首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The aim of this in vitro study was to investigate the microgaps at the implant–abutment interface when zirconia (Zr) and CAD/CAM or cast Co–Cr abutments were used. Methods: Sixty-four conical connection implants and their abutments were divided into four groups (Co–Cr (milled, laser-sintered and castable) and Zirconia (milled)). After chewing simulation (300,000 cycles, under 200 N loads at 2 Hz at a 30° angle) and thermocycling (10,000 cycles, 5 to 50 °C, dwelling time 55 s), the implant–abutment microgap was measured 14 times at each of the four anatomical aspects on each specimen by using a scanning electron microscope (SEM). Kruskal–Wallis and pair-wise comparison were used to analyze the data (α = 0.05). Results: The SEM analysis revealed smaller microgaps with Co–Cr milled abutments (0.69–8.39 μm) followed by Zr abutments (0.12–6.57 μm), Co–Cr sintered (7.31–25.7 μm) and cast Co–Cr (1.68–85.97 μm). Statistically significant differences were found between milled and cast Co–Cr, milled and laser-sintered Co–Cr, and between Zr and cast and laser-sintered Co–Cr (p < 0.05). Conclusions: The material and the abutment fabrication technique affected the implant–abutment microgap magnitude. The Zr and the milled Co–Cr presented smaller microgaps. Although the CAD/CAM abutments presented the most favorable values, all tested groups had microgaps within a range of 10 to 150 μm.  相似文献   

2.
The aim of this study was to assess the effect of application of a recently developed bio-adhesive (Impladhesive) to abutment screw threads on the removal torque value and rotational misfit at the implant–abutment junction. This in vitro study evaluated 20 implant fixtures and 20 straight abutments. Specimens were randomly divided into two groups (n = 10) with/without adhesive application. In the adhesive group, the abutment was dipped in Impladhesive before torquing. In the control group, the abutment was torqued conventionally without adhesive application. The removal torque value was recorded after completion of the cyclic loading of 500,000 cycles with 2 Hz frequency and 75 N load. Rotational misfit was recorded using a video measuring machine. After applying the torque, the change in the bisector angle on the abutment hex was recorded for each implant. The biocompatibility of Impladhesive was evaluated using a MTT cell vitality assay. Normal distribution of data was assessed using the Kolmogorov–Smirnov test. Data were analyzed using a t-test and Pearson’s correlation coefficient The application of Impladhesive at the implant–abutment interface resulted in significantly greater mean removal torque value compared to the control group (p = 0.008). In addition, the mean rotational misfit at the implant–abutment interface was significantly lower in the use of Impladhesive compared to the control group (p = 0.001). In addition, the cell vitality was found to be greater than 80% at all evaluated time points. It can be concluded that the application of Impladhesive on the abutment screw significantly decreased rotational misfit and increased the removal torque value. Future studies are needed to evaluate the efficacy of this bio-adhesive an in vivo setting.  相似文献   

3.
Implant–abutment connection (IAC) is a key factor for the long-term success and stability of implant-supported prosthodontic restoration and its surrounding tissues. Misfit between prosthodontic abutment and implant at the IAC leads to technical and biological complications. Two kinds of prosthodontic abutments are currently available on the market: original and third-party abutments. The aim of this pilot study was to test and compare the internal fit (gap) at the implant–abutment interface depending on the abutment fabrication method based on microbial leakage in static conditions and the need for the use of gap sealing material. Two groups of 40 implants were formed on the basis of the type of abutment. In each of the groups of two implant systems, two subgroups of 10 implants were formed. The tested subgroups consisted of 10 implants with sealing material and a negative control subgroups consisting of 10 implants without any sealing material. The test material, GapSeal (Hager and Werken, Duisburg, Germany) was applied in the test subgroups. The implant–abutment assemblies were contaminated with a solution containing Staphylococcus aureus and Candida albicans for 14 days under aerobic conditions. Results showed that there was no statistically significant difference regarding the microbial leakage between the original and third-party custom-made abutments, regardless of the use of sealing material. It can be concluded that the abutment fabrication method has no significant influence on sealing efficacy regarding the bacterial and fungal leakage in static conditions.  相似文献   

4.
Background: The purpose was to compare the fracture resistance and the mode of failure of different contemporary restorative materials to restore implant supported, cement-retained mandibular molars. Methods: Two 5 × 10 mm titanium dental implants were mounted in resin blocks and prefabricated titanium and zirconia abutments were connected to each implant. Each implant received forty crowns resembling mandibular first molars. The specimens were divided into four groups (n = 10/group) for each abutment according to the type of material; Group A: porcelain fused to metal crowns; Group B: monolithic zirconia crowns; Group C: zirconia coping with ceramic veneer; Group D: all ceramic lithium disilicate crowns. Specimens were cemented to the abutments, mounted into a universal testing machine, and vertical static load was applied at a speed of 1 mm/min. The test stopped at signs of visual/audible fracture/chipping. Fracture resistance values were analyzed using ANOVA and Tukey’s tests (α ≤ 0.05). The modes of failure were visually observed. Results: A statistically significant difference (p < 0.001) of the fracture resistance values among tested groups was found. The group that showed the highest fracture resistance was Group A for both the titanium and the zirconia abutments (3.029 + 0.248 and 2.59 ± 0.39, respectively) while Group D for both abutments (1.134 + 0.289 and 1.68 ± 0.13) exhibited the least resistance. Conclusions: Fracture resistance and fracture mode varied depending on type of restorative material. For both titanium and zirconia abutments, porcelain fused to metal showed the highest fracture resistance values followed by monolithic zirconia.  相似文献   

5.
The present study aimed to evaluate the influence of manual torque (10 Ncm) versus clinical torque (30 Ncm), which is recommended by the manufacturer, on the total length of morse cone implant abutments. Twenty specimens were prepared and distributed into two groups: group 1 with ten analogs for morse cone type implant, and group 2 with ten morse type implants, size 4.3 × 15 cm. In each group, the distance between the implant platform to the top of the prosthetic abutment (abutment height) was measured and subjected to a torque of 10 Ncm. Then, the 30 Ncm torque was applied to the same abutment, and abutment height was measured. The distance between the top of the abutment and the implant/analog base was measured. In order to verify the clinical reproducibility of the experiment, comparisons between the abutment height of the analog at 10 Ncm and the implant at 30 Ncm were performed, showing a greater discrepancy in torque for the 10 Ncm analog (p < 0.05). In order to verify if the change in the laboratory protocol from 10 to 30 Ncm could minimize the differences in the height of the prosthetic abutments, the abutment height in groups 1 and 2 was compared with 30 Ncm, and no significant difference was observed (p > 0.05). The data indicated that the manual torque and the torque recommended by the manufacturer influence the total length of the prosthetic abutments of morse cone implants.  相似文献   

6.
One of the current major challenges in implant therapy is to minimize marginal bone loss around implants, since it can trigger bacterial colonization of the implant’s neck, leading to its failure. The present study aimed (1) to scientifically validate a new mathematical rule based on soft tissues thickness, for choosing the correct implant position with respect to the bone level, in order to provide a better tissue adaptation to the abutment/implant surface to avoid bacterial invasion, and (2) to apply this mathematical rule to the Biological Oriented Immediate Loading (B.O.I.L.) surgical protocol, avoiding peri-implant bone resorption. N. 127 implants were inserted following B.O.I.L. protocol: implants were placed according to the mathematical rule Y = X − 3, which correlates the position of the implant from the bone crest level (Y) with the thickness of the soft tissues (X). All the implants were inserted in fresh extraction sockets, and immediately loaded with temporary abutments and prostheses. Bone levels were evaluated through radiographic examination just after surgical procedure (T0), and after 10 days (10D), 6 months (6M), 1 year (1Y), and 5 years (5Y). After 5 years, the implant survival rate was 100%, with a medium marginal bone loss around implants of 0.0704 mm (SD = 0.169 mm). One-way ANOVA, followed by Tukey’s multiple comparison test was performed for statistical evaluations (p < 0.05). This protocol provided a safe and successful procedure, with a good soft tissue seal against bacterial challenge. The application of the mathematical rule allows the implant placement in a correct vertical position from the bone crest, avoiding bone resorption and bacterial infiltrations. Moreover, the use of Multi Unit Abutment (MUA) determined a stable biological seal, favouring the implant healing and preserving the adhesion of hemidesmosomes to the titanium of MUA.  相似文献   

7.
The microenvironment of the oral cavity is altered when an implant, a biocompatible foreign body, is inserted into the mouth. Bacteria settle in the tissues in and around the implant due to the passage of microorganisms through the microgap at the connection of the implant and prosthetic abutment. To prevent colonization of the implant by microorganisms, one idea is to use sealing and antimicrobial materials to decontaminate the implant–abutment interface and close the microgap. The purpose of this study is to evaluate the antimicrobial efficacy and permeability of different types of sealing materials at the implant–abutment interface, under static conditions. Three different sealing material (GapSeal gel, Oxysafe gel and Flow.sil) were used for sealing the implant–abutment interfaces in 60 titanium dental implants, which were first contaminated with a solution containing Staphylococcus aureus and Candida albicans for 14 days under an aerobic condition. Results showed that a complete seal against bacterial infection was not formed at the implant–abutment interface, while for fungal infections, only GapSeal material helped to prevent microleakage. Findings of this in vitro study reported that application of sealing material before abutment connection may reduce peri-implant bacterial and fungal population compared with the interface without sealing material.  相似文献   

8.
Three groups of zirconia abutments (n = 5) consisting of different connection designs or manufacturers were investigated (All-Zr, ASC-Zr, and AM-Zr groups). All-electric dynamic test instruments were used to place static loading on a specimen with a crosshead speed set at 1 mm/min. A Kruskal–Wallis test and a post hoc Mann–Whitney U test were used for statistical evaluation. The mean fracture resistance was 252.37 ± 82.79 N for the All-Zr group, 384.62 ± 45.24 N for ASC-Zr group, and 361.83 ± 90.31 N for the AM-Zr group. The difference of fracture resistance between the three groups was marginally significant (Kruskal–Wallis test, p = 0.054), with the ASC zirconia abutment tending to have higher fracture resistance than the full zirconia abutment. The modes of failure among the three types of abutments are different. The All-Zr group showed an oblique fracture line starting from the buccal aspect at the region of the implant platform. While the ASC-Zr and AM-Zr groups showed a relatively horizontal fracture line with a greater distance from the implant platform. The titanium inserts cannot significantly improve the fracture resistance of the zirconia abutment. However, they may alter the modes of failure, allowing buccal fracture surfaces of the zirconia abutments to be placed away from the implant platform, thereby protecting the implant–abutment connection.  相似文献   

9.
The attainment of a good aesthetic outcome in dental implant treatment requires inter-implant papilla reconstruction, which is very difficult to perform. Maintenance of the inter-implant bone is essential for maintenance of the inter-implant papilla. The aim of this study was to investigate the mechanical influences of the implant–abutment connection type and inter-implant distance on the inter-implant bone by using three-dimensional finite element analysis. Three computer-aided design models of two-piece implants were designed: external connection (EC), internal connection (IC), and conical connection (CC). In each model, two identical implants were placed with inter-implant distances of 3.0, 2.5, and 2.0 mm. The maximum principal stress and microgap were evaluated. The stress values of the inter-implant bone decreased in the following order: IC, EC, and CC. The microgap decreased in the following order: EC, IC, and CC. Regardless of the type of implant–abutment connection, the stress of the inter-implant bone increased as the inter-implant distance decreased. The microgap barely changed as the inter-implant distance decreased. A CC implant is a mechanically advantageous implant–abutment connection type for maintenance of the inter-implant bone. With an inter-implant distance of less than 3.0 mm, use of a CC implant might suppress absorption of the inter-implant bone.  相似文献   

10.
The use of screwless Morse taper implant–abutment connections (IAC) might facilitate the clinician’s work by eliminating the mechanical complications associated with the retention screw. The aim of this study is to evaluate the effect of artificial chewing on the long-term stability of screwless Morse taper IACs. Thirty-two implant abutments restored with an upper central incisor zirconia crown were used and divided into four groups according to the implant–abutment assembling manner (C1,H: screw retained (20 Ncm); C2: tapped; or C3: torqued (20 Ncm; the screws were removed before the dynamic loading)). All specimens were subjected to a cyclic loading (98 N) for 10 million chewing cycles. The survived samples were exposed to a pull-off force until failure/disassembling of the connection. All the samples revealed a 100% survival. Regarding the pull-off test, the screw-retained internal hexagonal IAC revealed significantly higher resistance to failure/disassembling (769.6 N) than screwless conical IACs (171.6 N–246 N) (p < 0.0001). The retention forces in the Morse taper groups were not significantly different (p > 0.05). The screw-retained hexagonal IAC showed the highest retention stability. The screw preload/retention in the conical IAC was lost over time in the group where the screws were kept in place during loading. Nevertheless, the screwless Morse taper IACs were stable for an extended service time and might represent a valid form of treatment for single-tooth replacement.  相似文献   

11.
Background and Objectives: The aim of the current study was to establish an osseo-disintegration model initiated with a single microorganism in mini-pigs. Materials and Methods: A total of 36 titanium dental implants (3.5 mm in diameter, 9.5 mm in length) was inserted into frontal bone (n: 12) and the basis of the corpus mandible (n: 24). Eighteen implants were contaminated via inoculation of Enterococcus faecalis. Six weeks after implant insertion, bone-to-implant contact (BIC) ratio, interthread bone density (ITBD), and peri-implant bone density (PIBD) were examined. In addition to that, new bone formation was assessed via fluorescence microscopy, histomorphometry, and light microscopical examinations. Results: Compared to the sterile implants, the contaminated implants showed significantly reduced BIC (p < 0.001), ITBD (p < 0.001), and PBD (p < 0.001) values. Around the sterile implants, the green and red fluorophores were overlapping and surrounding the implant without gaps, indicating healthy bone growth on the implant surface, whereas contaminated implants were surrounded by connective tissue. Conclusions: The current experimental model could be a feasible option to realize a significant alteration of dental-implant osseointegration and examine novel surface decontamination techniques without impairing local and systemic inflammatory complications.  相似文献   

12.
Titanium particles embedded on peri-implant tissues are associated with a variety of detrimental effects. Given that the characteristics of these detached fragments (size, concentration, etc.) dictate the potential cytotoxicity and biological repercussions exerted, it is of paramount importance to investigate the properties of these debris. This study compares the characteristics of particles released among different implant systems (Group A: Straumann, Group B: BioHorizons and Group C: Zimmer) during implantoplasty. A novel experimental system was utilized for measuring and collecting particles generated from implantoplasty. A scanning mobility particle sizer, aerodynamic particle sizer, nano micro-orifice uniform deposit impactor, and scanning electron microscope were used to collect and analyze the particles by size. The chemical composition of the particles was analyzed by highly sensitive microanalysis, microstructures by scanning electron microscope and the mechanical properties by nanoindentation equipment. Particles released by implantoplasty showed bimodal size distributions, with the majority of particles in the ultrafine size range (<100 nm) for all groups. Statistical analysis indicated a significant difference among all implant systems in terms of the particle number size distribution (p < 0.0001), with the highest concentration in Group B and lowest in Group C, in both fine and ultrafine modes. Significant differences among all groups (p < 0.0001) were also observed for the other two metrics, with the highest concentration of particle mass and surface area in Group B and lowest in Group C, in both fine and ultrafine modes. For coarse particles (>1 µm), no significant difference was detected among groups in terms of particle number or mass, but a significantly smaller surface area was found in Group A as compared to Group B (p = 0.02) and Group C (p = 0.005). The 1 first minute of procedures had a higher number concentration compared to the second and third minutes. SEM-EDS analysis showed different morphologies for various implant systems. These results can be explained by the differences in the chemical composition and microstructures of the different dental implants. Group B is softer than Groups A and C due to the laser treatment in the neck producing an increase of the grain size. The hardest implants were those of Group C due to the cold-strained titanium alloy, and consequently they displayed lower release than Groups A and B. Implantoplasty was associated with debris particle release, with the majority of particles at nanometric dimensions. BioHorizons implants released more particles compared to Straumann and Zimmer. Due to the widespread use of implantoplasty, it is of key importance to understand the characteristics of the generated debris. This is the first study to detect, quantify and analyze the debris/particles released from dental implants during implantoplasty including the full range of particle sizes, including both micro- and nano-scales.  相似文献   

13.
The aim of the present study is to compare two different implant surface chemistries of failing dental implants. Sixteen patients (mean age: 52 ± 8.27 with eight females and eight males) and 34 implants were included in the study. Group-I implants consisted of a blasted/etched surface with a final process surface, while Group-II implants consisted of the sandblasted acid etching (SLA) method. The chemical surface analysis was performed by the energy dispersive X-ray spectroscopy (EDX) method from coronal, middle, and apical parts of each implant. Titanium (Ti) element values were found to be 20.22 ± 15.7 at.% in Group I and 33.96 ± 13.62 at.% in Group-II in the middle of the dental implants. Aluminum (Al) element values were found to be 0.01 ± 0.002 in Group-I and 0.17 ± 0.28 at.% in Group II in the middle of the dental implants, and statistically significant differences were found between the groups for the Al and Ti elements in the middle of the dental implants (p < 0.05). There was a statistically significant difference for the Ti, Al, O, Ca, Fe, P, and Mg elements in the coronal, middle, and apical parts of the implants in the intragroup evaluation (p < 0.05). It is reported that different parts of the implants affected by peri-implant inflammation show different surface chemistries, from coronal to apical, but there is no difference in the implants with different surfaces.  相似文献   

14.
This laboratory study aimed to evaluate the thermo-mechanical fatigue behavior and failure modes of monolithic and rapid-layer posterior single-crowns (SCs) supported by zirconia implants. Methods: 120 all-ceramic crowns supported by one-piece zirconia implants (ceramic.implant; vitaclinical) were divided into five groups (n = 24 each): Group Z-HT: 3Y-TZP monolithic-zirconia (Vita-YZ-HT); Group Z-ST: 4Y-TZP monolithic-zirconia (Vita-YZ-ST); Z-XT: 5Y-TZP monolithic-zirconia (Vita-YZ-XT); Group E: monolithic-polymer-infiltrated ceramic network (PICN,Vita-Enamic); Group RL (rapid layer): PICN-“table-top” (Vita-Enamic), 3Y-TZP-framework (Vita-YZ-HT). Half of the specimens of each group (n = 12) were exposed to fatigue with cyclic mechanical loading (F = 198N, 1.2-million cycles) and simultaneous thermocycling (5–55 °C). Single-load-to-failure testing (Z010, Zwick) was performed for all specimens without/with fatigue application. Data analysis was performed using ANOVA, Tukey’s post-hoc test, two-sample t-test and Bonferroni correction (p < 0.05). Results: All specimens survived fatigue exposure. Significant differences in failure loads were detected among groups (p ≤ 0.004). Materials Z-HT and Z-ST showed the highest failure loads followed by Z-XT, RL and E. The influence of fatigue was only significant for material RL. Conclusions: All types of tested materials exceeded clinically acceptable failure load values higher than 900N and can be recommended for clinical use. Z-HT and Z-ST appear to be highly reliable towards fatigue. Rapid-layer design of PICN and YZ-HT might be an interesting treatment concept for posterior implant SCs.  相似文献   

15.
Aims: To determine if restoration location and/or execution behavior force parameters have an influence on the mechanical properties of bulk-fill composite dental restorations. Methods: Pressure transducers were placed within each quadrant of dental mannequin jaws. Cylindrical molds were placed above the transducers and filled with two bulk-fill composite materials, Filtek and Tetric, by four experienced dentists. Each dentist prepared five specimens per quadrant and material. The total placement time, mean force, number of peak forces (above 25 N), and mean peak(s) force during placement were measured. Then, the stiffness and maximal compressive strength of the specimens were determined while loading the specimens up to failure using a universal loading machine. Results: Placement time was affected by jaw (p < 0.004) and side (p < 0.029), with the shortest time demonstrated for the left side of the mandible. Force exerted during restoration placement was not normally distributed without differences in location (jaw) or material. A higher application force was found on the right side (p < 0.01). The number of peak forces was affected by side (p < 0.03), with less peaks on the left side. No significant differences were found in compressive strength when correlated to restoration location, participant, or material (p = 0.431). The stiffness values of Filtek (3729 ± 228 N/mm) were found to be 15% higher than Tetric (3248 ± 227 N/mm) (p < 0.005). No correlations were found between the compressive strength or stiffness and the amount of force applied during placement. Conclusions: The individual restoration material placement parameters did influence practitioner performance; however, these differences did not affect the mechanical properties of the final restoration.  相似文献   

16.
Conical implant–abutment connections are popular for their stability; however, in other conditions, such as excessive force, implants and abutments can absorb all the stress. Some connections with three points of support can resist more than conical connections. In recent years, different studies has shown that the design of a connection affects its stability. The aim of this study was to analyze and compare the stresses in finite elements (FEs) in a newly proposed conical triangular connection in implants with hexagonal and conical connections. A nonlinear 3D FE parametric model was developed using SOLIDWORKS 2017®. All the connections, i.e., external and internal hexagons, morse taper, conical connection, and the new conical triangular proposal were compared when axial forces of 150, 250, and 350 N were applied to the occlusal. The maximum stress was found in the external hexagon. The maximum stress was concentrated at the level of the neck of the abutment, implant, and bone, except for the morse taper; at the level of the crown and abutment, the lowest stress occurred in the new proposal. Conclusions: The new conical triangular (CT) connection and the conical connection (CC) generate similar stress in the implant, abutment, and crown. However, the CT connection improves the CC by reducing stress at the bone level, adding an advantage to having three retention points.  相似文献   

17.
Objective: To evaluate the peri-implant hard tissue change at 6 and 12 months after implant placement between definitive abutment placed at the same time of implant surgery, never removing it, and healing abutment disconnected and reconnected three times until the placement of the final rehabilitation. Material and methods: Each partial edentulous patient could receive between 1 and 4 platform-switched implants in the posterior regions. If the implants had primary stability—implant stability quotient (ISQ) equal to or greater than 50, they were randomized to the test group with the abutment inserted at the same time of implant placement (DA) or to the control group, receiving a healing abutment (PA). At 6 and 12 months after surgery, data related with vertical bone level changes (primary outcome) and other clinical parameters (implant mobility, bleeding on probing, probing depth, plaque index) were assessed. Results: 53 implants were included in the trial and completed 12 months follow-up (overall survival rate: 100%). All implants achieved primary stability, with an average ISQ value of 80.9 on the day of surgery. From surgery to 6 months, the mean bone loss was 0.14 ± 0.18 mm for the DA group and 0.23 ± 0.29 mm for the PA group, without statistical significance difference. Between 6 and 12 months, the mean bone loss was 0.14 ± 0.21 mm for the DA group and 0.21 ± 0.27 mm for the PA group, also without statistical significance between the two groups. There were no statistically significant differences (p = 0.330) in total bone loss after 12 months between the control and the study groups. Conclusions: The one abutment one time protocol has at least an equivalent effect on the peri-implant bone level changes when compared with the use of healing abutments that are disconnected and reconnected at least three times.  相似文献   

18.
Zirconia ceramic (ZC) implants are becoming more common, but comparisons between preclinical histology and long-term clinical trials are rare. This investigation comprised (1) 8-year clinical follow-up of one-piece ZC or titanium (Ti) implants supporting full overdentures and (2) histomorphometric analysis of the same implants in an animal model, comparing implants with various surface treatments. Methods: (1) Clinical trial: 24 completely edentulous participants (2 groups of N = 12) received 7 implants (one-piece ball-abutment ZC or Ti; maxilla N = 4, mandible N = 3) restored with implant overdentures. Outcomes after 8-years included survival, peri-implant bone levels, soft-tissue responses, and prosthodontic issues. (2) Preclinical trial: 10 New Zealand sheep received 4 implants bilaterally in the femoral condyle: Southern Implants ZC or Ti one-piece implants, identical to the clinical trial, and controls: Southern ITC® two-piece implants with the same surface or Nobel (NBC) anodised (TiUnite™) surface. %Bone-implant contact (%BIC) was measured after 12 weeks of unloaded healing. Results: 8 of 24 participants (33%) of an average age of 75 ± 8 years were recalled; 21% of original participants had died, and 46% could not be contacted. 80.4% of implants survived; excluding palatal sites, 87.5% of Ti and 79% of ZC implants survived. All failed implants were in the maxilla. Three ZC implants had fractured. Bone loss was similar for Ti vs. ZC; pocket depths (p = 0.04) and attachment levels (p = 0.02) were greater for Ti than ZC implants. (1.7 ± 1.6 mm vs. 1.6 ± 1.3 mm). All implants in sheep femurs survived. %BIC was not statistically different for one-piece blasted surface Ti (80 ± 19%) versus ZC (76 ± 20%) or ITC® (75 ± 16 mm); NBC had significantly higher %BIC than ITC (84 ± 17%, p = 0.4). Conclusion: Short-term preclinical results for ZC and Ti one-piece implants showed excellent bone-implant contact in unloaded femoral sites. This differed from the long-term clinical results in older-aged, edentulous participants. While ZC and Ti implants showed equivalent performance, the risks of peri-implantitis and implant loss in older, completely edentulous patients remain a significant factor.  相似文献   

19.
The aim of this study was to investigate the effects of saliva contamination and the cleaning of the bond surface of titanium base (ti-base) abutments on the bonding stability and retention force values. The bond surface of the ti-base abutments was treated with airborne-particle abrasion. After contamination, the ti-base abutments underwent different cleaning protocols: water spray (H2O); alcohol (ALC); suspension of zirconium particles (SZP); reapplied airborne-particle abrasion (APA); and a control condition without contamination and cleaning (CTR). All lithium disilicate crowns were bonded to the ti-base abutments using a primer and a self-curing composite. Bonded specimens underwent thermo-mechanical aging. Bond failure analysis and pull-off testing were performed. Bond failure occurred more frequently in groups H2O, ALC, SZP, and APA (p < 0.05). Significant differences in retention force values were only found between CTR and ALC (p < 0.05). Specimens which did not show bond failure after ageing had higher retention force values than the specimens that showed bond failure (p < 0.05). Saliva contamination with cleaning can degrade the bonding properties to titanium. For the retention force values, only the protocol with alcohol after contamination could not restore the values.  相似文献   

20.
The aim of our randomized clinical study was to analyze the influence of surgical experience and bone density on the accuracy of static computer-assisted implant surgery (CAIS) in edentulous jaws using a mucosa-supported surgical template with a half-guided implant placement protocol. Altogether, 40 dental implants were placed in the edentulous jaws of 13 patients (novice surgeons: 18 implants, 6 patients (4 male), age 71 ± 10.1 years; experienced surgeons: 22 implants, 7 patients (4 male), age 69.2 ± 4.55 years). Angular deviation, coronal and apical global deviation and grey level measurements were calculated for all implants by a blinded investigator using coDiagnostiX software. 3DSlicer software was applied to calculate the bone volume fraction (BV/TV) for each site of implant placement. There were no statistically significant differences between the two study groups in either of the primary outcome variables. There was a statistically significant negative correlation between angular deviation and both grey level measurements (R-value: −0.331, p < 0.05) and BV/TV (R-value: −0.377, p < 0.05). The results of the study suggest that surgical experience did not influence the accuracy of implant placement. The higher the bone density at the sites of implant placement, the higher the accuracy of static CAIS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号