首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, syntheses of acrylate copolymers were performed based on the monomers butyl acrylate (BA), 2-ethylhexyl acrylate (2-EHA), and acrylic acid (AA) and the second-type unsaturated photoinitiator 4-acryloyloxybenzophenone (ABP). The structure of the obtained copolymers was confirmed via FT-IR spectroscopic analysis, and the viscosity and the content of non-volatile substances were determined. The adhesive films were then coated and cross-linked using ultraviolet radiation in the UV-C range at various doses (5–50 mJ/cm2). Due to the dependence of the self-adhesive properties of the adhesive layer on the basis weight, various basis weights of the layer in the range of 30–120 g/m2 were tested. Finally, the self-adhesive properties were assessed: tack, peel adhesion, shear strength (cohesion) at 20 °C and 70 °C, as well as the SAFT test and shrinkage. The aim of the study was to determine the effect of the type of monomer used, the dose of ultraviolet radiation, and the basis weight on the self-adhesive and usable properties of the obtained self-adhesive tapes.  相似文献   

2.
The voltage-gated Ca2+ channels that effect tonic release of neurotransmitter from hair cells have unusual pharmacological properties: unlike most presynaptic Ca2+ channels, they are sensitive to dihydropyridines and therefore are L-type. To characterize these Ca2+ channels, we investigated the expression of L-type α1 subunits in hair cells of the chicken’s cochlea. In PCRs with five different pairs of degenerate primers, we always obtained α1D products, but only once an α1C product and never an α1S product. A full-length α1D mRNA sequence was assembled from overlapping PCR products; the predicted amino acid sequence of the α1D subunit was about 90% identical to those of the mammalian α1D subunits. In situ hybridization confirmed that the α1D mRNA is present in hair cells. By using a quantitative PCR assay, we determined that the α1D mRNA is 100–500 times more abundant than the α1C mRNA. We conclude that most, if not all, voltage-gated Ca2+ channels in hair cells contain an α1D subunit. Furthermore, we propose that the α1D subunit plays a hitherto undocumented role at tonic synapses.  相似文献   

3.
Achieving good piezoelectric properties, such as the widely reported d33 charge coefficient, is a good starting point in establishing the potential applicability of piezoceramics. However, piezoceramics are only completely characterized by consistent piezoelectric-elastic-dielectric material coefficient matrices in complex form, i.e., including all losses. These matrices, which define the various alternative forms of the constitutive equations of piezoelectricity, are required for reliable virtual prototyping in the design of new devices. To meet this need, ten precise and accurate piezoelectric dielectric and elastic coefficients of the material, including all losses, must be determined for each alternative. Due to the difficulties arising from the coupling of modes when using the resonance method, this complete set of parameters is scarcely reported. Bi0.5Na0.5TiO3-based solid solutions are already commercially available in Europe and Japan. Here, we report a case study of the determination of these sets of material coefficients (d, g, e and h; sE,Dαβ and cE,Dαβ; εTik and εSik; and βTik and βSik), including all losses, of the commercial PIC700 eco-piezoceramic. Plate, disk, and cylinder ceramic resonators of a manageable aspect ratio were used to obtain all the material coefficients. The validation procedure of the matrices is also given by FEA modeling of the considered resonators.  相似文献   

4.
Intravoxel incoherent motion (IVIM) diffusion-weighted magnetic resonance imaging (MRI) can be used to estimate perfusion-related parameters, but these parameters may differ, based on the curve-fitting algorithm used for IVIM. Microvessel density (MVD) and vascular endothelial growth factor (VEGF) status are used as angiogenic factors in breast cancer. We aimed to investigate the relationship between MVD, VEGF, and intravoxel incoherent motion (IVIM)-derived parameters, obtained by 4 curve-fitting algorithms, in patients with invasive breast cancers.This retrospective study investigated IVIM-derived parameters, D (ie, tissue diffusivity), D (ie, pseudodiffusivity), and f (ie, perfusion fraction), of 55 breast cancers, using 10 b values (range, 0–800 s/mm2) and 4 curve-fitting algorithms: algorithm 1, linear fitting of D and f first, followed by D; algorithm 2, linear fitting of D and f and nonlinear fitting of D; algorithm 3, linear fitting of D and f, linear fitting of D, and ignoring D contribution for low b values; and algorithm 4, full nonlinear fitting of D, f, and D. We evaluated whole-tumor histograms of D, f, and D for their association with MVD and VEGF.D10, D25, D50, Dmean, D75, D90, f10, and f25, derived using algorithm 3, were associated with VEGF expression (P = .043, P = 0.012, P = .019, P = .024, P = .044, P = .041, P = .010, and P = .005, respectively). However, no correlation existed between MVD and IVIM-derived parameters.Perfusion-related IVIM parameters obtained by curve-fitting algorithm 3 may reflect VEGF expression.  相似文献   

5.
Gd and Yb elements have high chemical stability, which can stabilize the solid solution in ZrO2. Gd2O3 and Yb2O3 have high melting points, and good oxidation resistance in extreme environments, stable chemical properties. Therefore, Gd2O3 and Yb2O3 were added to ZrO2 to stabilize oxides, improve the high temperature stability, and effectively decrease the thermal conductivity at high temperature. In this work, 5 wt% Yb2O3 and 5 wt%, 10 wt%, 15 wt% Gd2O3 were doped into 8 wt% Y2O3 stabilized ZrO2 (8YSZ) powders as thermal barrier coating materials, and sintered at 1650 °C for 6 h, 12 h, 24 h. The effects of Gd2O3 addition on the microstructure, density, thermal conductivity, hardness, and fracture toughness of Gd2O3-Yb2O3-Y2O3-ZrO2 (GYYZO) bulk composite ceramics were investigated. It was found that the densification of the 8YSZ bulk and GYYZO bulk with 15 wt% Gd2O3 reached 96.89% and 96.22% sintered at 1650 °C for 24 h. With the increase of Gd2O3 addition, the hardness, elastic modulus and fracture toughness of the GYYZO bulk increased and the thermal conductivity and thermal expansion coefficient of the GYYZO bulk decreased. GYYZO bulk with 15 wt% Gd2O3 sintered at 1650 °C for 24h had the highest hardness, elastic modulus and fracture toughness of 15.61 GPa, 306.88 GPa, 7.822 MPa·m0.5, and the lowest thermal conductivity and thermal expansion coefficient of 1.04 W/(m·k) and 7.89 × 10−6/°C at 1100 °C, respectively. The addition of Gd2O3 into YSZ could not only effectively reduce the thermal conductivity but also improve the mechanical properties, which would improve the thermal barrier coatings’ performances further.  相似文献   

6.
Fe-Si-Cr soft magnetic powder cores (SMCs), with high electrical resistivity, magnetic permeability, saturation magnetic induction, and good corrosion resistance, are widely applied to inductors, filters, choke coils, etc. However, with the development of electronic technology with high frequency and high power density, the relative decline in the magnetic properties limits the high-frequency application of SMCs. In this paper, the phosphating process and polyimide (PI) insulation coating is applied to Fe-Si-Cr SMCs to reduce the core loss, including hysteresis loss and eddy current loss. The microstructure and composition of Fe-Si-Cr powders were analyzed by SEM, XRD, and Fourier-transform infrared spectra, respectively. The structural characteristics of the Fe-Si-Cr @ phosphate layer @ PI layer core–shell double coating were studied, and the best process parameters were determined through experiments. For SMCs with 0.4 wt% content of PI, the relative permeability is greater than 68%, and the core loss is the lowest, 7086 mW/cm3; annealed at 500 °C, the relative permeability is greater than 57%, and the core loss is the lowest, 6222 mW/cm3. A 0.4 wt% content of PI, annealed at 500 °C, exhibits the ideal magnetic properties: μe = 47 H/m, P = 6222 mW/cm3.  相似文献   

7.
In order to increase the loading of rare earth- and molybdenum-rich high-level waste in the waste forms, zirconolite- and powellite-based multi-phase borosilicate glass-ceramics were synthesized via an in-situ heat treatment method. The effects of the CTZ (CaO, TiO2 and ZrO2) content on the crystallization, microstructure and aqueous durability of the multi-phase borosilicate glass-ceramics were studied. The results indicate that the increase of CTZ content can promote crystallization. The glass-ceramics presented even structures when the CTZ content was ≥ 40 wt%. For the glass-ceramic with 40 wt% CTZ, only zirconolite and powellite crystals were detected and powellite crystals were mainly distributed around zirconolite, whereas for the glass-ceramics with 50 wt% CTZ, perovskite was detected. Furthermore, the leaching rates of Na, Ca, Mo and Nd were in the ×10−3, ×10−4, ×10−3 and ×10−5 g·m−2·d·−1 orders of magnitude on the 28th leaching day, respectively.  相似文献   

8.
This research was carried on newly obtained innovative materials—self-adhesive one-sided tapes based on silicone pressure-sensitive adhesives. In order to obtain tapes, the stable adhesive composition was subjected to physical modification by incorporating into it various amounts of selected silicon fillers. The produced pressure-sensitive adhesives were tested for viscosity and thermogravimetric analysis, as well as the manufactured tapes; i.e., peel adhesion, tack, cohesion at room and elevated temperature, SAFT test (shear adhesive failure temperature), and shrinkage. The prepared self-adhesive tapes retained their self-adhesive properties at a level close to the initial level while increasing the thermal resistance by 70–75 °C, reaching the level of 220–225 °C. The new self-adhesive materials have application potential and can be used as a material for special applications in the field of electrical engineering and heavy industry.  相似文献   

9.
The features of discontinuous dynamic recrystallization (DRX) in a highly-alloyed austenitic stainless steel were studied at temperatures of 800 °C to 1100 °C. Hot deformation accompanied by DRX was characterized by an activation energy of 415 kJ/mol. The frequency of the sequential DRX cycles depended on the deformation conditions; and the largest fraction of DRX grains with small grain orientation spread below 1° was observed at a temperature of around 1000 °C and a strain rate of about 10−3 s−1. The following power law relationships were obtained for DRX grain size (DDRX) and dislocation density (ρ) vs. temperature-compensated strain rate (Z) or peak flow stress (σP): DDRX ~ Z−0.25, ρ ~ Z0.1, σP ~ DDRX−0.9, σP ~ ρ1.4. The latter, i.e., σP ~ ρ1.4, was valid in the flow stress range below 300 MPa and changed to σP ~ ρ0.5 on increasing the stress. The obtained dependencies suggest a unique power law function between the dislocation density and the DRX grain size with an exponent of −0.5.  相似文献   

10.
Antigen receptor locus V(D)J recombination requires interactions between widely separated variable (V), diversity (D), and joining (J) gene segments, but the mechanisms that generate these interactions are not well understood. Here we assessed mechanisms that direct developmental stage-specific long-distance interactions at the Tcra/Tcrd locus. The Tcra/Tcrd locus recombines Tcrd gene segments in CD4CD8 double-negative thymocytes and Tcra gene segments in CD4+CD8+ double-positive thymocytes. Initial Vα-to-Jα recombination occurs within a chromosomal domain that displays a contracted conformation in both thymocyte subsets. We used chromosome conformation capture to demonstrate that the Tcra enhancer (Eα) interacts directly with Vα and Jα gene segments distributed across this domain, specifically in double-positive thymocytes. Moreover, Eα promotes interactions between these Vα and Jα segments that should facilitate their synapsis. We found that the CCCTC-binding factor (CTCF) binds to Eα and to many locus promoters, biases Eα to interact with these promoters, and is required for efficient Vα–Jα recombination. Our data indicate that Eα and CTCF cooperate to create a developmentally regulated chromatin hub that supports Vα–Jα synapsis and recombination.  相似文献   

11.
The self-assembled heterocapsule 1·2, which is formed by the hydrogen bonds of tetra(4-pyridyl)-cavitand 1 and tetrakis(4-hydroxyphenyl)-cavitand 2, encapsulates 1 molecule of guests such as 1,4-diacetoxybenzene 3a, 1,4-diacetoxy-2,5-dimethylbenzene 3b, 1,4-diacetoxy-2,5-dialkoxybenzenes (3c, OCH3; 3d, OC2H5; 3e, OC3H7; 3f, OC4H9; 3g, OC5H11; 3h, OC6H13; 3i, OC8H17), 1,4-diacetoxy-2,5-difluorobenzene 4a, and 1,4-diacetoxy-2,3-difluorobenzene 4b. The X-ray crystallographic analysis of 3c@(1·2) showed that the acetoxy groups at the 1,4-positions of 3c are oriented toward the 2 aromatic cavity ends of 1·2 and that 3c can rotate along the long axis of 1·2. Thus, the 1·2 (stator) with the encapsulation guest (rotator) behaves as a supramolecular gyroscope. A variable temperature (VT) 1H NMR study in CDCl3 showed that 3a, 3b, 4a, and 4b within 1·2 rotate rapidly even at 218 K, whereas guest rotation is almost inhibited for 3h and 3i even at 323 K. In this respect, 4b with a large dipole moment is a good candidate for the rotator of 1·2. For 3c–3g, the enthalpic (ΔH) and entropic (ΔS) contributions to the free energy of activation (ΔG) for the guest-rotational steric barriers within 1·2 were obtained from Eyring plots based on line-shape analysis of the VT 1H NMR spectra. The value of ΔG increased in the order 3c < 3d < 3e < 3f < 3g. Thus, the elongation of the alkoxy chains at the 2,5-positions of 3 puts the brakes on guest rotation within 1·2.  相似文献   

12.
In this research, a high-boron-content composite material with both neutron and γ rays shielding properties was developed by an optimized design and manufacture. It consists of 304 stainless steel as the matrix and spherical boron carbide (B4C) particles as the functional particles. The content of B4C is 24.68 wt%, and the particles’ radius is 1.53 mm. The density of the newly designed material is 5.17 g·cm−3, about 68.02% of that of traditional borated stainless steel containing 1.7 wt% boron, while its neutrons shielding performance is much better. Firstly, focusing on shielding properties and material density, the content and the size of B4C were optimized by the Genetic Algorithm (GA) program combined with the MCNP program. Then, some samples of the material were manufactured by the infiltration casting technique according to the optimized results. The actual density of the samples was 5.21 g cm−3. In addition, the neutron and γ rays shielding performance of the samples and borated stainless steel containing 1.7 wt% boron was tested by using an 241Am–Be neutron source and 60Co and 137Cs γ rays sources, respectively, and the results were compared. It can be concluded that the new designed material could be used as a material for nuclear power plants or spent-fuel storage and transportation containers with high requirements for mobility.  相似文献   

13.
Chiam-Wen Liew  S. Ramesh 《Materials》2014,7(5):4019-4033
Two different ionic liquid-based biopolymer electrolyte systems were prepared using a solution casting technique. Corn starch and lithium hexafluorophosphate (LiPF6) were employed as polymer and salt, respectively. Additionally, two different counteranions of ionic liquids, viz. 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) and 1-butyl-3-methylimidazolium trifluoromethanesulfonate (also known as 1-butyl-3-methylimidazolium triflate) (BmImTf) were used and studied in this present work. The maximum ionic conductivities of (1.47 ± 0.02) × 10−4 and (3.21 ± 0.01) × 10−4 S·cm−1 were achieved with adulteration of 50 wt% of BmImPF6 and 80 wt% of BmImTf, respectively at ambient temperature. Activated carbon-based electrodes were prepared and used in supercapacitor fabrication. Supercapacitors were then assembled using the most conducting polymer electrolyte from each system. The electrochemical properties of the supercapacitors were then analyzed. The supercapacitor containing the triflate-based biopolymer electrolyte depicted a higher specific capacitance with a wider electrochemical stability window compared to that of the hexafluorophosphate system.  相似文献   

14.
For both the B2O3-Bi2O3-CaO and B2O3-Bi2O3-SrO glass systems, γ-ray and neutron attenuation qualities were evaluated. Utilizing the Phy-X/PSD program, within the 0.015–15 MeV energy range, linear attenuation coefficients (µ) and mass attenuation coefficients (μ/ρ) were calculated, and the attained μ/ρ quantities match well with respective simulation results computed by MCNPX, Geant4, and Penelope codes. Instead of B2O3/CaO or B2O3/SrO, the Bi2O3 addition causes improved γ-ray shielding competence, i.e., rise in effective atomic number (Zeff) and a fall in half-value layer (HVL), tenth-value layer (TVL), and mean free path (MFP). Exposure buildup factors (EBFs) and energy absorption buildup factors (EABFs) were derived using a geometric progression (G–P) fitting approach at 1–40 mfp penetration depths (PDs), within the 0.015–15 MeV range. Computed radiation protection efficiency (RPE) values confirm their excellent capacity for lower energy photons shielding. Comparably greater density (7.59 g/cm3), larger μ, μ/ρ, Zeff, equivalent atomic number (Zeq), and RPE, with the lowest HVL, TVL, MFP, EBFs, and EABFs derived for 30B2O3-60Bi2O3-10SrO (mol%) glass suggest it as an excellent γ-ray attenuator. Additionally, 30B2O3-60Bi2O3-10SrO (mol%) glass holds a commensurably bigger macroscopic removal cross-section for fast neutrons (ΣR) (=0.1199 cm−1), obtained by applying Phy-X/PSD for fast neutrons shielding, owing to the presence of larger wt% of ‘Bi’ (80.6813 wt%) and moderate ‘B’ (2.0869 wt%) elements in it. 70B2O3-5Bi2O3-25CaO (mol%) sample (B: 17.5887 wt%, Bi: 24.2855 wt%, Ca: 11.6436 wt%, and O: 46.4821 wt%) shows high potentiality for thermal or slow neutrons and intermediate energy neutrons capture or absorption due to comprised high wt% of ‘B’ element in it.  相似文献   

15.
The neuromodulator dopamine signals through the dopamine D2 receptor (D2R) to modulate central nervous system functions through diverse signal transduction pathways. D2R is a prominent target for drug treatments in disorders where dopamine function is aberrant, such as schizophrenia. D2R signals through distinct G-protein and β-arrestin pathways, and drugs that are functionally selective for these pathways could have improved therapeutic potential. How D2R signals through the two pathways is still not well defined, and efforts to elucidate these pathways have been hampered by the lack of adequate tools for assessing the contribution of each pathway independently. To address this, Evolutionary Trace was used to produce D2R mutants with strongly biased signal transduction for either the G-protein or β-arrestin interactions. These mutants were used to resolve the role of G proteins and β-arrestins in D2R signaling assays. The results show that D2R interactions with the two downstream effectors are dissociable and that G-protein signaling accounts for D2R canonical MAP kinase signaling cascade activation, whereas β-arrestin only activates elements of this cascade under certain conditions. Nevertheless, when expressed in mice in GABAergic medium spiny neurons of the striatum, the β-arrestin–biased D2R caused a significant potentiation of amphetamine-induced locomotion, whereas the G protein-biased D2R had minimal effects. The mutant receptors generated here provide a molecular tool set that should enable a better definition of the individual roles of G-protein and β-arrestin signaling pathways in D2R pharmacology, neurobiology, and associated pathologies.G protein-coupled receptors (GPCRs) are the largest receptor family and transmit the physiological effects of numerous biologically active molecules. GPCR signal transduction cascades account for diverse genomic, biochemical, cellular, and behavioral responses including cell fate determination, developmental reprogramming, olfactory, taste and light sensation, as well as complex behaviors mediated by neuromodulators (1). The diversity of responses to a particular hormone or neuromodulator is dictated not only by its cognate receptor but also by the ability of that receptor to engage distinct signaling pathways. For a number of GPCRs, their propensity to activate distinct G proteins can elicit diverse responses depending on the cellular environment (2). However, an even more subtle but intriguing mode of signaling has been attributed to the ability of a receptor to activate signaling pathways independent of G-protein activation, through the scaffolding of signaling complexes by β-arrestin, a component of the GPCR desensitization and internalization machinery (3). These two signaling modes harbor distinct functional properties, and in instances the same ligand can act as an agonist for one pathway but antagonist at the other. The selective or biased activation of a given pathway is commonly referred to as “functional selectivity” and can be easily demonstrated in heterologous systems especially when biased small molecule ligands are available (4). Biased GPCR ligands may have high therapeutic potential as these receptors represent the largest targets of drugs on the market. However, determining the functional contributions of G-protein and β-arrestin signaling pathways to the biological actions of an endogenous ligand acting upon its receptor still remains a challenging undertaking.Dopamine (DA) is a neuromodulator that is known to regulate movement, reward, cognition, emotion, and affect. The dopamine D2 receptor (D2R) is a prominent GPCR that mediates the actions of DA. All typical antipsychotics, such as haloperidol, are potent D2R blockers (5), whereas atypical antipsychotics, such as aripiprazole and clozapine, have unique pharmacology, exhibiting weak partial agonist activity at D2R or reduced antagonist efficacy, respectively (6). Previous studies have demonstrated the ability of D2Rs to engage different signal transduction pathways depending on the cellular complement of G proteins as well as their ability to regulate different physiological processes (79). β-arrestin 2 knockout mice provided robust behavioral and biochemical evidence for a critical D2R/β-arrestin signaling pathway in the striatum (10). Furthermore, neuronal selective deletion of GSK3β, a putative D2R/β-arrestin 2 effector, could reproduce the pharmacological blockade of D2Rs with antipsychotics (11). Although these studies suggest that D2Rs, like many other GPCRs, use pleiotropic signaling pathways to mediate their effects, the brain DA system is uniquely complex, as diverse responses may also rely upon many other determinants. One well-documented variable is the mode of stimulation of DA receptors, which is a function of the tonic or phasic release of DA (12). The expression profile of D2R is also complex, being expressed not only in DA synthesizing neurons of the substantia nigra and ventral tegmental area where they function as presynaptic autoreceptors but also in GABAergic medium spiny neurons (MSNs), cholinergic interneurons of the striatum, and cortical neurons (13), where they function as postsynaptic receptors. Thus, understanding the contributions of functional selectivity at D2R in intact biological systems is a challenge that cannot be elucidated in heterologous systems alone. To develop tools where this challenge can begin to be addressed, the Evolutionary Trace (ET) (14) approach was used to engineer D2R mutants that selectively interact with either G proteins or β-arrestins, designated [Gprot]D2R and [βarr]D2R, respectively. These mutants show separation of G-protein and β-arrestin interactions, and expression of these mutants in vivo in the mouse striatum provides proof-of-concept for their biological activity and discrete functions.  相似文献   

16.
Perovskite oxides using solid oxide fuel cells (SOFCs) anodes should possess high chemical stability, adequate electronic conductivity and excellent catalytic oxidation for fuel gas. In this work, the medium-entropy SrV1/3Fe1/3Mo1/3O3 (SVFMO) with Fe, V and Mo co-existing in the B site of a perovskite structure was fabricated in reducing 5% H2/Ar mixed gas: (1) SVFMO demonstrates more stable physicochemical properties when using SOFCs anodes in a reducing environment; (2) the co-existence of Fe, V and Mo in SVFMO forms more small-polaron couples, demonstrating greatly enhanced electronic conductivity. With SVFMO in a porous structure (simulating the porous anode layer), its electronic conductivity can also reach 70 S cm−1 when testing at 800 °C in an H2 atmosphere; (3) SVFMO with more oxygen vacancies achieves higher catalytic ability for fuel gas, as an SOFCs anode layer demonstrates 720 mW cm−2 at 850 °C.  相似文献   

17.
In this work, the series of Tb3+/Eu3+ co-doped xerogels and derivative glass-ceramics containing CaF2 nanocrystals were prepared and characterized. The in situ formation of fluoride crystals was verified by an X-ray diffraction technique (XRD) and transmission electron microscopy (TEM). The studies of the Tb3+/Eu3+ energy transfer (ET) process were performed based on excitation and emission spectra along with luminescence decay analysis. According to emission spectra recorded under near-ultraviolet (NUV) excitation (351 nm, 7F65L9 transition of Tb3+), the mutual coexistence of the 5D47FJ (J = 6–3) (Tb3+) and the 5D07FJ (J = 0–4) (Eu3+) luminescence bands was clearly observed. The co-doping also resulted in gradual shortening of a lifetime from the 5D4 state of Tb3+ ions, and the ET efficiencies were varied from ηET = 11.9% (Tb3+:Eu3+ = 1:0.5) to ηET = 22.9% (Tb3+:Eu3+ = 1:2) for xerogels, and from ηET = 25.7% (Tb3+:Eu3+ = 1:0.5) up to ηET = 67.4% (Tb3+:Eu3+ = 1:2) for glass-ceramics. Performed decay analysis from the 5D0 (Eu3+) and the 5D4 (Tb3+) state revealed a correlation with the change in Tb3+–Eu3+ and Eu3+–Eu3+ interionic distances resulting from both the variable Tb3+:Eu3+ molar ratio and their partial segregation in CaF2 nanophase.  相似文献   

18.
In this work, the stability of Sr2(FeMo)O6−δ-type perovskites was tailored by the substitution of Mo with Ti. Redox stable Sr2Fe1.4TixMo0.6−xO6−δ (x = 0.1, 0.2 and 0.3) perovskites were successfully obtained and evaluated as potential electrode materials for SOFCs. The crystal structure as a function of temperature, microstructure, redox stability, and thermal expansion properties in reducing and oxidizing atmospheres, oxygen content change, and transport properties in air and reducing conditions, as well as chemical stability and compatibility towards typical electrolytes have been systematically studied. All Sr2Fe1.4TixMo0.6−xO6−δ compounds exhibit a regular crystal structure with Pm-3m space group, showing excellent stability in oxidizing and reducing conditions. The increase of Ti-doping content in materials increases the thermal expansion coefficient (TEC), oxygen content change, and electrical conductivity in air, while it decreases the conductivity in reducing condition. All three materials are stable and compatible with studied electrolytes. Interestingly, redox stable Sr2Fe1.4Ti0.1Mo0.5O6−δ, possessing 1 μm grain size, low TEC (15.3 × 10−6 K−1), large oxygen content change of 0.72 mol·mol−1 between 30 and 900 °C, satisfactory conductivity of 4.1–7.3 S·cm−1 in 5% H2 at 600–800 °C, and good transport coefficients D and k, could be considered as a potential anode material for SOFCs, and are thus of great interest for further studies.  相似文献   

19.
The pharmacological properties of voltage-dependent calcium channel (VDCC) subtypes appear mainly to be determined by the α1 pore-forming subunit but, whether P-and Q-type VDCCs are encoded by the same α1 gene presently is unresolved. To investigate this, we used IgG antibodies to presynaptic VDCCs at motor nerve terminals that underlie muscle weakness in the autoimmune Lambert–Eaton myasthenic syndrome (LEMS). We first studied their action on changes in intracellular free Ca2+ concentration [Ca2+]i in human embryonic kidney (HEK293) cell lines expressing different combinations of human recombinant VDCC subunits. Incubation for 18 h with LEMS IgG (2 mg/ml) caused a significant dose-dependent reduction in the K+-stimulated [Ca2+]i increase in the α1A cell line but not in the α1B, α1C, α1D, and α1E cell lines, establishing the α1A subunit as the target for these autoantibodies. Exploiting this specificity, we incubated cultured rat cerebellar neurones with LEMS IgG and observed a reduction in P-type current in Purkinje cells and both P- and Q-type currents in granule cells. These data are consistent with the hypothesis that the α1A gene encodes for the pore-forming subunit of both P-type and Q-type VDCCs.  相似文献   

20.
Fibrous porous materials are one of the most commonly used high-temperature insulation materials because of their high porosity and low thermal conductivity. Due to their wide applications in the aerospace and energy industries, the investigation of high-elastic thermally insulating porous materials has attracted increasing attention. In order to improve the elasticity of fibrous porous materials, quartz fibers with high aspect ratio were used as matrix, sodium hexametaphosphate (SHMP) was selected as dispersant. We innovatively reported that a unique three-dimensional skeleton structure was constructed by adjusting the dispersion of fibers in the slurry, and the lightweight, thermal insulating and elastic SiO2 fibrous porous material was then prepared by the compression molding method. The characterization results of zeta potential and absorbance showed that the addition of SHMP was an effective method to enhance the dispersibility of quartz fibers in the slurry. SiO2 fibrous porous materials with 0.4 wt% SHMP content exhibited an ideal three-dimensional skeleton structure, which endowed the porous material with high porosity (89.39%), low density (0.04751 g/cm3), and low thermal conductivity (0.0356 W·m−1·K−1). The three-dimensional skeleton structure formed by overlapping fibers with high aspect ratios endowed the porous material with excellent elasticity. SiO2 fibrous porous materials with 0.4 wt% SHMP content could undergo large strains of 30% and achieved a resilience ratio of 81.69% under the 30th compression cycle. Moreover, after heat treatment at 800 °C, SiO2 fibrous porous materials also maintained good elasticity with a resilience ratio of more than 80%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号