首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang X  Li J  Sejas DP  Pang Q 《Blood》2005,106(1):75-85
Hematopoietic cells are often exposed to transient hypoxia and reoxygenation as they develop and migrate. Given that bone marrow (BM) failure occurred in patients with Fanconi anemia (FA), we reason that hypoxia-then-reoxygenation represents a physiologically relevant stress for FA hematopoietic progenitor/stem cells. Here we show that expansion of Fancc-/- BM cells enriched for progenitor and stem cells was significantly decreased after 2 continuous cycles of hyperoxic-hypoxic-hyperoxic treatments compared with wild-type (WT) BM cells. This inhibition was attributable to a marked decrease of lineage-depleted (Lin-) ScaI- c-kit+ cells and more primitive Lin- ScaI+ c-kit+ cells in Fancc-/- BM cells following reoxygenation. Evaluation of the cell-cycle profile of long-term BM culture (LTBMC) revealed that a vast majority (70.6%) of reoxygenated Fancc-/- LTBMC cells was residing in the G0 and G1 phases compared with 55.8% in WT LTBMC cells. Fancc-/- LTBMC cells stained intensely for SA-beta-galactosidase activity, a biomarker for senescence; this was associated with increased expression of senescence-associated proteins p53 and p21(WAF1/CIP1). Taken together, these results suggest that reoxygenation induces premature senescence in Fancc-/- BM hematopoietic cells by signaling through p53, up-regulating p21, and causing senescent cell-cycle arrest. Thus, reoxygenation-induced premature senescence may be a novel mechanism underlying hematopoietic cell depletion and BM failure in FA.  相似文献   

2.
We previously showed that basic fibroblast growth factor (bFGF) is a potent mitogen for human bone marrow (BM) stromal cells and significantly delays their senescence. In the present study, we demonstrated that low concentrations of bFGF (0.2 to 2 ng/mL) enhance myelopoiesis in long-term human BM culture. Addition of bFGF to long-term BM cultures resulted in an increase in (a) the number of nonadherent cells (sixfold), particularly those of the neutrophil granulocyte series; (b) the number of nonadherent granulocyte colony-stimulating factor (G-CSF)- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-responsive progenitor cells; (c) the number of adherent foci of hematopoietic cells (10-fold); and (d) the number of progenitor cells in the adherent stromal cell layer. These effects were not noted with higher concentrations of bFGF (20 ng/mL). Thus, low concentrations of bFGF effectively augment myelopoiesis in human long-term BM cultures, and bFGF may therefore be a regulator of the hematopoietic system in vitro and in vivo.  相似文献   

3.
J M Heard  S Fichelson  B Varet 《Blood》1982,59(4):761-767
The involvement of colony-stimulating activity (CSA) in murine long- term bone marrow cultures (LTBMC) was studied using bilayer agar cultures. The supernatants of LTBMC were removed, a layer of dense agar was spread over the cells adherent to the bottom of the flask, and fresh myeloid cells were plated as source of CFU-C in an upper agar layer. Large numbers of granulocytic and macrophagic colonies developed regularly when target cells were plated over adherent cells of nonrecharged and greater than 12 wk old LTBMC that were hematopoietically inactive (i.e., producing a low number of nonadherent cells). The removal of adherent cells from the myeloid cells used as source of CFU-C did not decrease the number of colonies. This suggests that adherent cells of LTBMC release CSA that is directly active on CFU- C. This CSA was no longer detectable over adherent layers of hematopoietically active LTBMC. A close inverse relationship was demonstrated between the number of nonadherent cells harvested before the assay and the level of CSA. No inhibitor for CSA was demonstrated in the supernatant of hematopoietically active cultures. Murine exogenous CSA incubated over the adherent layer host its activity within 24 hr, whereas in the same conditions human CSA retained its activity. These data demonstrate the production of CSA by the adherent layer of LTBMC and strongly suggest its specific in situ consumption by differentiating myeloid cells.  相似文献   

4.
To study the effect of interleukin-1 (IL-1) beta on the proliferation of hematopoietic progenitor cells (HPC) in long-term bone marrow cultures (LTBMC), stromal cell layers were established from normal human bone marrow. Autologous cryopreserved mononuclear phagocyte- and T-lymphocyte-depleted bone marrow cells were reinoculated on the stromal layers in fresh culture medium, with or without the addition of human IL-1 beta (30 U/mL). Once a week, half of the culture supernatant was replaced with fresh culture medium with or without IL-1, and all nonadherent cells were returned to the flasks. At weekly intervals during a period of 5 weeks, one culture was sacrificed to determine the total number of cells and hematopoietic progenitor cells, present in the adherent and the nonadherent cell fractions. In IL-1-stimulated cultures, the number of cells recovered during a period of 5 weeks exceeded the number of cells in unstimulated control cultures by 1.5 times. This difference was attributed to a twofold increase in the number of adherent cells. The number of HPC recovered from IL-1- stimulated cultures was not different from that recovered from controls. The levels of colony-stimulating activity (CSA) in supernatants from IL-1-stimulated cultures were significantly higher than those in supernatants from control cultures. These results indicate that IL-1 enhances the recovery of cells in LTBMC by stimulating the proliferation of HPC with the concurrent release of CSA from stromal cells, without diminishing the number of HPC.  相似文献   

5.
Simmons  PJ; Torok-Storb  B 《Blood》1991,78(1):55-62
Murine IgM monoclonal antibody STRO-1 identifies a cell surface antigen expressed by stromal elements in human bone marrow (BM). STRO-1 binds to approximately 10% of BM mononuclear cells, greater than 95% of which are nucleated erythroid precursors, but does not react with committed progenitor cells (colony-forming unit granulocyte-macrophage [CFU-GM], erythroid bursts [BFU-E], and mixed colonies [CFU-Mix]). Fibroblast colony-forming cells (CFU-F) are present exclusively in the STRO-1+ population. Dual-color cell sorting using STRO-1 in combination with antibody to glycophorin A yields a population approximately 100-fold enriched in CFU-F in the STRO-1+/glycophorin A+ population. When plated under long-term BM culture (LTBMC) conditions, STRO-1+ cells generate adherent cell layers containing multiple stromal cell types, including adipocytes, smooth muscle cells, and fibroblastic elements. STRO-1+ cells isolated from LTBMC at later times retain the capacity to generate adherent layers with a cellular composition identical to that of the parent cultures. The STRO-1-selected adherent layers are able to support the generation of clonogenic cells and mature hematopoietic cells from a population of CD34+ cells highly enriched in so-called long-term culture-initiating cells. We conclude that antibody STRO-1 binds to BM stromal elements with the capacity to transfer the hematopoietic microenvironment in vitro.  相似文献   

6.
We have studied how production of colony-stimulating factors (CSF) can be induced in murine long-term bone marrow cultures (LTBMC). We found that the adherent cells, but not the nonadherent cells, of LTBMC synthesized and secreted large amounts of CSF upon stimulation with monocyte-conditioned medium (MCM) from the early phase of monocyte culturing. This CSF induced both granulocyte- and macrophage-containing colonies. Interleukin 1 (IL-1) also induced CSF production by the adherent cells, although not to the same extent as MCM. Medium conditioned by E-rosette-positive lymphocytes could not substitute for MCM. CSF production varied in long-term bone marrow cultures less than two weeks old, but thereafter the amount of CSF obtained was relatively independent of the age of the cultures (2-26 weeks). No correlation was found between the content of granulocyte-macrophage colony-forming cells (GM-CFC) in the nonadherent cell fraction of LTBMC and the ability of the adherent cell layer to produce CSF. These results suggest a two-stage process for CSF synthesis. Monocytes produce a factor(s) that, in a second step, leads to bioassayable levels of CSF in the supernatant of adherent cells in LTBMC.  相似文献   

7.
L H Coutinho  A Will  J Radford  R Schiró  N G Testa  T M Dexter 《Blood》1990,75(11):2118-2129
We have studied the effects of recombinant human granulocyte colony-stimulating factor (rhG-CSF), hG macrophage-CSF (hGM-CSF), and gibbon interleukin-3 (gIL-3) on cell proliferation and differentiation in human long-term bone marrow culture (LTBMC). hG-CSF induced a maximal increase of 2.3-fold in both total nonadherent cells and GM cluster-forming cells, but only an increase of 1.7-fold in GM-colony-forming cell (GM-CFC) numbers, influencing mainly neutrophil differentiation. Cultures treated with hGM-CSF demonstrated a peak of 12.8-, 21- and 3.2-fold elevations in total nonadherent cells, cluster, and GM-CFC, respectively, and influenced differentiation of neutrophils, monocytes, eosinophils, and lymphocytes. Cultures treated with gIL-3 demonstrated the largest expansion in the GM-CFC population, reaching a maximum of 5.3-fold in relation to that of unstimulated controls. IL-3 treatment also increased the numbers of GM clusters and mature cells (including all myeloid cells and lymphocytes) 7.8- and 4.8-fold, respectively. Similar quantitative and qualitative changes were induced by G-CSF, GM-CSF, and IL-3 in LTBMCs of patients in remission after treatment for acute lymphoblastic leukemia or Hodgkin's lymphoma. Overall, the expansion of GM progenitor cells in cultures treated with growth factors was larger in the adherent cell layer than in the nonadherent cell fraction. In addition, hGM-CSF, gIL-3, and hG-CSF to a less extent, increased the cycling rates of GM-CFC progenitors located in the adherent layer. These results indicate that hG-CSF is a much less potent stimulus of hematopoiesis in LTBMC than the other CSFs assayed, and that the increases in cell production after treatment with G-CSF, GM-CSF, or IL-3 may be achieved by primary expansion of different cell populations within the hierarchy of the hematopoietic system. The effects of the growth factors were transient and the longevity of hematopoiesis in the cultures was not altered, suggesting that treatment with IL-3, GM-CSF, or G-CSF had not compromised the ability of primitive cells to give rise to mature cells. This indicates that the stromal microenvironment in LTBMC can override potential differentiation-inducing activities of the CSFs.  相似文献   

8.
Summary The extracellular matrix (ECM) produced by the stromal layer plays a key role in the regulation of commitment and differentiation of hematopoietic cells. Long-term bone marrow culture (LTBMC) allows analysis of the stromal microenvironment. Recently, serum-free LTBMC has been described, but the formation of a classical adherent layer was never observed under these conditions. We have evaluated the effect(s) of a chemically well defined ECM on serum-free and serum-dependent LTBMC. In serum-dependent cultures ECM did not induce a significant increase of hematopoiesis. In serum-free conditions, a marked improvement of hematopoiesis was observed, both in terms of CFU-GM and BFU-E yield and in duration of cultures. A confluent stromal layer was observed only in the presence of ECM. The present results indicate that the addition of ECM to serum-free cultures provides a standardized culture condition, while improving progenitor cell recovery and allowing formation of a confluent stromal layer. Moreover, ECM+ LTBMC may provide a model to study the effect(s) of adhesive proteins and hematopoietic growth factors normally present in serum.This work was supported by an AIRC grant and the Program Terapia dei Tumori,Istituto Superiore di Sanità, Rome  相似文献   

9.
We have characterized the proliferation kinetics of hematopoietic cells in long-term marrow cultures (LTMC) from five normal children and seven children with congenital bone marrow failure (four with Fanconi anemia [FA] and three with congenital pure red cell aplasia [PRCA]). Total nonadherent and adherent cells, as well as nonadherent progenitors, were determined weekly in the presence or in the absence of rhGM-CSF (10 ng/ml) or rhEPO (3 U/ml). As compared to normal LTMC, hematopoiesis was drastically reduced in cultures from FA patients. Myeloid and erythroid progenitor cells reached undetectable levels after only 3 and 1 weeks of culture, respectively. This was observed even in cultures supplemented with rhGM-CSF, in which no response to this cytokine occurred. In LTMC from PRCA children, the growth of erythroid and multipotent progenitors was also drastically reduced. Myelopoiesis, on the other hand, showed normal levels during the first three weeks of culture; however, from week 4, there was a significant decrease in the levels of both progenitor and mature cells, reaching undetectable levels several weeks before normal cells did. Response to rhGM-CSF and rhEPO was transient and deficient. Our results suggest that in FA, alterations at the level of primitive progenitor cells are so severe that myeloid, erythroid and multipotent progenitors are unable to proliferate in LTMC, even in the presence of rhGM-CSF. In patients with PRCA the erythroid arm of hematopoiesis is preferentially affected and addition of rhGM-CSF and/or rhEPO to these cultures had little or no effect on erythroid cell production. Interestingly, myelopoiesis in this culture system was deficient as well and response to rhGM-CSF was defective, suggesting that the myeloid lineage is also altered in congenital PRCA.  相似文献   

10.
Selleri  C; Maciejewski  JP; Sato  T; Young  NS 《Blood》1996,87(10):4149-4157
Clinical and laboratory studies have suggested involvement of interferon-gamma (IFN-gamma) in the pathophysiology of aplastic anemia. T cells from aplastic anemia (AA) patients secrete IFN-gamma in vitro, activated cytotoxic lymphocytes infiltrate aplastic bone marrow (BM), and IFN-gamma mRNA, not detected in normal BM, is present in BM from most AA patients. Many patients respond to immunosuppressive therapy with antithymocyte globulin and cyclosporine. Using long-term BM cultures (LTBMC) as a tissue culture model of hematopoiesis, we show that IFN-gamma is a potent inhibitor in the long-term culture- initiating cell (LTC-IC) assay, the best in vitro surrogate test for human hematopoietic stem cells, as well as of the output of committed progenitor cells (colony-forming unit-granulocyte-macrophage [CFU-GM] and burst-forming unit-erythroid [BFU-E]). In LTBMC, continuous addition of relatively high IFN-gamma concentrations (1,000 U/mL weekly or 200 U/mL every 2 days) was required for inhibition of secondary colony formation, a measure of LTC-IC number and clonogenicity. To mimick local production of IFN-gamma, human stromal cells were engineered by retroviral-mediated gene transfer to express a transduced IFN-gamma gene. IFN-gamma secreted by stromal cells was far more potent than exogenous IFN-gamma in its effects in the LTC-IC assay. For purified CD34+ cells culture in the presence of IFN-gamma stroma dramatically reduced secondary colony numbers as well as production of CFU-GM and BFU-E. Supernatants from these cultures contained only about 20 U/mL of IFN-gamma; this quantity of cytokine, when added to LTBMC, had little effect on hematopoiesis. The mechanism of hematopoietic suppression was related to the inhibition of cell cycle progression and induction of apoptosis of CD34+ cells. There was no apparent effect of local low-level IFN-gamma production on stromal cell function, as reflected in cell morphology, cell surface phenotype, or expression of hematopoietic growth factor genes. LTBMC with genetically altered stromal cells offers an in vitro model of immune suppression of hematopoiesis in AA and may be helpful in testing certain therapeutic modalities. We infer from our data that local production of low levels of inhibitory cytokine is sufficient to markedly inhibit hematopoiesis and to destroy stem cells and more mature progenitor cells.  相似文献   

11.
Koller  MR; Emerson  SG; Palsson  BO 《Blood》1993,82(2):378-384
There is a growing consensus that clinical practice in the areas of bone marrow (BM) transplantation and gene therapy will rely on the ex vivo expansion of hematopoietic cells. We report here on the development of continuously perfused culture systems (bioreactor systems) that expand human stem and progenitor cells from BM mononuclear cell (MNC) populations obtained without cell enrichment. In three separate experiments, 10 bioreactors were each inoculated with 3 x 10(7) BM MNC from patients undergoing marrow harvest for autologous transplantation. At various times thereafter (between days 6 and 16), duplicate bioreactors were harvested and cells were analyzed. The bioreactors contained three cell populations that were analyzed separately: nonadherent cells; cells that were loosely adherent to the endogenously formed stromal layer; and an adherent cell layer that required trypsinization for removal. Total cell numbers increased continuously to give an overall 10-fold (range, 8- to 11-fold) expansion by day 14. The adherent stromal layer significantly expanded to more than 2 x 10(7) cells, but remained less than 6% of the total cell population. Colony-forming unit-granulocyte-macrophage (CFU-GM) numbers expanded 21-fold (range, 12- to 34-fold) by day 14 and, because this expansion was greater than that for total cells, CFU-GM were enriched by as much as fourfold by day 14. Burst-forming unit-erythroid (BFU-E) numbers peaked earlier than did CFU-GM numbers, with a 12-fold (range, 6- to 18-fold) expansion obtained on day 8. In contrast to CFU- GM, which were predominantly nonadherent, BFU-E were more evenly distributed between the three cell populations. Stem cell activity was measured by the long-term culture-initiating cell (LTC-IC) limiting dilution assay. The number of LTC-IC per reactor consistently increased with time in all cultures, resulting in a 7.5-fold (range, 3.4- to 9.8- fold) expansion. In summary, more than 3 billion cells, containing 12 million CFU-GM, were reproducibly generated from the equivalent of a 10 to 15 ml BM aspirate. These data indicate that small numbers of BM MNC can be readily expanded ex vivo in continuous perfusion cultures, and that such ex vivo expansion may have direct applications in clinical and experimental BM transplantation.  相似文献   

12.
Human long-term bone marrow cultures (LTBMC) provide a very interesting tool for studying the events that are involved in stem cell commitment. At the present time, megakaryocyte (MK) progenitor cells have never been demonstrated in this system. In an effort to detect this cell lineage, we modified the culture medium by substituting fetal calf serum (FCS) and horse serum (HS) mix with human plasma obtained from treated aplastic leukemic patients. This plasma was harvested between days 15 and 21 following induction chemotherapy or conditioning regimen for autograft or allogeneic bone marrow transplantation. Using LTBMC, 17 normal marrows were cultivated for 11 weeks in Iscove's modified Dulbecco's medium containing either 20% human aplastic plasma or control FCS/HS mixture. In this plasma medium we observed the development of an adherent layer morphologically comparable to that observed with standard medium. We demonstrated presence of MK cells at all stages of maturation for 10 weeks and MK colony-forming cells (CFU-MK) for 11 weeks in the culture supernatants. An increased production of nonadherent cells and granulocyte-macrophage progenitors (CFU-GM) was also observed. LTBMC in aplastic plasma medium provide a new method for studying megakaryocytopoiesis, especially in human hematological diseases.  相似文献   

13.
Fanconi anemia (FA) is a rare inherited genomic instability syndrome representing one of the best examples of hematopoietic stem cell deficiency. Although FA might be an excellent candidate for bone marrow (BM) genetic correction ex vivo, knockout animal models are not sufficient to guide preclinical steps, and gene therapy attempts have proven disappointing so far. Contributing to these poor results is a characteristic and dramatic early BM-cells die-off when placed in culture. We show here that human primary FA BM cell survival can be ameliorated by using specific culture conditions that limit oxidative stress. When coupled with retrovirus-mediated transfer of the main complementation group FANCA-cDNA, we could achieve long-term reconstitution of the stem cell compartment both in vitro and in vivo. Gene-corrected BM cultures grew for >120 days, and after cultured cell transplantation into NOD/SCID mice, clonogenic human cells carrying the FANCA transgene could be detected 6 months after transduction. By comparison, untransduced cells died in culture by 15 days. Of necessity for ethical reasons, experiments were conducted on a very limited number of primary BM cells. By using low cytokine regimen and conditions matching regulatory requirements, a contingent of gene-corrected cells slowly emerges with an unmet potential for in vivo engraftment. Future therapeutic applications of stem cells might be expanding from these data. In addition, we provide a model of gene-corrected human primary cell growth that carries the potential to better delineate the combined role of both DNA damage and oxidative stress in the pathogenesis of FA.  相似文献   

14.
J C Marsh  J Chang  N G Testa  J M Hows  T M Dexter 《Blood》1990,76(9):1748-1757
Thirty-two patients with aplastic anemia (AA) have been studied using the long-term bone marrow culture (LTBMC) system. Of these patients, 26 had been treated with immunosuppressive therapy including antilymphocyte globulin (ALG) with or without androgens or high-dose methyl prednisolone. The remaining six patients either required no treatment or were studied before therapy was begun. Thirty-one of 32 patients (96%) had defective hematopoiesis in LTBMC with little or no evidence for the generation of primitive progenitor cells. The only exception was a patient with spontaneous recovery of aplasia in whom the defect was less marked. Crossover LTBMC experiments were performed in 23 cases by inoculating (1) patient marrow hematopoietic cells that had been depleted of adherent cells onto preformed, irradiated, normal stromas to assess the proliferative capacity of the hematopoietic cells, and (2) normal marrow hematopoietic cells that were depleted of adherent cells onto preformed, irradiated stromas from patients with AA to assess stromal function. Results of these experiments demonstrated a hematopoietic defect in all patients that was independent of the degree of hematologic recovery after ALG therapy. Only one patient had a probable stromal defect and this coexisted with a defect in the regenerative capacity of hematopoietic cells. We conclude that LTBMC is a sensitive method for detecting and defining the hematopoietic failure in AA. We suggest that the defective hematopoiesis present in all patients studied may be important in the pathogenesis of clonal evolution in AA.  相似文献   

15.
Differences in the plastic adhesive properties of bone marrow (BM) cells were used to initiate modified stromal layers (MSL) from long-term cultures by removing non-adherent cells shortly (4 to 18 hours) after initial seeding. Following this early modification, adherent cells generated a confluent layer after 21 days of culture. Cellular characteristics of volume and spontaneous fluorescence determined by flow cytometry showed that the MSL included 82% fibroblastic stromal cells, 8% macrophages and 10% myelomonocytic cells. Furthermore, clonogenic assays revealed that the MSL were devoid of hematopoietic progenitor cells. MSL were found to sustain long-term myelopoiesis for at least 7 weeks from exogenously added hematopoietic progenitors isolated from bone marrow (CD34+ cells), thereby demonstrating their functionality. The present experimental model appears of interest for the study of interactions between defined populations of hematopoietic cells and cells of the adherent layer. Of importance, our present modifications of human long-term bone marrow culture are technically simple and do not involve manipulation of the stromal cells.  相似文献   

16.
Estrov  Z; Grunberger  T; Chan  HS; Freedman  MH 《Blood》1986,67(5):1382-1387
To characterize juvenile chronic myelogenous leukemia (JCML), the proliferative properties of bone marrow (BM) and peripheral blood (PB) cells from nine patients were studied using assays for CFU-C and CFU- GEMM and liquid cultures. All specimens showed two reproducible abnormalities: impaired growth of normal hematopoietic progenitors and excessive proliferation of monocyte-macrophage colonies in the absence of exogenous colony-stimulating activity (CSA). Cytogenetic studies in one patient indicated that the CFU-C were malignant because BM cells at diagnosis and monocyte-macrophage colonies showed an abnormal karyotype, whereas PB lymphocytes did not. In contrast to JCML, PB from six adults with Philadelphia (Ph1) chromosome-positive chronic myelogenous leukemia (Ph1 + CML) yielded CSA-dependent CFU-C colonies which were composed of granulocytes, macrophages, or both, as well as exuberant growth of BFU-E colonies. Co-cultures of JCML BM adherent or nonadherent cells with normal BM resulted in suppression of normal hematopoietic colony formation. Supernatant from JCML adherent cells in liquid culture or plasma from newly diagnosed untreated JCML patients also suppressed control BM colony growth in a dose-dependent manner. These findings confirm that JCML is a malignant disorder of monocytic lineage and suggest that the mechanism of hematopoietic failure in JCML is mediated by an inhibitory monokine secreted by malignant JCML cells.  相似文献   

17.
Hemin stimulation of hemopoiesis in murine long-term bone marrow culture.   总被引:2,自引:0,他引:2  
The effect of various concentrations of exogenous hemin on cellularity and hemopoietic clonal potential of cells maintained in murine long-term marrow cultures (LTBMC) was studied. Hemin, at concentrations of 1 and 10 microM, was added weekly to LTBMC and was found to produce a significant increase in cellularity for up to 8 weeks in culture. Lower concentrations of hemin (0.1 microM) were more effective for sustained cellularity in older cultures (10-12 weeks). Prior exposure of the adherent cell layer to high concentrations of hemin (10 microM) was found to have a beneficial effect on the support of newly seeded cultures; however, the effect of lower hemin concentrations (0.1-1 microM) on stromal cell layer formation was not significant. Supplementation of hemin for the first week in culture increased cumulative cell production as well as the number of granulocyte-macrophage colony-forming units (CFU-GM), and longevity of hemopoiesis in LTBMC was significantly increased with 0.1 microM hemin. In contrast with data obtained in short-term cultures, hemin in this system primarily affected the myeloid line of differentiation, whereas there was a less noticeable effect on the early erythroid progenitors (erythroid burst-forming units, BFU-E). Hemin, at 0.1 microM, increased spleen colony-forming units (CFU-S) to numbers several-fold higher than those of the control. Results suggest that hemin may produce mobilization of hemopoietic cells and committed precursors from adherent cells into suspension. Further, supplementation with hemin in LTBMC significantly increased the myeloid progenitor compartment and longevity of culture without altering the erythroid compartment.  相似文献   

18.
A retroviral vector (N2-SV-GC) was constructed by inserting a normal human glucocerebrosidase (GC) cDNA under control of the SV40 early region promoter into the Moloney murine leukemia virus-derived N2 vector. N2-SV-GC produced human GC in murine 3T3 fibroblasts at levels in the range of the endogenous murine GC as determined by enzymatic assay and Western blot analysis. The N2-SV-GC retroviral vector was used for studies of gene transduction of murine hematopoietic progenitor cells (HPC). Infection of bone marrow cultured for 2 to 10 days in medium containing hematopoietic growth factors was significantly more efficient than infection of freshly isolated marrow cells (24% to 32% G418-resistant CFU-GM v 15%, respectively). The marrow infected by N2-SV-GC was maintained in long-term bone marrow culture (LTBMC) and had a stable level of G418-resistant HPC over 2 months of serial assays. The human GC gene of the vector was persistently expressed in the nonadherent cell fraction of the murine LTBMC as determined by Northern blotting, Western blotting, and immunohistochemical staining using a monoclonal antibody specific for human GC. N2-SV-GC also expressed the human GC gene in day 12 CFU-S. LTBMC represents a novel system for retroviral vector-mediated gene transduction of HPC and may accurately predict the activities of vectors in vivo.  相似文献   

19.
Human Interleukin for DA cells (HILDA), a cytokine also known as leukemia inhibitory factor (LIF), induces proliferation without concurrent differentiation of murine embryonic stem cells. Therefore, we investigated the effects of recombinant HILDA/LIF on the proliferation and differentiation of human hematopoietic progenitor cells (HPC) grown in long-term bone marrow cultures (LTBMC). Pre-established stromal cell layers were reinoculated with autologous cryopreserved mononuclear phagocyte- and T-lymphocyte-depleted bone marrow cells in the presence or absence of HILDA/LIF (200 U/ml). At weekly intervals cultures were sacrificed, and the cells in the adherent and the nonadherent cell fractions were counted. The numbers of HPC were determined by culturing these cells in semisolid medium stimulated with phytohemagglutinin-stimulated leukocyte-conditioned medium (PHA-LCM), and LTBMC supernatants were assayed in semisolid cultures for the presence of colony-stimulating activity (CSA). The total number of cells, their differential counts, the number of HPC, and the concentrations of CSA in culture supernatants were similar for long-term cultures containing HILDA/LIF and for controls. These data suggest that HILDA/LIF may not play a role in the proliferation and differentiation of normal human (early) HPC in LTBMC. Moreover, HILDA/LIF did not stimulate the proliferation of relatively mature progenitor cells in semisolid cultures, not did it influence the colony formation induced by other colony-stimulating factors (CSF). Finally, using a [3H]thymidine suicide test we could not find an effect of HILDA/LIF on the cell-cycle status of HPC.  相似文献   

20.
Bone marrow pluripotent stem cells (CFUs) demonstrate capacity for both proliferation and differentiation. The proliferative capacity of CFUs has been measured by serial transplantability and by the Rs, a measurement of CFU production in a single 14-day transfer. In the present study, the self-renewal capacity fo both adherent and nonadherent CFUs from long-term bone marrow cultures was measured. Culture conditions were established such that nonadherent cells were derived from the adherent cell layer. Both adherent and non-adherent cells produced spleen colonies, demonstrating that significant proliferative potential was present in both locations; however, at all times in culture, the CFUs within the adherent stromal cell layer had a significantly greater self-renewal capacity than did the nonadherent CFUs. During the initial establishment of the cultures, the self-renewal capacity of the adherent CFUs decreased as the total number of CFUs per flask increased. After 3 weeks in culture, the self-renewal potential of the adherent CFUs stabilized and was maintained. These results suggest two different mechanisms of stem cell proliferation. In order to increase the most primitive stem cell pool size, there was initial proliferation of early stem cells with a concomitant decrease in self renewal capacity. Once this pool was established, the self-renewal capacity of the adherent CFUs maintained for 13 weeks in culture suggests that CFU production and cell maintenance were achieved by clonal succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号