首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
目的:探讨小鼠心脏一氧化氮合酶aninic oxide synthse神经元结构和神经纤维分布。方法:NADPH-d组织化学技术。结果:小鼠心脏神经元主要分为NOS强阳性、中度和弱阳性反应细胞;心脏各部均接受NOS神经支配,其神经纤维多与肌纤维长轴平行走向。心房最丰富,房室结次之,左、右心室最少。心房及房室结的NOS阳性纤维呈串珠状膨大,心室的常为丝状,膨体极少。结论:小鼠心脏NOS神经元包括强阳性、中度和弱阳性反应细胞,NOS阳性纤维在心脏各部的分布和形态均有差异,NO可能作为神经递质和/或神经调节剂在心血流和冲动传导等的神经调控中起作用。  相似文献   

2.
猕猴胸腰段脊神经节nNOS免疫阳性神经元的分布   总被引:2,自引:0,他引:2  
目的 观察正常猕猴胸腰段脊神经节神经元型一氧化氮合酶 (nNOS)免疫阳性神经元的分布。方法 用ABC免疫细胞化学方法显示nNOS免疫阳性神经元 ,并用体视学方法进行定量分析。结果 胸段和腰段脊神经节nNOS免疫阳性神经元的分布相似 ,均可见较丰富的nNOS免疫阳性神经元分布 ,神经元的大小不等 ,多呈圆形或椭圆形。胞浆着色较深 ,胞核位于细胞中央 ,不着色 ,细胞被神经纤维束分隔成群。nNOS免疫阳性神经元以中型神经元为主 ,其次为小型神经元 ,其胞浆呈强阳性染色 ,细胞直径 <50 μm ,大型神经元较少。胸、腰段脊神经节nNOS免疫阳性神经元的密度无明显差异 (P >0 0 5)。结论 在灵长类动物中 ,NO可能在感觉的传导和调节中发挥重要作用 ,但由于nNOS主要在中、小型神经元中表达 ,提示NO可能主要参与痛觉的调制  相似文献   

3.
本文观察了猫、兔、豚鼠和大白鼠心脏不同部位心肌内胆碱能纤维分布,并用点式计算法得出神经纤维分布密度的百分率。结果表明:四种动物心脏的心房和心室收缩心肌内均含有胆碱能纤维;心脏不同部位的心肌内胆碱能纤维的分布密度不同;心脏收缩心肌内胆碱能纤维分布密度存在种属差异,且心房与心室收缩心肌内胆碱能纤维的分布密度在种属差异上不一致;在猫心房壁内及大白鼠心房、心室壁内存在AChE阳性神经元和神经节。  相似文献   

4.
目的:观察正常成年猕猴背根神经节神经元型一氧化氮合酶(nNOS)免疫阳性神经元的分布。方法:ABC免疫细胞化学方法显示nNOS免疫阳性神经元,并用体视方法进行定量分析。结果:猕猴颈、胸、腰各段背根神经节nNOS免疫阳性神经元的分布相似,数量较多,阳性神经元的大小不等,多呈圆形或椭圆形;胞浆着色较深,胞核位于细胞中央,不着色,细胞被神经纤维束分隔成群。nNOS免疫阳性神经元以中型神经元为主,其次为小型神经元,其胞浆呈强阳性染色,细胞直径<50μm,大型神经元较少。颈、胸、腰各段背根神经节nNOS免疫阳性神经元的密度以及阳性细胞与总细胞数的比值均无明显差异。结论:猕猴背根神经节nNOS主要表达在中、小型神经元,提示NO可能主要参与痛觉等浅感觉的传导和调制。  相似文献   

5.
目的:观察正常成年称猴背根神经节神经元型一氧化氮合酶(nNOS)免疫阳性神经元的分布。方法:ABC免疫细胞化学方法显示nNOS免疫阳性神经元,并用体视方法进行定量分析。结果:猕猴颈、胸、腰各段背根神经节nNOS免疫阳性神经元的分布相似,数量较多,阳性神经元的大小不等,多呈圆形或椭圆形;胞浆着色较深,胞核位于细胞中央,不着色,细胞被神经纤维束分隔成群。nNOS免疫阳性神经元以中型神经元为主,其次为小型神经元,其胞浆呈强阳性染色,细胞直径<50μm,大型神经元较少。颈、胸、腰各段背根神经节nNOS免疫阳性神经元的密度以及阳性细胞与总细胞数的比值均无明显差异。结论:称猴背根神经节nNOS主要表达在中、小型神经元,提示NO可能主要参与痛觉等浅感觉的传导和调制。  相似文献   

6.
目的 观察NPY IR纤维在大鼠工作心肌的分布和密度 ,为心脏的生理和病理学研究提供形态学基础。方法 用免疫组织化学方法显示大鼠工作心肌内的NPY IR纤维 ,用电子表格Excel 2 0 0 0计算其分布密度。结果 在心房肌内和心室肌内均可见NPY IR阳性纤维 ,心房肌内NPY IR纤维的面积密度和数密度均高于心室肌。结论 NPY IR纤维在大鼠心肌内分布广泛 ,其分布密度存在部位差异。  相似文献   

7.
郭国庆  沈伟哉 《解剖学杂志》2004,27(6):649-651,663
目的:观察糖尿病大鼠下丘脑视上核神经元型一氧化氮合酶(nNOS)免疫阳性神经元数量的变化。方法:用链脲佐菌素诱导建立糖尿病大鼠模型;免疫细胞化学染色显示nNOS免疫阳性神经元,并进行定量分析。结果:糖尿病视上核nNOS免疫阳性神经元着色深浅不一,着色较深的阳性神经元散在分布,神经元的形态多样,突起较少。对照组大鼠视上核nNOS免疫阳性神经元较稀疏,各时期无明显改变。糖尿病2w,nNOS免疫阳性神经元数量与对照组无显著差异;7w,nNOS阳性神经元较密集,明显多于对照组;12w,nNOS免疫阳性神经元数量略低于7w,但仍多于对照组。结论:糖尿病大鼠下丘脑视上核nNOS免疫阳性神经元数量明显增多。  相似文献   

8.
目的 探明犬心脏表面神经丛的化学特性。方法 免疫组织化学ABC法。结果 在犬心脏表面各神经丛均见降钙素基因相关肽(CGRP)免疫反应阳性神经元,而SP免疫阳性神经元仅在心房背侧神经丛(DAP)、房间隔神经丛(IAP)和主动脉.肺动脉间神经丛(A—PP)内见到。CGRP—IR和SP—IR神经元形态、大小相似。心房表面神经丛内的CGRP—IR和SP—IR神经元都较心室表面神经丛者多。在心脏表面各脂肪垫及心肌间隙等处见到多量CGRP-IR、SP—IR神经纤维,多靠近血管或附于血管壁,在一些部位可见这两种肽能神经纤维似与心肌细胞接触。结论犬心脏表面神经丛内存在CGRP和SP;其在心脏内执行的功能可能有联系或相似之处,但也有不同;两种肽能神经对心房和心室的支配不对称,提示CGRP和SP可能直接参与心肌细胞和心脏血管活动的调控。  相似文献   

9.
目的:观察糖尿病大鼠脊髓神经元型一氧化氮合酶(nNOS)免疫阳性神经元数量的变化,探讨NO在糖尿病发生和发展中的作用机制。方法:用链脲佐菌素诱导建立糖尿病大鼠模型,ABC免疫细胞化学法显示nNOS免疫阳性神经元。结果:大鼠脊髓内nNOS阳性神经元主要分布于中央管周围灰质和中间带等区域。中间带外侧核可见nNOS免疫阳性神经元较集中,细胞突起呈束状伸向中央管周围灰质方向;定量分析显示,糖尿病大鼠脊髓中央管周围灰质和中间外侧核在7w、12w时nNOS免疫阳性神经元数量明显增多。结论:糖尿病时伤害性刺激的传人增多,增多的nNC)S免疫阳性神经元可能与痛觉过敏等糖尿病周围神经病变有关。  相似文献   

10.
为探讨苦参碱注射液对老年性痴呆(AD)模型大鼠脑组织白介素1β(IL-1β)、NO含量及nNOS免疫阳性神经元的影响以及药物的作用效果及机制,本研究用SD大鼠将鹅膏蕈氨酸(IBO)双侧海马立体定位注射造模,实验分为对照组、高剂量苦参碱治疗组、低剂量苦参碱治疗组、模型组和哈伯因组。检测大鼠大脑皮质和海马内IL-1β、NO的含量变化以及nNOS免疫阳性神经元的形态改变。结果显示:模型组大鼠大脑皮质和海马内IL-1β及NO的含量均显著高于对照组(P<0.01);高剂量治疗组大脑皮质和海马内IL-1β及NO的含量均低于模型组(P<0.05);模型组nNOS免疫阳性神经元有明显变性、数目减少;高剂量治疗组大鼠nNOS免疫阳性神经元的数目与模型组比较明显增多(P<0.05),变性有所减轻;但低剂量组的nNOS免疫阳性神经元数与模型组没有显著差异(P>0.05)。本文结果提示,模型组大鼠大脑皮质和海马内IL-1β及NO的含量均显著增高,可能为导致AD神经元损伤的原因之一,苦参碱注射液对AD神经元损伤的保护作用可能是通过下调IL-1β和NO而实现的。  相似文献   

11.
人胎小肠氮能神经元发育的研究   总被引:2,自引:0,他引:2  
邵金贵  忻国妹 《神经解剖学杂志》2001,17(2):179-182,T030
本研究用 NADPH-d组织化学法对人胎小肠氮能神经元的发育进行了观察。结果显示 :5个月胎龄时 ,肌间神经节处的圆形细胞中部分细胞分化成氮能神经细胞 ,细胞核不染色 ,胞质极少 ,呈浅蓝色 ,有的神经细胞有短小的突起。 6个月胎龄时 ,氮能神经元胞体明显增大 ,核大 ,胞质少 ,染色增深 ,在外纵肌层与内环肌层之间形成肌间神经节。由神经元胞体发出的神经纤维在肌间形成网状神经丛。同时 ,在内环肌层肌纤维之间出现氮能神经纤维分布。有的神经纤维穿过粘膜下层分布到粘膜肠腺基部。7个月胎龄时 ,肌间神经节细胞数目增多 ,胞质由少到多 ,染色强度增加 ,肌层神经纤维分布密度增加 ,在粘膜下层有时可见有 1~ 2个氮能神经元细胞体或小的神经节分布。8~ 10个月胎龄时 ,肌间神经节细胞和粘膜下层氮能神经元胞体及神经纤维呈深蓝色 ,内环肌层神经纤维分布密度增加。以上结果提示 :人胎小肠氮能神经元是由胚胎早期肌间神经节处的圆形细胞 ,通过细胞分化、增殖、生长发育而形成的  相似文献   

12.
人胎舌内氮能神经元发育的形态学研究   总被引:8,自引:0,他引:8  
邵金贵  忻国妹 《解剖学报》2001,32(3):223-226,T006
目的:探讨人胎舌内氮能神经元的发育。方法:用NADPH-d组织化学法对人胎舌内氮能神经元的分化、迁移和生长发育进行观察。结果:T经4个月胎龄时,舌上皮组织中层圆形细胞分化形成酸的氮能神经细胞,并从上皮细胞向上皮下层和肌组织迁移。神经细胞体较小,NOS阳性反应较弱,其生长发育过程可分为两个时期,从第4-7个月龄末为生长发育期,神经元胞体由小逐渐增,数目增加,NOS阳性反应逐渐增强,至第7个月龄时,处于生长发育的高峰。其形态特征:由酸形发育成蝌蚪形,之后形成多样性形态,第8-10个月龄为成熟期,表现为氮能神经元胞体较大,NOS呈强阳性反应。在上皮下 支和肌组织内氮能神经元呈散在分布,有的部位聚集成明显的舌内神经节,结论:舌内氮能神经元来源于胚胎早期舌的上皮组织,通过分化,迁移,增殖和生长发育形成氮能神经元。  相似文献   

13.
Nitrergic and peptidergic innervation in the developing rat heart   总被引:1,自引:0,他引:1  
The phenotypic expression and anatomic distribution of nitrergic and peptidergic innervation in the developing rat heart was localized by reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry and immunohistochemistry using antibodies against neuronal isoform of nitric oxide synthase (nNOS), neuropeptide Y (NPY) and calcitonin-gene-related peptide (CGRP). NPY-immunoreactive nerve fibers showed the earliest expression by 16 days of gestation, with preferential innervation of the nodal and perinodal areas, followed by the innervation of the valves and ventricles by postnatal day 7. NPY immunoreactivity was also localized to a large proportion of the intrinsic cardiac ganglia from 16 days of gestation onwards with a progressive increase in the number of neuronal cell bodies per ganglia with age. CGRP-positive nerve fibers appeared by 19 days of gestation and were less dense during the gestational and early postnatal periods, and showed a quantitative increase in density by 7 days, followed by a decrease by 3 weeks postnatal. None of the intrinsic ganglia were stained positive for CGRP, indicating the extrinsic sensory origin of these stained fibers. Nitrergic innervation paralleled the sensory innervation, with the cardiac ganglia and nerve fibers showing a positive labeling from 19 days of gestation onwards. NADPH-d and nNOS were partially co-localized. Double-label immunohistochemistry showed that a considerable proportion of sensory CGRP-immunopositive fibers were also immunoreactive for NOS. The results of the present study show that neuropeptides and nitric oxide are expressed by the late gestational period and that autonomic efferent innervation precedes sensory and nitrergic innervation in the developing heart. Accepted: 4 January 2000  相似文献   

14.
Neuronal nitric oxide synthase (nNOS)-derived nitric oxide (NO) plays a major role in the neural control of circulation and in many cardiovascular diseases. However, the exact mechanism of how NO regulates these processes is still not fully understood. This study was designed to determine the possible sources of nitrergic nerve fibres supplying the heart attempting to imply their role in the cardiac neural control. Sections of medulla oblongata, vagal nerve, its rootlets and nodose ganglia, vagal cardiac branches, Th1-Th5 spinal cord segments, dorsal root ganglia of C8-Th5 spinal nerves, and stellate ganglia from 28 Wistar rats were examined applying double immunohistochemical staining for nNOS combined with choline acetyltransferase (ChAT), peripherin, substance P, calcitonin gene-related peptide, tyrosine hydroxylase or myelin basic protein. Our findings show that the most abundant population of purely nNOS-immunoreactive (IR) neuronal somata (NS) was observed in the nodose ganglia (37.4 ± 1.3%). A high number of nitrergic NFs spread along the vagal nerve and entered its cardiac branches. All nitrergic neuronal somata (NS) in the nucleus ambiguus were simultaneously immunoreactive (IR) to ChAT and composed only a small subset of neurons (6%). In the dorsal nucleus of vagal nerve, biphenotypic nNOS-IR/ChAT-IR neurons composed 7.0 ± 1.0%, while small purely nNOS-IR neurons were scarce. Nitrergic NS were plentifully distributed within the nuclei of solitary tract. In the examined dorsal root and stellate ganglia, a few nitrergic NS were sporadically present. The majority of sympathetic NS in the intermediolateral nucleus were simultaneously immunoreactive for nNOS and ChAT. In conclusion, an abundant population of nitrergic NS in the nodose ganglion implies that neuronal NO is involved in afferent cardiac innervation. Nevertheless, nNOS-IR neurons identified within vagal nuclei may play a role in the transmission of preganglionic parasympathetic nerve impulses.  相似文献   

15.
Summary The distribution of calcitonin gene-related peptide like-immunoreactivity (CGRP-IR) within the heart and adjacent blood vessels of the guinea pig was investigated anmunohistochemically by use of the peroxidase-antiperoxidase (PAP) technique. Numerous paravascular and perivascular immunoreactive nerve fibers were localized around the aorta, coronary arteries and their branches down to the teminal vasculature. Arterioles in the atria showed greatest density of immunoreactive varicosities of all blood vessels. The epicardium, endocardium and the conductive system also contained numerous CGRP-IR nerve fibers. In the muocardium the number of immunoreactive varicosities was variable. Many were present in both atria, moderate amounts were seen in the right ventricle and parts of the intraventricular septum, and only a few occurred in the left ventricle. CGRP-IR was infrequently found within intracardial ganglionic cells but was abundantly distributed in the surrounding nerve fibers.Supported by the German Research Foundation (DFG, SFB 90)  相似文献   

16.
Preparations of membranes from normal and surgically denervated canine heart were tested for binding of radiolabeled nerve growth factor. Specific binding was detected in both normal and denervated hearts. Binding was nonsaturable and complex for normal atria and ventricles and denervated atria but appeared to be saturable for denervated ventricles. Nerve growth factor bound per microgram of protein was lower in denervated ventricles than normal ventricles, whereas slightly higher binding to denervated atria than normal atria was observed. This binding could not be displaced by cytochrome c, insulin, or epidermal growth factor. The data indicate that a large part of binding to normal ventricles could be due to nerve terminals attached to the heart, but specific binding detected in the denervated ventricles may be an intrinsic property of the tissue itself. These sites may serve as storage or uptake sites to direct sympathetic innervation in the developing or reinnervating myocardium.  相似文献   

17.
精氨酸加压素在猪心的分布   总被引:2,自引:0,他引:2  
目的:观察精氨酸加压素(AVP)免疫反应(IR)阳性的神经纤维在猪心的分布。方法:取新鲜猪心10个(宰杀5分钟内),用生理盐水经冠状动脉口灌注后,再用4%多聚甲醛灌流固定,切取左心房,右心房,左心室,右心室,冠状窦,冠状动脉周围和室间隔的心肌组织块,置于4%多聚甲醛固定6h,然后进行免疫组织化学(ABC法)研究。结果:AVP-IR纤维多以线状,点线状或交织成网络状沿血管走行,或攀附血管走行,分布于左右心房,心室和冠状动脉周围,但以心房为多,结论:猪心内存在与人心相似的神经肽,这为研究猪心的神经肽为心血管系统中的作用提供了形态学基础。  相似文献   

18.
Although the pig is a model for heart disease, the neuroanatomy of cardiac ventricles (CV) in this species remains undetailed. We aimed to define the innervation pattern of pig CV, combining histochemistry for acetylcholinesterase, immunofluorescent labeling and electron microscopy. Forty nine examined pig hearts show that the major nerves supplying the ventral side of CV descend from the venous part of the heart hilum. Fewer in number and smaller in size, epicardial nerves supply the dorsal half of the CV. Epicardial nerves on the left ventricle are thicker than those on the right. Ventricular ganglia of various sizes distribute at the basal level of both CV. Averagely, we found 3,848 ventricular neuronal somata per heart. The majority of somata were cholinergic, although ganglionic cells of different neurochemical phenotypes (positive for nNOS, ChAT/nNOS, or ChAT/TH) were also observed. Large and most numerous nerves proceeded within the epicardium. Most of endocardium and myocardium contained a network of nerve bundles and nerve fibers (NFs). But, a large number of thin nerves extended along the bundle of His and its branches. The majority of NFs were adrenergic, while cholinergic NFs were scarce yet more abundant than nitrergic ones. Sensory NFs positive for CGRP were the second most abundant phenotype after adrenergic NFs in all layers of the ventricular wall. Electron microscopy elucidated that ultrastructure of nerves varied between different areas of CV. The described structural organization of CV provides an anatomical basis for further functional and pathophysiological studies in the pig heart. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1756–1780, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号