate that the attenuating effect of MK-801 on the development of morphine tolerance is not attributable to state-dependent learning.  相似文献   

17.
The electrophysiological effects of the non-competitive (NMDA) antagonist (+)-MK801 (MK-801) on nigrostriatal and mesoaccumbal dopaminergic (DA) neurons were evaluated in chloral hydrate-anesthetized rats. MK-801 (0.05–3.2 mg/kg, i.v.) stimulated the firing rates of 14 (74%) of 19 nigrostriatal DA (NSDA) neurons and all 16 mesoaccumbal DA (MADA) neurons tested. Stimulatory effects of the drug were more prominent on MADA neurons. Interspike interval analysis revealed that MK-801 also regularized DA neuronal firing pattern. Acute brain hemitransection between the midbrain and forebrain attenuated the stimulatory effects of MK-801 on firing rate and blocked the effects on firing pattern. Similar to MK-801, hemitransection itself increased NSDA and MADA cell firing rates and regularized firing pattern. Both i.v. and iontophoretic MK-801 blocked the excitatory effects of iontophoretic NMDA but did not effect excitations caused by the non-NMDA glutamatergic receptor agonists quisqualate and kainate. Iontophoretic MK-801 had no effect alone. These results suggest that the excitatory effects of i.v. MK-801 on DA neuronal activity are not due to direct actions on DA neurons. Glutamatergic projections originating anterior to the hemistransection appear to play a role in the effectrs of MK-801 on DA neuronal activity.  相似文献   

18.
Summary The effects of haloperidol and diazepam were investigated on stereotypies (wall contacts and turn rounds) induced by the non-competitive NMDA antagonist MK-801 in rats. Haloperidol (0.03, 0.10, 0.25 and 0.40mg/kg body weight) caused a dose-dependent antagonism whereas diazepam (3.0 and 5.0 mg/ kg) caused a dose-dependent agonism of the stereotypies induced by 0.30 mg/ kg MK-801 (all drugs given intraperitoneal). Conversely, diazepam (5.0 mg/kg) given alone reduced significantly the number of spontaneous wall contacts and turn rounds. The paradoxial stimulation of MK-801 induced stereotypies by diazepam could be explained by a shift between positive and negative corticostriatothalamic feedback loops envolving GABAergic neurons in favour of the former.  相似文献   

19.
The aim of this study was to investigate whether a potent analogue of the endogenous brain peptide l-prolyl-l-leucyl-glycinamide (PLG), (3(R)-[(2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide (PAOPA), can prevent the induction of social withdrawal caused by sub-chronic treatment with the non-competitive NMDA (N-methyl-l-aspartate) receptor antagonist, MK-801. Results indicate that MK-801 (0.5 mg/kg) significantly decreased social interaction following sub-chronic treatment (7 days). Treatment with PAOPA (1 mg/kg) blocked the effects of MK-801, and increased the amount of time spent in social interaction in comparison to control animals. These results provide evidence for the development of peptidomimetic compounds for the treatment of social withdrawal and related negative symptoms associated with schizophrenia.  相似文献   

20.
Summary Mice treated with 9-tetrahydrocannabinol (THC; 5 and 10mg/kg i.v.) showed the catalepsy in high bar test, and median descent latencies of catalepsy were about 150 sec. Dizocilpine (MK-801, 0.05 and 0.1mg/kg), non-competitive N-methyl-D-aspartate (NMDA) antagonist, significantly attenuated THC-induced catalepsy. Furthermore, the anticataleptic effect of MK-801 on THC-induced catalepsy was blocked by acetylcholine agonist oxotremorine (0.005 mg/kg) and dopamine antagonist haloperidol (0.01mg/kg), but not by NMDA. Oxotremorine, haloperidol, and NMDA themselves did not affect THC-induced catalepsy at the doses used. These results suggest that the anticataleptic effect of MK-801 on THC-induced catalepsy may be developed through dopaminergic and acetylcholinergic neuronal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号