首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we showed that monensin, Na+ ionophore, potently inhibited the growth of acute myelogenous leukemia and lymphoma cells. Here, we investigated the antiproliferative effect of monensin on human myeloma cell lines. Monensin significantly inhibited the proliferation of myeloma cell lines examined with IC50 of about 1 micro M. Cell cycle analysis indicated that monensin induced a G1 and/or a G2-M phase arrest in these cell lines. To address the mechanism of the antiproliferative effect of monensin, we examined the effect of this drug on cell cycle-related proteins in NCI-H929 cells. Monensin decreased the levels of CDK2, CDK6, cdc2, cyclin A, cyclin B1, cyclin D1 and cyclin E proteins but did not alter CDK4 protein. While p21 was increased by monensin, p27 was not. In addition, monensin markedly enhanced the binding of p21 with CDK6 and cdc2. Furthermore, the activities of CDK2- and CDK6-associated kinases were reduced in association with hypophosphorylation of Rb protein. The activity of cdc2-associated kinase was decreased, which was accompanied by reduction of cdc25C phosphatase. Also, monensin induced apoptosis in myeloma cells, as evidenced by annexin V binding assay and flow cytometric detection of sub-G1 DNA content. This apoptotic process was associated with down-regulation of Bcl-2, loss of mitochondria transmembrane potential (Deltapsim) and an increase of caspase-3 activity. In addition, monensin caused the up-regulation of ERK and p38 kinase activities. Taken together, these results have demonstrated for the first time that monensin potently inhibited the proliferation of human myeloma cell lines, especially NCI-H929 cells, via cell cycle arrest in association with p21 and apoptosis.  相似文献   

2.
KN-93, a membrane-permeant calcium/calmodulin- dependent kinase-selective inhibitor, induces apoptosis in some lines of human tumor cells. We investigated the effect of KN-93 in the choriocarcinoma cell line, BeWo. BeWo cells were treated with various concentrations of KN-93, and changes in cell growth, the cell cycle, apoptosis, and related parameters were examined. A WST-1 assay showed that BeWo cells were sensitive to the growth inhibitory effect of KN-93. Cell cycle analysis indicated that exposure to KN-93 decreased the proportion of cells in the S phase and increased the proportion in the G0/G1 phases of the cell cycle. Induction of apoptosis was confirmed by Annexin V staining of externalized phosphatidylserine, by the loss of mitochondrial transmembrane potential, and by antibodies directed against histones from fragmented DNA. This induction occurred in conjunction with the altered expression of genes related to cell growth, malignant phenotype, and apoptosis. These results suggest that KN-93 may serve as a therapeutic agent for the treatment of choriocarcinoma.  相似文献   

3.
Park HY  Kim MK  Moon SI  Cho YH  Lee CH 《Cancer science》2006,97(5):430-436
The purpose of the present study was to investigate the mechanisms involved in the antiproliferative and apoptotic effects of MCS-C2, a novel analog of the pyrrolo[2,3-d]pyrimidine nucleoside toyocamycin and sangivamycin, in human prostate cancer LNCaP cells. MCS-C2, a selective inhibitor of cyclin-dependent kinase, was found to inhibit cell growth in a time- and dose-dependent manner, and inhibit cell cycle progression by inducing the arrest of the G1 phase and apoptosis in LNCaP cells. When treated with 3 microM MCS-C2, inhibited proliferation associated with apoptotic induction was found in the LNCaP cells in a concentration and time-dependent manner, and nuclear DAPI staining revealed the typical nuclear features of apoptosis. Furthermore, MCS-C2 induced cell cycle arrest in the G1 phase through the upregulated phosphorylation of the p53 protein at Ser-15 and activation of its downstream target gene p21WAF1/CIP1. Accordingly, these results suggest that MCS-C2 inhibits the proliferation of LNCaP cells by way of G1-phase arrest and apoptosis in association with the regulation of multiple molecules in the cell cycle progression.  相似文献   

4.
We investigated the in vitro effect of trichostatin (histone deacetylase inhibitor) on cell proliferation, cell cycle regulation and apoptosis in renal cell carcinoma cell lines. Trichostatin significantly inhibited the proliferation of all six cell lines examined in dose-dependent manner with IC50 of about 125-250 nM. Trichostatin (72-h incubation) induced a G1 phase arrest in ACHN, Caki-1, Caki-2 and Renca cell lines and a G2-M phase arrest in A498 cells. When we examined the effects of this drug on ACHN cells, trichostatin decreased the levels of CDK4, CDK6, cyclin D1 and cyclin A proteins. p27 protein was increased by trichostatin. In addition, trichostatin markedly enhanced the binding of p27 with CDK2 and CDK4. Furthermore, the activities of CDK2, CDK4- and CDK6-associated kinase were reduced and the lack of the CDK activity was paralleled by increased hypophosphorylation of Rb protein. Trichostatin also induced apoptosis in all the renal cell carcinoma cell lines. Apoptotic process of ACHN cells was associated with the changes of Bcl-2, caspase-9, caspase-3, caspase-7 proteins as well as mitochondria transmembrane potential (deltapsim) loss. Taken together, these results demonstrate that trichostatin inhibits the growth of renal cell carcinoma cells via cell cycle arrest or apoptosis.  相似文献   

5.
Monensin, an Na(+) ionophore, regulates many cellular functions including apoptosis. However, there has been no report about the antitumoral effect of monensin on acute myelogenous leukemia (AML). Here, we investigated the antiproliferative effect of monensin on AML cells in vitro and in vivo. Monensin efficiently inhibited the proliferation of all of 10 AML cell lines, with IC(50) of about 0.5 microM. DNA flow cytometric analysis indicated that monensin induced a G(1) and/or a G(2)-M phase arrest in these cell lines. To address the mechanism of the antiproliferative effect of monensin, we examined the effect of monensin on cell cycle-related proteins in HL-60 cells. The levels of CDK6, cyclin D1 and cyclin A were decreased. In addition, monensin not only increased the p27 level but also enhanced its binding with CDK2. Furthermore, the activities of CDK2- and CDK6-associated kinases reduced by monensin were associated with hypophosphorylation of Rb protein. Monensin also induced apoptosis in AML cells including HL-60 cells. The apoptotic process of HL-60 cells was associated with changes in Bax, caspase-3, caspase-8 and mitochondria transmembrane potential (Deltapsi(m)). In particular, monensin (i.p. at a dose of 8 mg/kg thrice weekly) significantly reduced the tumor size of BALB/c mice that were inoculated s.c. with its derived cell line, WEHI-3BD cells (69% growth inhibition relative to control group; p < 0.05). Tumors from monensin-treated mice exhibited increased apoptosis, and these tumor were immunohistochemically more stained with Bax, Fas and p53 antibodies than control tumors. In conclusion, this is the first report that monensin potently inhibits the proliferation of AML cells.  相似文献   

6.
Previously, we showed that monensin, Na+ ionophore, potently inhibited the growth of acute myelogenous leukemia and lymphoma cells. Here, we demonstrate that monensin inhibited the proliferation of solid tumor cells with IC50 of about 2.5 micro M. Monensin induced a G1 or a G2-M phase arrest in these cells. When we examined the effects of this drug on SNU-C1 cells, monensin decreased the levels of CDK2, CDK4, CDK6, cyclin D1 and cyclin A proteins. While p27 was increased by monensin, p21 was not. In addition, monensin markedly enhanced the binding of p27 with CDK2, CDK4 and CDK6. Furthermore, the activities of CDK2-, CDK4- and CDK6-associated kinase were reduced in association with hypophosphorylation of Rb protein. Monensin also induced apoptosis in solid tumor cells. Apoptotic process of SNU-C1 cells was associated with the changes of Bax, caspase-3 and mitochondria transmembrane potential (deltapsim). Taken together, these results demonstrated for the first time that monensin inhibited the growth of solid tumor cells, especially SNU-C1 cells, via cell cycle arrest and apoptosis.  相似文献   

7.
Competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (the statins) that inhibit the synthesis of mevalonic acid are in wide use for treatment of hypercholesterolemia. Although antitumor effects on a variety of cell types have been reported for statins, the effect of simvastatin (one of the statins) on human melanoma cell lines is not known. Here, we report antitumor effects of simvastatin on human melanoma cell lines. We treated human melanoma cell lines, A375M, G361, C8161, GAK, and MMAc with simvastatin in various concentrations for 1 to 3 days. To investigate the antitumor effect of simvastatin, we analyzed cell viability, morphologic changes, reversibility of inhibition by geranylgeranyl pyrophosphate and farnesyl pyrophosphate, apoptosis and the cell cycle. Simvastatin treatment reduced cell viability in all five melanoma cell lines. The different melanoma cell lines, however, displayed different sensitivities to simvastatin. The addition of geranylgeranyl pyrophosphate to A375M and G361 cells in the presence of simvastatin completely restored the viability of cells, but the addition of farnesyl pyrophosphate did not. DNA fragmentation assay showed that simvastatin induced apoptosis in A375M and G361 cells. Simvastatin caused a G1 arrest in G361 and MMAc cells. Consistent with the cell cycle arrest, simvastatin caused an increase in the mRNA levels of p21 and p27 on G361 and MMAc cells.We conclude that simvastatin has an antitumor effect on human melanoma cells in vitro via apoptosis and cell cycle arrest. These results suggest that simvastatin may be an effective anticancer drug for malignant melanoma.  相似文献   

8.
9.
The aptamer TY04 is a single-stranded DNA. However, its biological function has not been elucidated. Here, we found that TY04 specifically bound to multiple myeloma cells MM.1S, and some membrane proteins on the surface of MM.1S cells constituted the target molecules of TY04. TY04 inhibited the growth of multiple myeloma cell lines, induced cell cycle arrest in mitosis, and resulted in a significant accumulation of binucleated cells. Following TY04 treatment, a concomitant increase in CDK1 and cyclin B1 expression occurred. In addition, TY04 treatment also resulted in a significant downregulation of γ-tubulin. Considering the unique advantages of aptamers, TY04 shows great potential as a drug candidate to treat multiple myeloma.  相似文献   

10.
A membrane-targeted, lipophilic ether lipid of synthetic phospholipid analog, erucylphosphocholine (ErPC), induces apoptosis in some lines of human tumor cells. We investigated the effect of ErPC in the choriocarcinoma cell line, BeWo. BeWo cells were treated with various concentrations of ErPC, and changes in cell growth, the cell cycle, apoptosis, and related parameters were examined. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that BeWo cells were sensitive to the growth inhibitory effect of ErPC. Cell cycle analysis indicated that exposure to ErPC decreased the proportion of cells in the S phase and increased the proportion in the G0/G1 phases of the cell cycle. Induction of apoptosis was confirmed by Annexin V staining of externalized phosphatidylserine and by the loss of mitochondrial transmembrane potential. This induction occurred in conjunction with the altered expression of genes related to cell growth, malignant phenotype, and apoptosis. These results suggest that ErPC may serve as a therapeutic agent for the treatment of choriocarcinoma.  相似文献   

11.
Han YH  Park WH 《Oncology reports》2012,27(3):842-848
A stable nitroxide 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-osyl (Tempol) is widely used as an antioxidant in?vitro and in?vivo. In this study, we investigated the effects of Tempol on the growth of As4.1 juxtaglomerular cells in relation to cell cycle and cell death. Tempol dose-dependently decreased the growth of As4.1 cells with an IC50 of ~1?mM at 48?h. DNA flow cytometry analysis and BrdU staining indicated that Tempol induced S phase arrest, which is accompanied by a downregulation of cyclin A. Tempol also induced apoptotic cell death, which was accompanied by the loss of mitochondrial membrane potential (MMP; ?Ψm), an activation of caspase-3 and cleavage of poly(ADP-ribose)polymerase-1 (PARP-1). Furthermore, Tempol increased reactive oxygen species (ROS) levels, and the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). MEK and JNK inhibitors significantly attenuated a growth inhibition in Tempol-treated As4.1 cells. In conclusion, Tempol inhibited the growth of As4.1 cells via cell cycle arrest and apoptosis. Tempol also activated ERK and JNK signaling, which was responsible for cell growth inhibition. Our present data provide useful information for the toxicological effects of Tempol in juxtaglomerular cells in relation to cell growth inhibition and cell death.  相似文献   

12.
Previously, we showed that monensin, Na+ ionophore, potently inhibited the growth of acute myelogenous leukemia and lymphoma cells. Here, we demonstrate that monensin inhibited the proliferation of renal cell carcinoma cells with IC50 of about 2.5 micro M. Monensin induced a G1 or a G2-M phase arrest in these cells. When we examined the effects of this drug on ACHN cells, monensin decreased the levels of CDK2, CDK6, cdc2, cyclin A and cyclin B1 proteins. p21 and p27 proteins were increased by monensin. In addition, monensin markedly enhanced the binding of p21 with CDK2 and the binding of p27 with CDK6. Furthermore, the activities of CDK2- and CDK6-associated kinase were reduced in association with hypophosphorylation of Rb protein. Monensin also induced the apoptosis in several renal cell carcinoma cells. Apoptotic process of Caki-2 cells was associated with the changes of Bcl-2, Bcl-XL, caspase-9, caspase-3, caspase-7 proteins as well as mitochondria transmembrane potential (DeltaPsim) loss. Taken together, these results demonstrate for the first time that monensin inhibits the growth of renal cell carcinoma cells via cell cycle arrest or apoptosis.  相似文献   

13.
Extensive studies have implicated the role of dietary fatty acids in prostatecancer progression. Platelet-type 12-Lipoxygenase (12-LOX) has beenshown to regulate growth, metastasis, and angiogenesis of prostate cancer. The effect of two 12-LOX inhibitors, Baicalein and N-benzyl-N-hydroxy-5-phenylpentamide (BHPP), on the mechanisms controlling cell cycle progression and apoptosis were examined in two prostate cancer cell lines, PC3 and DU-145. Treatment with Baicalein or BHPP resulted in a dose-dependent decrease in cell proliferation, as measured by BrdUrd incorporation. This growth arrest was shown to be because of cell cycle inhibition at G0/G1, and was associated with suppression of cyclin D1 and D3 protein levels. PC3 cells also showed a strong decrease in phosphorylated retinoblastoma (pRB) protein, whereas the other retinoblastoma-associated proteins, p107 and p130, were inhibited in DU-145 cells. Treatment with 12-hydroxyeicosatetraenoic acid in the presence of Baicalein blocked loss of pRB, whereas 12(S)-HETE alone induced pRB expression. Treatment with either Baicalein or BHPP resulted in significant apoptosis in both cell lines as measured by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling. DU-145 cells underwent apoptosis more rapidly than PC-3 cells. The mechanisms involved were decreased phosphorylation of Akt, loss of survivin and subsequent activation of caspase-3 and caspase-7 in each cell line, decreased Bcl-2 and Bcl-X(L) expression in DU-145, and a shift in Bcl-2/Bax levels favoring apoptosis in PC-3 cells. Addition of 12(S)-HETE protected both cell lines from Baicalein-induced apoptosis, whereas other LOX metabolites, 5(S)-HETE, or 15(S)-HETE did not. These results show that the 12-LOX pathway is a critical regulator of prostate cancer progression and apoptosis, by affecting various proteins regulating these processes. Therefore, inhibition of 12-LOX is a potential therapeutic agent in the treatment of prostate cancer.  相似文献   

14.
Cucurbitacin D, a newly isolated triterpenoid cucurbitacin, has been found to possess anticancer effects. The purpose of this study was to elucidate the effects of cucurbitacin D on human endometrial and ovarian cancer cells. Human endometrial and ovarian cancer cells were treated with various concentrations of cucurbitacin D, and its effects on cell growth, the cell cycle, apoptosis, and their related measurements were investigated in vitro. All endometrial and ovarian cancer cell lines were sensitive to the growth-inhibitory effect of cucurbitacin D. Cell cycle analysis indicated that their exposure to cucurbitacin D increased the proportion in the sub-G0/G1 phases and G2/M phases of the cell cycle. Induction of apoptosis was confirmed by annexin V staining of externalized phosphatidylserine and loss of the transmembrane potential of mitochondria. This induction occurred in concert with altered expression of genes related to cell growth, malignant phenotype, and apoptosis. Our results suggest that cucurbitacin D might be a new therapeutic option for the treatment of endometrial and ovarian cancers.  相似文献   

15.
16.
Prostate cancer (PCa) patients receiving the androgen ablation therapy ultimately develop recurrent castration-resistant prostate cancer (CRPC) within 1–3 years. Treatment with caffeic acid phenethyl ester (CAPE) suppressed cell survival and proliferation via induction of G1 or G2/M cell cycle arrest in LNCaP 104-R1, DU-145, 22Rv1, and C4–2 CRPC cells. CAPE treatment also inhibited soft agar colony formation and retarded nude mice xenograft growth of LNCaP 104-R1 cells. We identified that CAPE treatment significantly reduced protein abundance of Skp2, Cdk2, Cdk4, Cdk7, Rb, phospho-Rb S807/811, cyclin A, cyclin D1, cyclin H, E2F1, c-Myc, SGK, phospho-p70S6kinase T421/S424, phospho-mTOR Ser2481, phospho-GSK3α Ser21, but induced p21Cip1, p27Kip1, ATF4, cyclin E, p53, TRIB3, phospho-p53 (Ser6, Ser33, Ser46, Ser392), phospho-p38 MAPK Thr180/Tyr182, Chk1, Chk2, phospho-ATM S1981, phospho-ATR S428, and phospho-p90RSK Ser380. CAPE treatment decreased Skp2 and Akt1 protein expression in LNCaP 104-R1 tumors as compared to control group. Overexpression of Skp2, or siRNA knockdown of p21Cip1, p27Kip1, or p53 blocked suppressive effect of CAPE treatment. Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT737 showed synergistic suppressive effects. Our finding suggested that CAPE treatment induced cell cycle arrest and growth inhibition in CRPC cells via regulation of Skp2, p53, p21Cip1, and p27Kip1.  相似文献   

17.
Multiple myeloma (MM) is a clonal neoplasm of plasma cells which offers an excellent model to study multistep molecular oncogenesis. In 20-25% of primary tumors and cell lines examined, cyclin D1 is overexpressed due to the translocation t(11;14)(q13;q32). We have characterized cyclin-dependent kinase inhibitor p15 (CDKN2B), p16 (CDKN2A) and p18 (CDKN2C) deletions in cyclin D1-expressing and non-expressing MM cell lines. p18 was found to be frequently deleted (38%); in some cases p18 deletions coexisted with hemizygous p16 deletion. To examine the function of p18 as a putative tumor suppressor in myeloma cells, a zinc-inducible p18 construct was stably transfected into KMS12, a MM cell line with biallelic p18 and monoallelic p16 deletions as well as cyclin D1 overexpression. Ectopic expression of p18 caused 40-45% growth suppression as determined by trypan blue exclusion and MTS assays. p18 induction also resulted in apoptosis, suggesting that inhibition of the cyclin D1/CDK/pRb pathway in these tumor cells could be a crucial step toward the induction of tumor regression via apoptotic cell death. This cell cycle pathway is thus frequently mutated and provides a potentially novel target for gene therapeutic or pharmacologic approaches to human myeloma.  相似文献   

18.
Cepharanthine (CEP), a biscoclaurine alkaloid extracted from Stephania Cepharantha Hayata, has been used in Japan for treating patients with radiation-induced leucopenia or thrombocytopenia. We treated a patient with multiple myeloma (MM), who was not responding to preceding chemotherapy, who coincidently received therapy with CEP due to thrombocytopenia. Since the case showed a marked reduction of tumor load, direct anti-tumor effects of CEP to myeloma cells were investigated in vitro. Anti-tumor effects were observed in all myeloma cell lines tested, including a line resistant to melphalan. Exposure to CEP of a myeloma cell line induced the production of reactive oxygen species, activated the caspase-3 pathway and eventually induced apoptosis. Pre-exposure of cells to a pan-caspase inhibitor, Z-VAD-FMK, or a free radical scavenger, Tiron, effectively blocked CEP-induced apoptosis. Interestingly, CEP also inhibited cell growth of myeloma cells by inducing CDK inhibitors. These data show, for the first time, that CEP has anti-myeloma effects by the activation of apoptotic pathways and blocking cell cycle progression via CDK inhibitors. Although analysis of these two pathways should be clarified further, the use of CEP may be considered as a potential therapeutic agent for a subset of MM.  相似文献   

19.
20.
Meng J  Zhang HH  Zhou CX  Li C  Zhang F  Mei QB 《Oncology reports》2012,28(1):384-388
Many chemotherapeutic agents induce apoptosis via a p53-dependent pathway. However, up to 50% of human cancers have p53 mutation and loss of p53 function. Histone deacetylase inhibitors (HDACIs) are emerging as a potentially important new class of anticancer agents. Here, we report that, Trichostatin A (TSA), a pan-HDAC inhibitor, could induce G2/M cell cycle arrest and apoptosis in both colorectal cancer cell lines with wild-type p53 (HT116 cells) and mutant p53 (HT29 cells), although HCT116 cells had more apoptotic cells than HT29 cells. TSA induces apoptosis in both cell lines via the mitochondrial pathway as indicated by decrease of the mitochondrial membrane potential (MMP) and activation of caspase-3. Additionally, TSA induces expression of the pro-apoptotic protein Bax and decreases the expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL in both cell lines. Bax knockdown by siRNA significantly impaired TSA-induced apoptosis in both cell lines. These data suggest that TSA induces G2/M cell cycle arrest and Bax-dependent apoptosis in colorectal cancer cells (HCT116 cells and HT29 cells) by both p53-dependent and -independent mechanisms. However, cells with normal p53 function are more sensitive to TSA-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号