首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: The mechanisms underlying the gender differences in alcohol drinking behavior and alcohol's effects are poorly understood and may reflect gender differences in brain neurochemistry. Alcohol decreases glucose metabolism in the human brain in a pattern that is consistent with its facilitation of GABAergic neurotransmission. We compared the regional changes in brain glucose metabolism during alcohol intoxication between female and male subjects. METHODS: Ten female and 10 male healthy controls were scanned with positron emission tomography and 2-deoxy-2[18F]fluoro-D-glucose twice: 40 min after placebo (diet soda) or alcohol (0.75 g/kg mixed with diet soda). RESULTS: Alcohol significantly and consistently decreased whole-brain metabolism. The magnitude of these changes was significantly larger in male (-25 +/- 6%) than in female (-14 +/- 11%; p < 0.005) subjects. Half of the female subjects had reductions in metabolism during intoxication that were significantly lower than those in male subjects. This blunted response in the female subjects was not due to differences in alcohol concentration in plasma, because these did not differ between the genders. In contrast, the self-reports for the perception of intoxication were significantly greater in female than in male subjects. The cognitive deterioration during alcohol intoxication, although not significant, tended to be worse in female subjects. CONCLUSIONS: This study shows a markedly blunted sensitivity to the effects of acute alcohol on brain glucose metabolism in female subjects that may reflect gender differences in alcohol's modulation of GABAergic neurotransmission. The greater behavioral effects of alcohol in female subjects despite the blunted metabolic responses could reflect other effects of alcohol, for which the regional metabolic signal may be hidden within the large decrements in metabolism that occur during alcohol intoxication.  相似文献   

2.
BACKGROUND: Although moderate doses of alcohol can impair performance on tasks that require information processing, little is known about the locus of the alcohol effects within the processing stream. This study used a psychological refractory period paradigm to investigate the effect of alcohol on the central, cognitive stage of information processing when task complexity is manipulated by altering stimulus-response compatibility. METHODS: Thirty-four healthy male social drinkers were assigned to one of two groups (n = 17) that performed two tasks. Each trial consisted of a task 1 stimulus (tone) followed by a task 2 stimulus (letter) that was presented after one of four stimulus onset asynchronies (50, 200, 500, or 1100 msec). A baseline test of performance was obtained before the groups received a beverage containing either 0.0 g/kg (placebo) or 0.65 g/kg alcohol. Both groups were retested when blood alcohol concentration (BAC) was increasing and was decreasing. RESULTS: The alcohol group made significantly more errors in task 1 compared with their drug-free baseline measure during the ascending phase of the BAC curve, and error rates increased to a greater extent for the more complex arbitrary stimulus-response mapping condition. Moreover, this increase in errors continued unabated during the descending phase of the BAC curve. Increasing BACs also slowed performance (longer reaction time), but unlike errors, reaction time returned to drug-free baseline levels when BAC was decreasing. CONCLUSIONS: The results provide evidence that an acute dose of alcohol can impair one aspect of the central, cognitive stages of information processing. The possibility that errors in information processing remain during decreasing BACs even after processing speed has returned to drug-free levels has important practical implications relating to the detrimental consequences of acute alcohol intoxication.  相似文献   

3.
弓形虫慢性感染对小鼠脑内葡萄糖代谢影响的研究   总被引:2,自引:2,他引:0  
目的探讨弓形虫慢性感染对小鼠脑内葡萄糖代谢的影响。方法将30只SPF级ICR小鼠随机分成弓形虫感染组和正常对照组,感染组每只小鼠口服感染弓形虫PRU株包囊悬液0.3m(l含包囊10个),对照组口服0.3ml生理盐水。小鼠感染弓形虫6个月后,应用MicroPET扫描脑内葡萄糖代谢,结束后解剖小鼠进行脑组织病理学观察。结果与正常对照组小鼠相比,弓形虫慢性感染6个月后,"无症状"的感染小鼠脑内葡萄糖代谢均显著下降,脑组织中可见大小不一、数量不等的包囊,脑膜下有大量淋巴细胞浸润、血管充血、小血管淋巴细胞袖管形成。结论弓形虫慢性感染可造成宿主脑内葡萄糖代谢下降,神经元变性或细胞丢失。  相似文献   

4.
Chronic traumatic encephalopathy (CTE) is an acquired primary tauopathy with a variety of cognitive, behavioral, and motor symptoms linked to cumulative brain damage sustained from single, episodic, or repetitive traumatic brain injury (TBI). No definitive clinical diagnosis for this condition exists. In this work, we used [F-18]FDDNP PET to detect brain patterns of neuropathology distribution in retired professional American football players with suspected CTE (n = 14) and compared results with those of cognitively intact controls (n = 28) and patients with Alzheimer’s dementia (AD) (n = 24), a disease that has been cognitively associated with CTE. [F-18]FDDNP PET imaging results in the retired players suggested the presence of neuropathological patterns consistent with models of concussion wherein brainstem white matter tracts undergo early axonal damage and cumulative axonal injuries along subcortical, limbic, and cortical brain circuitries supporting mood, emotions, and behavior. This deposition pattern is distinctively different from the progressive pattern of neuropathology [paired helical filament (PHF)-tau and amyloid-β] in AD, which typically begins in the medial temporal lobe progressing along the cortical default mode network, with no or minimal involvement of subcortical structures. This particular [F-18]FDDNP PET imaging pattern in cases of suspected CTE also is primarily consistent with PHF-tau distribution observed at autopsy in subjects with a history of mild TBI and autopsy-confirmed diagnosis of CTE.The consensus statement on concussions from the Fourth International Conference on Concussion in Sports (Zurich 2012) (1) defines acute mild traumatic brain injury (mTBI) or cerebral concussion as a brain injury with a complex pathophysiological process induced by biomechanical forces. Cerebral concussion causes white matter axonal injury due to axonal shearing and stretching (2), typically resulting in the rapid onset of short-lived impairment of neurological function that resolves spontaneously and largely reflects a functional disturbance rather than a structural injury. As such, no abnormality is seen on standard structural neuroimaging determinations (1).A number of early literature reports described a neurodegenerative disease associated with a history of repetitive TBI in retired professional boxers (3, 4), with a prevalence rate of up to 47% among retired professional boxers aged 50 y and older who boxed for more than 10 y (5). Initially named “punch drunk syndrome” (3) and dementia pugilistica (4), this syndrome is now known as chronic traumatic encephalopathy (CTE) in the current literature (6, 7).Compelling autopsy evidence (68) and neurobehavioral determinations (9) of retired professional American football athletes indicate that a subgroup develops neurodegenerative and clinical changes typical of CTE, a progressive syndrome distinctively different from Alzheimer’s disease (AD), which is the most common form of dementia in the elderly (10). The connection between multiple concussions and subconcussive head impacts (2) and CTE is compelling, because history of repetitive concussions is the strongest risk factor for development of CTE in numerous contact sports (e.g., American football, rugby, boxing, ice hockey, soccer, and professional wrestling), in war veterans with a history of blast or blunt force TBI, and in conditions where trauma to the head occurs for various reasons (e.g., falls during seizures, head-banging in autistic children, motor vehicle and domestic accidents, domestic violence and abuse) (6, 8, 1114). As with most neurodegenerative diseases, clinical diagnosis remains elusive due to the lack of specificity of CTE clinical symptomatology criteria, and histopathological examination of brain at autopsy is the most definitive diagnostic modality (6, 8, 11).The novel imaging approaches leading to the in vivo characterization of CTE brain neuropathology premortem (e.g., PET) are complementary to structural imaging modalities [e.g., diffusion tensor imaging MRI (DTI MRI)] and offer a specific and sensitive strategy to facilitate diagnosis of CTE. Neuronal and glial fibrillar hyperphosphorylated microtubule-associated protein tau deposits composed of paired helical filament (PHF)-tau are the primary brain proteinopathy of CTE based on autopsy determinations, and their 3R/4R tau isoform ratio is similar to that of AD (11). Their topographically predictable pattern of distribution was used as a basis for a severity staging system of CTE neuropathology (7), ranging from mild (neuropathology stages I and II) to advanced (neuropathology stages III and IV) (7) (Tables S1 and S2). In addition, more than 80% of analyzed pathologically confirmed CTE cases also show transactive response (TAR) DNA-binding protein of ∼43 kDa (TDP-43) either as inclusions in sparse neurites in cortex, medial temporal lobe structures, and brainstem in CTE neuropathology stages I–III, as widespread neuronal and glial inclusions in severe CTE cases (neuropathology stage IV), or in CTE cases with motor neuron disease (7, 15) (Tables S1 and S2). CTE cases also can exhibit the presence of other fibrillar protein aggregates. McKee et al. (7) and Omalu et al. (8) reported that in autopsy determinations, less than half of all CTE cases and less than one third of “pure” CTE cases show amyloid-β (Aβ) deposits, predominantly as scattered cortical diffuse plaques in low density (Tables S1 and S2). Of note is that subjects with Aβ deposits were significantly older than those without. Moreover, their neuropathology was more severe than that in cases without Aβ deposits and was often combined with α-synuclein deposits (7). As an example, as reported by McKee et al. (7), of 30 CTE cases with at least some cortical Aβ deposits (of 68 confirmed CTE cases), 29 brains were from subjects who died in their seventh decade of life and one from a subject who died in his sixth decade.Subsequent to our preliminary report (16), in this work we use [F-18]FDDNP, an imaging agent for fibrillar insoluble protein aggregates (1620), and PET imaging with the aim of establishing (i) topographic brain localization of [F-18]FDDNP PET signals indicative of fibrillar neuroaggregates in retired professional American football players with suspected CTE (mTBI group) vs. controls (CTRL); (ii) determination of [F-18]FDDNP PET signal patterns in the mTBI group; (iii) presence of [F-18]FDDNP PET signal as a measure of neuropathology in the brain areas involved in mood disorders related neurocircuits; (iv) correlation of [F-18]FDDNP PET results with neuropathology distributions in confirmed CTE cases; (v) differential patterns of [F-18]FDDNP PET signals, and thus deposition of fibrillar neuroaggregates, in the mTBI group with respect to the AD group; and (vi) preliminary demonstration of differences in [F-18]FDDNP PET signal patterns in mTBI cases with different etiology, i.e., contact-sport–related mTBI in retired professional American football players vs. blast-induced mTBI in war veterans. We further intended to demonstrate that tau (vs. Aβ) specificity of high affinity PET molecular imaging probes may not be a necessary requirement when used in CTE subjects with primary proteinopathy in the form of PHF-tau (8): PET imaging probes potentially sensitive to TDP-43 aggregates and Aβ deposits, which are present in higher densities almost exclusively in older CTE cases with more advanced neuropathology (e.g., stage IV), could better define disease progression based on quantification of differences in regional loads of combined neuropathologies because additional neuropathologies appear in predictable topographical and temporal patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号