首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Muscular dystrophies are among the most severe inherited muscle diseases. The genetic defect is a mutation in the gene for dystrophin, a cytoskeletal protein which protects muscle cells from mechanical damage. Mechanical stress, applied as osmotic shock, elicits an abnormal surge of Ca2+ spark-like events in skeletal muscle fibers from dystrophin deficient (mdx) mice. Previous studies suggested a link between changes in the intracellular redox environment and appearance of Ca2+ sparks in normal mammalian skeletal muscle. Here, we tested whether the exaggerated Ca2+ responses in mdx fibers are related to oxidative stress. Localized intracellular and mitochondrial Ca2+ transients, as well as ROS production, were assessed with confocal microscopy. The rate of basal cellular but not mitochondrial ROS generation was significantly higher in mdx cells. This difference was abolished by pre-incubation of mdx fibers with an inhibitor of NAD(P)H oxidase. In addition, immunoblotting showed a significantly stronger expression of NAD(P)H oxidase in mdx muscle, suggesting a major contribution of this enzyme to oxidative stress in mdx fibers. Osmotic shock produced an abnormal and persistent Ca2+ spark activity, which was suppressed by ROS-reducing agents and by inhibitors of NAD(P)H oxidase. These Ca2+ signals resulted in mitochondrial Ca2+ accumulation in mdx fibers and an additional boost in cellular and mitochondrial ROS production. Taken together, our results indicate that the excessive ROS production and the simultaneous activation of abnormal Ca2+ signals amplify each other, finally culminating in a vicious cycle of damaging events, which may contribute to the abnormal stress sensitivity in dystrophic skeletal muscle. Drs. V.M. Shkryl and A.S. Martins contributed equally to this work.  相似文献   

2.
Summary The effects of 2,3-butanedione monoxime (BDM) were studied in smooth muscle fibres from guinea pig taenia coli. In intact muscle, active force during contractions induced by high-K+ was inhibited by about 10% in 1 mM BDM and by approximately 70% in 10 mM BDM. Intracellular [Ca2+] during contraction, measured with the fura-2 technique, was reduced in the presence of BDM. The reduction in force and [Ca2+] in the presence of 1 and 10 mM BDM could be reproduced by reduction in extracellular Ca2+, suggesting that BDM influences the Ca2+ entry or release. In skinned muscle preparations, BDM decreased the Ca2+ sensitivity of active force. This change could be explained by a decreased level of myosin light chain phosphorylation. In fibres maximally activated by thiophosphorylation, the effect of BDM on force occurred at higher concentrations; 10 mM gave no reduction of force and 60 mM 15% reduction. The maximal shortening velocity (V max) and force were unaffected by 30 mM BDM in thiophosphorylated muscle and decreased almost in parallel in Ca2+-activated contractions. The present results suggest that BDM inhibits myosin light chain phosphorylation, directly decreases force generation at the crossbridge level and inhibits the Ca2+ translocation in smooth muscle. The effect on force in skinned fibres is observed at higher BDM concentrations than those reported to be required for inhibition of force in striated muscle. The inhibition of force in intact smooth muscle could be explained by an influence on Ca2+ translocation.  相似文献   

3.
 The effect of metabolic inhibition on the contractile function of adult guinea-pig ureter has been investigated. Strips of ureteric smooth muscle were loaded with Indo-1 or SNARF to measure intracellular [Ca2+] ([Ca2+]i) or pH (pHi) simultaneously with force. Inhibiting oxidative phosphorylation with cyanide rapidly reduced phasic contractions and the associated Ca2+ transients, after initial transient increases. The effects of cyanide were reversible and related to the amount of contractile activity undertaken. Inhibition of glycolysis with iodoacetate abolished all force. In high-K+-depolarised preparations, cyanide reduced the tonic contraction, but this was not accompanied by a reduction in [Ca2+]i, suggesting a desensitisation of the myofilaments. Cyanide produced a fall in pHi, which may underlie the initial transient increase in force. These data suggest that metabolic inhibition reduces force in the ureter by affecting both excitation and hence the Ca2+ transient, and at the myofilaments to reduce their sensitivity to Ca2+. Thus when oxidative metabolism is impaired contractile dysfunction may arise in the ureter. Received: 22 July 1997 / Received after revision and accepted: 12 September 1997  相似文献   

4.
Calcium regulation and muscle disease   总被引:6,自引:0,他引:6  
Changes in intracellular Ca2+-concentration play an important role in the excitation–contraction–relaxation cycle of skeletal muscle. In this review we describe various inheritable muscle diseases to highlight the role of Ca2+ -regulatory mechanisms. Upon excitation the ryanodine receptor releases Ca2+ in the cytosol. During and after contraction the sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA) pumps Ca2+ back in the SR resulting in relaxation. An abnormal change in the intracellular Ca2+ -concentration results in defective muscle contraction and/or relaxation, which is the cause of various muscle diseases. Malignant hyperthermia (MH) and central core disease (CCD) are both caused by mutations in the ryanodine receptor but show different clinical phenotypes. In MH an acute increase of Ca2+ results in excessive muscle contraction causing rigidity, while in CCD a chronic rise of cytosolic Ca2+ is seen, leading to mitochondrial damage, disorganization of myofibrils and muscle weakness. In Brody disease and also in mitochondrial myopathies, SERCA functions sub optimal causing a prolonged physiological Ca2+ -elevation leading to slowing of relaxation. Defective actin–myosin interactions, as in nemaline myopathy and also in mitochondrial myopathies due to ATP-shortage, cause Ca2+-hyposensitivity and slowness of contraction. Information of Ca2+ -kinetics in these inherited muscular diseases improves our understanding of the role of calcium in the physiology and pathophysiology of the skeletal muscle cell.  相似文献   

5.
Overexposure to cadmium (Cd) can induce kidney damage, which was related to the oxidative damage and disturb intracellular Ca2+ homeostasis. Chlorpromazine (CPZ), targeting calmodulin (CaM), and the Ca2+ channel blocker Verapamil (Ver) are involved in intracellular Ca2+ homeostasis processes. The aim of the study was to investigate the kidney damage caused by Cd administrated for 6 weeks and to evaluate the effects of pre-treatment with either chlorpromazine or verapamil on Cd-induced kidney damage. Thirty-two Wistar rats were divided randomly into 4 groups by weight, i.e., control group, Cd-treated group, and CPZ or Ver pre-treated group. The Cd-treated group rats were subcutaneously (s.c.) injected with 7 μmol CdCl2/kg body weight/day. The CPZ and Ver pre-treated group rats were intraperitoneally (i.p.) injected with 5 mg CPZ/kg body weight/day, 4 mg Ver/kg body weight/day, respectively, 1 h before the s.c. administration of 7 μmol CdCl2/kg body weight/day. The control group rats were injected s.c. with saline at the same time. The volume of injection was 2 ml/kg body weight, 5 times per week, for up to 6 weeks. After 6 weeks, Cd concentrations in the renal cortex and urine were significantly higher in Cd-treated group than that in controls. Cd concentrations of the urine in CPZ and Ver pre-treated groups were significantly lower than that in Cd-treated group, but there were no significant changes in the renal cortex. Compared with the controls, urinary NAG, ALP activities, and the levels of GSH, MDA, and the activities of PKC, Na+–K+-ATPase, and Ca2+-ATPase in rats from the Cd-treated group were significantly increased. SOD activity was suppressed by Cd. Urinary NAG activity and the level of GSH and the activities of PKC and Ca2+-ATPase in both CPZ and Ver pre-treated groups were significantly lower than that in Cd-treated rats. The present results showed that Cd-induced kidney damage was related to the oxidative damage and disturb intracellular Ca2+ homeostasis. Both CPZ and Ver possess some ability to prevent cadmium-induced kidney damage via antioxidative action and by maintaining calcium homeostasis.  相似文献   

6.
Summary Single peeled (sarcolemma removed) rabbit skeletal muscle fibres, identified histochemically from their myofibrillar ATPase and oxidative staining pattterns, were characterized according to their Ca2+-activated steady-state force-generating properties at normal intracellular pH (7.0) and under acidotic (pH 6.5) conditions. Maximum force-generating capacity of each fibre was assessed by measuring steady-state isometric force generation at saturating Ca2+ concentration at both pH values. The Ca2+ sensitivity of each fibre was ascertained by determining the percentage of maximum force generated at each of several subsaturating Ca2+ concentrations at both pH values. Fibres were selected from soleus, tibialis anterior and adductor magnus muscles. At subsaturating Ca2+ concentrations only two functional groups of fibres were distinguishable, corresponding to the histochemical classifications type I and type II. Type I fibres were more sensitive to Ca2+ and less depressed by acidosis than type II fibres in the subsaturating range of Ca2+ concentrations. At saturating Ca2+ concentrations, the acidotic depression of maximum force was significantly less for type I fibres than type II nonoxidative fibres regardless of their muscle of origin. Type II oxidative fibre maximum force properties depended upon the muscle of origin and demonstrated subgroups of these fibres that were different from type II nonoxidative fibres and similar to type I fibres.  相似文献   

7.
Excessive exercise may lead to skeletal muscle cell damage with degradation of cellular components and leakage of intracellular enzymes. Calcium has repeatedly been proposed to be involved in these processes. Studies have shown that the resting level of cytoplasmic Ca2+ increases up to threefold during long‐term low‐frequency stimulation. We have shown that electrical stimulation produces a marked increase in Ca2+ uptake and Ca2+ content in rat skeletal muscle, both in vivo and in vitro. Continuous stimulation for 240 min at 1 Hz results in an increased release (18‐fold) of lactate dehydrogenase (LDH) from extensor digitorum longus (EDL) muscle. This was associated with an increased total Ca2+ content (185%), was augmented at high [Ca2+]o and suppressed at low [Ca2+]o. The release of LDH may reflect partial loss of sarcolemmal integrity as a result of degradation of membrane components by Ca2+‐activated enzymes (e.g. calpain or phospholipase A2). After cessation of stimulation the increased release of LDH continues for at least 120 min. This is associated with an up to sevenfold increase in 45Ca uptake. The increased permeability to Ca2+ may further activate calpain and phospholipase A2 and accelerate the loss of membrane integrity. Stimulation‐induced uptake of Ca2+ and release of LDH is most pronounced in EDL (mainly composed of fast‐twitch fibres at variance with soleus which is mainly composed of slow‐twitch fibres). This may account for the observation that prolonged exercise leads to preferential damage to fast‐twitch fibres. We hypothesize that excessive exercise may lead to an intracellular accumulation of Ca2+ and increased cytoplasmic Ca2+ causing activation of self‐accelerating degradative pathways leading to muscle damage.  相似文献   

8.
 Effects of the α2-adrenergic agonist clonidine on current through Ca2+ channels was recorded from vascular smooth muscle cells isolated from tail arteries and aortae of male and female rats. The average Ba2+ current in control was not significantly different between males and females; however, clonidine (1 μM) enhanced Ba2+ current through Ca2+ channels in cells from females, but not from males. The greater sensitivity of vascular smooth muscle cells to clonidine may underlie different contractile responses to α2-adrenergic agonists between males and females. Received: 20 May 1996/Received after revision and accepted: 2 August 1996  相似文献   

9.
The role of Ca2+ in mediating effects of insulin on skeletal muscle has been widely debated. It is believed that in skeletal muscle Ca2+ has a permissive role, necessary but not of prime importance in mediating the stimulatory actions of insulin. In this review, we present evidence that insulin causes a localized increase in the concentration of Ca2+. Specifically, insulin induces a rise in near‐membrane Ca2+ but not the bulk Ca2+ in the myoplasm. The rise in near‐membrane Ca2+ is because of an influx through channels that can be blocked by L‐type Ca2+ channel inhibitors. Calcium appears to exert some of its subsequent effects via calmodulin‐dependent processes as calmodulin inhibitors block the translocation of glucose transporters and other enzymes as well as the insulin‐stimulated increase in glucose transport.  相似文献   

10.
Background Isoprostanes are prostaglandin (PG)-like compounds synthesized by oxidative stress, not by cyclooxygenase, and increase in bronchoalveolar lavage fluid of patients with asthma. The airway inflammation implicated in this disease may be amplified by oxidants. Although isoprostanes are useful biomarkers for oxidative stress, the action of these agents on airways has not been fully elucidated. Objective This study was designed to determine the intracellular mechanisms underlying the effects of oxidative stress on airway smooth muscle, focused on Ca2+ signalling pathways involved in the effect of 8-iso-PGF. Methods Using simultaneous recording of isometric tension and F340/F380 (an indicator of intracellular concentrations of Ca2+, [Ca2+]i), we examined the correlation between tension and [Ca2+]i in response to 8-iso-PGF in the fura-2 loaded tracheal smooth muscle. Results Augmented tension and F340/F380 by 8-iso-PGF were attenuated by ICI-192605, an antagonist of thromboxane A2 receptors (TP receptors). Moreover, D609, an antagonist of phosphatidylcholine-specific phospholipase C, markedly reduced both the tension and F340/F380 induced by 8-iso-PGF, whereas U73122, an antagonist of phosphatidylinositol-specific phospholipase C, modestly inhibited them by 8-iso-PGF. SKF96365, a non-selective antagonist of Ca2+ channels, markedly reduced both tension and F340/F380 by 8-iso-PGF. However, diltiazem and verapamil, voltage-dependent Ca2+ channel inhibitors, modestly attenuated tension although their reduction of F340/F380 was not different from that by SKF96365. Y-27632, an inhibitor of Rho-kinase, significantly attenuated contraction induced by 8-iso-PGF without reducing F340/F380, whereas GF109203X and Go6983, protein kinase C inhibitors, did not markedly antagonize them although reducing F340/F380 with a potency similar to Y-27632. Conclusion 8-iso-PGF causes airway smooth muscle contraction via activation of TP receptors. Ca2+ mobilization by SKF96365- and D609-sensitive Ca2+ influx and Ca2+ sensitization by Rho-kinase contribute to the intracellular mechanisms underlying the action of 8-iso-PGF. Rho-kinase may be a therapeutic target for the physiologic abnormalities induced by oxidative stress in airways.  相似文献   

11.
The mechanism of marked reduction in damage symptoms after repeated bout of similar eccentric contractions is still unknown. The neuronal adaptation leading to reduction of muscle fibre propagation velocity (MFPV) due to increased activation of slow-twitch motor units (MUs), decrease in activation of fast-twitch MUs, and/or increase in MU synchronization was suggested as a cause for lower EMG frequency characteristics. However, the repeated bout effect could occur also after electrically stimulated exercise. Prolonged elevation of cytoplasmic Ca2+ due to the increased membrane permeability after eccentric contractions was reported. Elevated Ca2+ induced peripheral changes that included alteration of intracellular action potential and MFPV reduction. We simulated and compared changes in EMG frequency characteristics related to effects of central nervous system (CNS) or to peripheral changes. The simulations were performed for different electrode arrangements and positions. The results showed that the peripheral effects could be similar or even stronger than the effects related to CNS. We hypothesised that the repeated bout effect was a consequence of the adaptation in muscle fibres necessary for avoiding Ca2+-induced protein and lipid degradation due to Ca2+ overload resulting from the increased membrane permeability after eccentric contraction. The possibilities for noninvasive testing of this hypothesis were discussed.  相似文献   

12.
 Ruthenium red inhibits mitochondrial Ca2+ uptake and is widely used as an inhibitor of ryanodine-sensitive Ca2+ channels that function to release Ca2+ from the sarcoplasmic reticulum (SR) of muscle cells. It also has effects on other Ca2+ channels and ion transporters. To study the effects of ruthenium red on Ca2+ transport into the SR of cardiac muscle cells, fluorescence measurements of Ca2+ uptake into cardiac SR vesicles were made. Ruthenium red significantly decreased the Ca2+ sensitivity of SR uptake in a dose-dependent manner at concentrations ranging from 5 μM to 20 μM. There were no significant effects of ruthenium red on the maximum velocity or the Hill coefficient of SR Ca2+ uptake. Received: 14 January 1998 / Received after revision: 12 March 1998 / Accepted: 16 March 1998  相似文献   

13.
Since the early biochemical changes are critical in defining the triggering mechanism of a mitogen-induced lymphocyte activation, their study could provide a good understanding of the processes that might be relevant to the immune deficiency associated with ageing.The increase of Ca2+ influx appears to be one of these earliest events which takes place in the first minutes following the contact with stimulating agents, as a consequence of membrane activation. Therefore, the timing and the magnitude of Ca2+ influx were analyzed in unstimulated and PHA-stimulated peripheral blood lymphocytes (PBL) from old and adult subjects.Whereas PBL from elders exhibited a decrease in DNA synthesis, the characteristics of Ca2+ accumulation into unstimulated and PHA-stimulated PBL were found unaltered in the elderly.The data support the evidence that the cellular defect relevant to the depressed response to T-mitogens associated with ageing, does not result from the defect of Ca2+ transport induced by membrane activation.  相似文献   

14.
Praziquantel (PZ) at concentrations down to 5 × 10?8 M induced a rapid contraction of Hymenolepis diminuta musculature. This effect was accompanied by a strong inhibition of 45Ca2+ incorporation which showed some dependence on Ca2+ concentration. Ca2+ efflux experiments showed that PZ markedly stimulated the release of Ca2+ from tapeworms preloaded with 45Ca2+, with the effluxed Ca2+ being derived from a small fast pool and a larger slow pool. This stimulatory effect appeared, like PZ-induced muscle contraction, to be independent of external Ca2+. By carrying out 45Ca2+ exchange experiments under near equilibrium conditions and atomic absorption spectroscopy it could be demonstrated that PZ resulted in a net excretion of endogenous Ca2+. In PZ-induced contracted worms adenylate nucleotide levels and the adenylate energy charge were not significantly different from those of untreated control worms. Also, PZ had no effect on Ca2+-stimulated ATPase activity of the tapeworm's tegumental brush border. Nor did the drug alter the activities of Ca2+-ATPases in whole homogenates of worms or mitochondria, microsomal or soluble fractions. Although the mechanism of PZ-induced changes in Ca2+ transport was not elucidated, it is suggested that the sustained release of endogenous Ca2+ may affect the sequence of excitation-contraction coupling and that such interference may cause the observed massive contraction of the tapeworm's musculature.  相似文献   

15.
The contractile cycle of striated muscles, skeletal and cardiac, is controlled by a cytosolic [Ca2+] transient that requires rapid movements of the ion through channels in the sarcoplasmic reticulum (SR). A functional signature of these channels is their closure after a stereotyped time lapse of Ca2+ release. In cardiac muscle there is abundant evidence that termination of release is mediated by depletion of the Ca2+ store, even if the linkage mechanism remains unknown. By contrast, in skeletal muscle the mechanisms of release termination are not understood. This article reviews measurements of store depletion, the experimental evidence for dependence of Ca2+ release on the [Ca2+] level inside the SR, as well as tests of the molecular nature of putative intra-store Ca2+ sensors. Because Ca2+ sparks exhibit the basic release termination mechanism, much attention is dedicated to the studies of store depletion caused by sparks and its relationship with termination of sparks. The review notes the striking differences in volume, content and buffering power of the stores in cardiac vs. skeletal muscle, differences that explain why functional depletion is much greater for cardiac than skeletal muscle stores. Because in skeletal muscle store depletion is minimal and reduction in store [Ca2+] does not appear to greatly inhibit Ca2+ release, it is concluded that decrease in free SR [Ca2+] does not mediate physiological termination of Ca2+ release in this type of muscle. In spite of the apparent absence of store depletion and its putative channel closing effect, termination of Ca2+ sparks is faster and more robust in skeletal than cardiac muscle. A gating role of a hypothetical “proximate store” constituted by polymers of calsequestrin and associated proteins is invoked in an attempt to preserve a role for store depletion and unify mechanisms in both types of striated muscle.  相似文献   

16.
The Ca2+ and Sr2+ activation of tension in functionally skinned chicken fibers of normal and dystrophic skeletal and normal cardiac muscle were studied. The muscles studied can be separated into two groups based upon their Ca2+ and Sr2+ sensitivities: those which are significantly more sensitive to Ca2+ than to Sr2+, pectoralis and posterior latissimus dorsi (PLD), and those which show no Ca2+/Sr2+ sensitivity difference, cardiac and anterior latissimus dorsi (ALD). This suggests that there is more than one type of Ca2+ site involved in Ca2+ control of muscle contraction in different muscle types and suggests that ALD and cardiac muscle may be controlled by a different type of binding site than PLD and pectoralis muscle. Dystrophic ALD and PLD muscles showed little change in their Ca2+ and Sr2+ sensitivities from those of normal muscles in contrast to the pectoralis which showed a decrease in both Ca2+ and Sr2+ sensitivity (approaching that of PLD) with the onset of dystrophy. Similarly, upon SDS polyacrylamide gel electrophoresis, dystrophic ALD and PLD muscles showed no difference in contractile proteins from those of normal muscles, in contrast to pectoralis muscle where the appearance of a 36,000 dalton protein band correlated with the onset of dystrophy and the changes in the Ca2+/Sr2+ activation properties of this muscle. The contractile protein band pattern of normal and dystrophic PLD and dystrophic pectoralis muscle were similar including the presence of the 36,000 dalton protein.  相似文献   

17.
Ca2+ sparks are the fundamental units that comprise Ca2+-induced Ca2+ release (CICR) in striated muscle cells. In cardiac muscle, spontaneous Ca2+ sparks underlie the rhythmic CICR activity during heart contraction. In skeletal muscle, Ca2+ sparks remain quiescent during the resting state and are activated in a plastic fashion to accommodate various levels of stress. With aging, the plastic Ca2+ spark signal becomes static in skeletal muscle, whereas loss of CICR control leads to leaky Ca2+ spark activity in aged cardiomyocytes. Ca2+ spark responses reflect the integrated function of the intracellular Ca2+ regulatory machinery centered around the triad or dyad junctional complexes of striated muscles, which harbor the principal molecular players of excitation-contraction coupling. This review highlights the contribution of age-related modification of the Ca2+ release machinery and the effect of membrane structure and membrane cross-talk on the altered Ca2+ spark signaling during aging of striated muscles.  相似文献   

18.
Intracellular calcium is a major coordinator of numerous aspects of cellular physiology, including muscle contractility and cell survival. In cardiac muscle, aberrant Ca2+ cycling has been implicated in a range of pathological conditions including cardiomyopathies and heart failure. The sarco(endo)plasmic reticulum Ca2+ transport adenosine triphosphatase (SERCA2a) and its regulator phospholamban (PLN) have a central role in modulating Ca2+ homeostasis and, therefore, cardiac function. Herein, we discuss the mechanisms through which SERCA2a and PLN control cardiomyocyte function in health and disease. Emphasis is placed on our newly identified PLN-binding partner HS-1-associated protein X-1 (HAX-1), which has an anti-apoptotic function and presents with numerous similarities to Bcl-2. Recent evidence indicates that proteins of the Bcl-2 family can influence ER Ca2+ content, a critical determinant of cellular sensitivity to apoptosis. The discovery of the PLN/HAX-1 interaction therefore unveils an important new link between Ca2+ homeostasis and cell survival, with significant therapeutic potential.  相似文献   

19.
Pulmonary hypertension induced by high pulmonary blood flow involves a variety of complex mechanisms, including endothelial damage, pulmonary artery smooth muscle relaxation-contraction disorder and vascular remodeling. Besides, the factor of ion channels in pulmonary artery smooth muscle cells is also highly correlated to vasoconstriction. In recent years, many studies have shown that activation of Ca2+-activated Cl- channels is responsible for the membrane depolarization of pulmonary artery smooth muscle cells, and plays an important role in the regulation of vascular tone and vasoconstriction. This article reviews the biophysical and pharmacological characteristics of Ca2+-activated Cl- channels as well as the influence of Ca2+-activated Cl- channels in high pulmonary blood flow-induced pulmonary hypertension.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号