首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine noise pollution generated by propellers is of wide concern. Traditional propeller materials (nickel–aluminum bronze (NAB) alloys) can no longer meet the requirements for reducing shaft vibration. However, the Mn–Cu alloy developed to solve the problem of propeller vibration is affected by seawater corrosion, which greatly limits the application of the alloy in the field of marine materials. In this study, the M2052–NAB gradient alloy was developed for the first time using LENS technology to improve the corrosion resistance while retaining the damping properties of the M2052 alloy. We hope this alloy can provide a material research basis for the development of low-noise propellers. This study shows that, after solution-aging of M2052 alloy as the matrix, the martensitic transformation temperature increased to approach the antiferromagnetic transformation temperature, which promoted twinning and martensitic transformation. The aging process also eliminated dendrite segregation, promoted the equiaxed γ-MnCu phase, and increased the crystal size to reduce the number of dislocations, resulting in obvious modulus softening of the alloy. NAB after deposition had higher hardness and good corrosion resistance than the as-cast alloy, which offers good corrosion protection for the M2052 alloy. This research provides new material options for the field of shipbuilding.  相似文献   

2.
In this paper, the effect of temperature on the corrosion behavior and corrosion resistance of the copper–aluminum laminated composite plates were investigated by salt-spray corrosion, potential polarization curve and electrochemical impedance spectroscopy. Moreover, the microstructure of the copper–aluminum laminated composite plate after salt-spray corrosion was observed by scanning electron microscope, and X-ray photoelectron spectroscopy was used to study the composition of corrosion product. The results revealed that the corrosion products of the copper–aluminum laminated composite plate were Al2O3 and AlOOH. Due to the galvanic corrosion of the copper–aluminum laminated composite plate, the cathode underwent oxygen absorption corrosion during the corrosion process; therefore, the presence of moisture and the amount of dissolved oxygen in the corrosive environment had a great influence on the corrosion process. The increasing temperature would evaporate a large amount of moisture, resulting in the corrosion product—aluminum oxide dehydrated and covered the surface of the material in the process of salt-spray corrosion, which played a role in protecting the material. Therefore, the corrosion resistance of the copper–aluminum laminated composite plate first decreased and then increased. In the salt-spray corrosion environment, the corrosion resistance of the copper–aluminum laminated composite plate reached the lowest at 45 °C, and its corrosion rate was the fastest, at 0.728 g/m2·h. The electrochemical corrosion occurred in the solution, and the impact was small; however, in addition to the protective corrosion products, the ion mobility in the solution also had a certain influence on the corrosion rate, and the ionic activity increased with the increase of temperature. Therefore, the corrosion resistance of the copper–aluminum laminated composite plate gradually decreased as the temperature increased, and its corrosion resistance was the worst at 50 °C.  相似文献   

3.
Plasma immersion ion implantation (PIII) of nitrogen is low-temperature surface technology which enables the improvement of tribological properties without a deterioration of the corrosion behavior of austenitic stainless steels. In this paper the corrosion properties of PIII-treated AISI 316L stainless steel surfaces are evaluated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PP) and exposure immersion tests (all carried out in the 0.9 wt. % NaCl solution at 37 ± 0.5 °C) and compared with a non-treated surface. Results of the three performed independent corrosion tests consistently confirmed a significant increase in the corrosion resistance after two doses of PIII nitriding.  相似文献   

4.
Magnesium-zinc-calcium (Mg-Zn-Ca) alloys as a biomaterial have attracted much attention recently, owing to their excellent biocompatibility, similar mechanical properties to natural bone, and biodegradable properties. Despite the numerous advantages of MgZnCa alloys, the rapid degradation of magnesium proved challenging as the implant in unable to retain its structural integrity for a sufficient duration of time. For metallic glasses, the capability to produce a bulk sample that is sufficiently large for useful applications have been far less successful owing to challenging processing parameters that are required for rapid cooling. In this study, Mg65Zn30Ca5 melt-spun ribbons were produced using melt-spinning followed by spark plasma sintering under high pressure (60 MPa) at different temperatures (130–170 °C) to provide an insight into the consolidation, mechanical, and corrosion behavior. Microstructural interfaces were characterized using scanning electron microscopy while the thermal stability of the amorphous phase was characterized using differential scanning calorimetry and X-ray diffraction. Here, pellets with 10 mm diameter and 10 mm height with a complete amorphous structure were achieved at a sintering temperature of 150 °C with densification as high at ~98%. Sintering at higher temperatures, while achieving higher densification, resulted in the presence of nano-crystallites. The mechanical properties were characterized using microhardness and compression tests. The hardness values of the sintered products were relatively higher to those containing crystallite phases while the ultimate compressive strength increased with increasing sintering temperature. Bio-corrosion properties were characterized via electrochemical testing with PBS as the electrolyte at 37 °C. The corrosion results suggest that the sintered samples have a significantly improved corrosion resistance as compared to as-cast samples. More notably, SPS150 (samples sintered at 150 °C) exhibited the best corrosion resistance (35× compared to as-cast in the context of corrosion current density), owing to its single-phase amorphous nature. This study clearly shows the potential of spark plasma sintering in consolidating amorphous ribbons to near-full density bulk pellets with high corrosion resistance for bio-applications.  相似文献   

5.
Nickel-based composite electrochemical coatings (CEC) modified with multilayer graphene oxide (GO) were obtained from a sulfate-chloride electrolyte in the reverse electrolysis mode. The microstructure of these CECs was investigated by X-ray phase analysis and scanning electron microscopy. The corrosion-electrochemical behavior of nickel–GO composite coatings in a 0.5 M solution of H2SO4was studied. Tests in a 3.5% NaCl solution showed that the inclusion of GO particles into the composition of electrolytic nickel deposits makes their corrosion rate 1.40–1.50 times less.  相似文献   

6.
This work reports the effects of Microstructural changes due to the secondary phases, in particular sigma (σ), on the mechanical properties and electrochemical behavior of thermally aged duplex stainless steel (DSS). Structural, morphological, mechanical, and electrochemical characterizations were performed. Sigma phase content increased with increasing aging treatment time. It had a net-like shape, as observed by electron backscatter diffractometry (EBSD). Its presence directly damaged mechanical properties. The corrosion assessment included electrochemical impedance spectroscopy (EIS) in 1 M NaCl solution at temperatures of 25, 40, and 65 °C. EIS results demonstrate that an increase in the σ phase content decreased the corrosion resistance (21.1–0.8, 3.5–0.3, and 3.1–0.2 kΩ cm2 at 25, 40, and 60 °C, respectively).  相似文献   

7.
The working environment for tubing in oil and gas fields is becoming more and more serious due to the exploration of unconventional oil and gas resources, leading to the increasing need for a protective internal coating to be used in tubing. Therefore, a new mica–graphene/epoxy composite coating with different graphene contents (0.0, 0.2, 0.5, 0.7, and 1.0 wt.%) was prepared to improve the tubing resistance to a corrosive medium, an autoclave was used to simulate the working environment, and an electrochemical workstation assisted by three-electrodes was used to study the electrochemical characteristics of the coating. The results showed that the addition of a certain amount of graphene into the mica/epoxy coating significantly improved the corrosion resistance of the composite coating, and when the graphene content increased, the corrosion resistance of the mica/epoxy coating first increased and then decreased when the corrosion current density of a 35 wt.% 800# mica/epoxy coating with a 0.7 wt.% graphene content was the lowest (7.11 × 10−13 A·cm−2), the corrosion potential was the highest (292 mV), the polarization resistance was the largest (3.463 × 109 Ω·cm2), and the corrosion resistance was improved by 89.3% compared to the coating without graphene. Furthermore, the adhesion of the coating with 0.7 wt.% graphene was also the largest (8.81 MPa, increased by 3.4%) and had the smallest diffusion coefficient (1.566 × 107 cm2·s−1, decreased by 76.1%), and the thermal stability improved by 18.6%. Finally, the corrosion resistance mechanism of the composite coating with different graphene contents at different soaking times was revealed based on the electrochemistry and morphology characteristics other than water absorption and contact angle.  相似文献   

8.
Superhydrophobic coatings on iron surface have a wide application potential in medical instruments, chemical industrial equipment, and house construction. In this work, we developed a multi-functional superhydrophobic coating on iron surface with a high air/water contact angle of 162.3° and a low sliding angle of 2.4°. The construction of superhydrophobic coating involves physical friction processing to fabricate micropatterns and structures, followed by annealing treatment and surface chemical modification with 1H,1H,2H,2H-tridecafluoro-n-octyltrimethoxysilane. The obtained organic–inorganic composite material exhibited considerable optimization potential to anti-condensation performance. The low surface energy of the superhydrophobic coating also leads to poor adhesion of water, dust, and blood platelets, which is beneficial for applications in medical devices. The electrochemical and impedance test results demonstrated that the superhydrophobic surface provided effective corrosion protection for the iron substrate, with an 84.63% increase in corrosion protection efficiency. The experimental results showed that the anti-bacterial ratios reached 90% for E. coli and 85% for S. epidermidis, while the anti-bacterial ratios of ordinary iron were only 8% for E. coli and 15% for S. epidermidis, respectively.  相似文献   

9.
Composite coatings of polyvinylidene fluoride (PVDF)/CeO2 were developed by using the spray approach to explore the wetting and corrosion behaviour of coated materials for applications related to industry. PVDF was combined with different quantities of CeO2 nanoparticles followed by spraying onto glass, aluminium, and steel substrates. The sessile droplet method and microscopy studies were used to assess the wetting behaviour and morphology of the coated surfaces, respectively. The corrosion resistance of uncoated substrates coated with PVDF only was compared with those coated with PVDF/CeO2 nanoparticles through Tafel polarization techniques. In psi, the force of adhesion was measured between the coating layer and the substrates. The PVDF/CeO2-coated steel had a significantly greater water contact angle and lower contact angle hysteresis than coated aluminium and glass substrates, reaching 157 ± 2° and 8 ± 1°, respectively. The corrosion protection efficiency of the superhydrophobic PVDF/CeO2 coatings was considerably higher for steel and aluminium when compared with PVDF coatings. The PVDF/CeO2 coated substrates had modest adhesion between the coating layer and the substrates, but it was still acceptable. Furthermore, the PVDF/CeO2 coatings outperformed PVDF alone in terms of mechanical properties.  相似文献   

10.
New designs of the microchannel with a two-sided wedge shape at the base were studied numerically. Five different wedge angles ranging from 3° to 15° were incorporated into the microchannel design. Simulation of this novel microchannel was carried out using Computational Fluid Dynamics (CFD). Three-dimensional models of the microchannel heat sink were created, discretized, and based on Navier–Stokes and energy equations; laminar numerical solutions were obtained for heat transfer and pressure drop. Flow characteristics of water as coolant in a microchannel were studied. It was observed that numerical results are in good agreement with experimental results. It was found that the Nusselt number and friction factor are significantly varied with the increase in Reynolds number. The Nusselt number varies in the following ranges of 5.963–8.521, 5.986–8.550, 6.009–8.568, 6.040–8.609, and 6.078–8.644 at 3°, 6°, 9°, 12°, and 15°, respectively. The microchannel with a wedge angle of 15° was found to be better in terms of Nusselt number and thermo-hydraulic performance. The enhancement in the Nusselt number is found as 1.017–1.036 for a wedge angle of 15°; however, friction factors do not show the perceptible values at distinct values of wedge angle. Moreover, the thermo-hydraulic performance parameters (THPP) were evaluated and found to be maximum in the range of 1.027–1.045 for a wedge angle of 15°. However, minimum THPP was found in the range of 1.005–1.0185 for a wedge angle of 3°.  相似文献   

11.
To study the heat-treatment process of a semi-solid copper alloy, a thixotropic back-extruded tin–bronze shaft sleeve was heat-treated at 630 °C, 660 °C, 690 °C and 720 °C for 1 h, respectively. Microstructure changes and mechanical properties under different solution temperatures of shaft sleeve were characterized using a metallographic microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), hardness tester, and tensile tester. The results show that the tensile strength first increases and then decreases; the elongation decreases; and the Brinell hardness increases gradually with increasing solution temperature. When the solution treatment is at 690 °C, the tin–bronze shaft sleeve’s microstructure and comprehensive mechanical properties are the best. The shape factor is 0.75, the average grain size is 82.52 μm, the Brinell hardness is 122 HBW, the tensile strength is 437 MPa, and the elongation is 17.4%, which is 3.4 times higher than that before solution treatment.  相似文献   

12.
AISI H13 die steel specimens were subjected to heating at 1020 °C followed by oil quenching and double tempering at 520 °C. Subsequently, these specimens were subjected to deep cryogenic treatment at −185 °C in liquid nitrogen environment for 16 h and then subjected to soft tempering at 100 °C once the specimens attained room temperature. Thereafter, the specimens were subjected to scanning electron microscopy (SEM) analysis and electron backscatter diffraction (EBSD) analysis. The electrochemical corrosion activity was investigated in 3.5% NaCl at 23 ± 0.5 °C by evaluating the evolution of open circuit potential over time and potentiodynamic curves, and electrochemical impedance spectroscopy study was also carried out. The heat-treated specimens exhibited better resistance to corrosion through more electropositive values of open circuit potential. This could be attributed to lower grain boundary area in heat-treated specimens as compared to 16 h cryogenically treated specimen as higher grain boundary areas behave as an anode in an electrochemical cell, thereby enhancing the rate of corrosion. According to electrochemical tests, the cryogenically treated surface is more resistant to corrosion, followed by heated alloy. However, both surface modification treatments improved the corrosion behavior of the untreated alloy.  相似文献   

13.
Avascular necrosis of the lunate bone (Kienböck disease) is caused by loss of blood supply of the bone. This study aimed to evaluate the efficacy and safety of a novel nickel–titanium (Ni–Ti) memory alloy arthrodesis concentrator in the treatment of this disease.A consecutive 24 patients with stage IIIb aseptic lunate necrosis were treated with scapho-trapezio-trapezoeid (STT) arthrodesis using a Ni–Ti arthrodesis concentrator from August 2008 to December 2012. Wrist pain, grip strength, carpal height, and scapholunate angle were measured and compared before and after the surgery. The wrist functions were evaluated using the Mayo scale.Patients were followed up for a mean of 12 months (range, 6–24 months). Grip strength of the affected side was significantly improved after the surgery (18 ± 4.74 kg vs. 30.21 ± 7.14 kg, P < 0.0001). Wrist pain score was significantly decreased from 5.88 ± 0.9 to 0.5 ± 0.51 (P < 0.0001). Carpal height and Mayo score were also significantly increased after the surgery (P < 0.0001). Scapholunate angle was significantly decreased after the surgery (68.38 ± 7.28° vs. 49.91 ± 4.28°, P < 0.0001). No implant breakage, loose implant, wound infection, or nonunion occurred.STT arthrodesis is effective for the treatment of stage IIIb lunate necrosis. The Ni–Ti memory alloy arthrodesis concentrator is a convenient tool for STT arthrodesis with excellent and reliable results.  相似文献   

14.
The key goal of this study was to characterize surface properties of chosen dental materials on the base on the contact angle measurements and surface free energy calculations. Tested materials were incubated in the simulated oral environment and drinks to estimate an influence of conditions similar to those in the oral cavity on wetting and energetic state of the surface. Types of materials were as follows: denture acrylic resins, composite and PET-G dental retainer to compare basic materials used in a prosthetics, restorative dentistry and orthodontics. The sessile drop method was used to measure the contact angle with the use of several liquids. Values of the surface free energies were estimated based on the Owens–Wendt, van Oss–Chaudhury–Good and Zisman’s methods. The research showed that surface wetting depends on the material composition and storage conditions. The most significance changes of CA were observed for acrylic resins (84.7° ± 3.8° to 65.5° ± 3.5°) and composites (58.8° ± 4.1° to 49.1° ± 5.7°) stored in orange juice, and for retainers (81.9° ± 1.8° to 99.6° ± 4.5°) incubated in the saline solution. An analysis of the critical surface energy showed that acrylic materials are in the zone of good adhesion (values above 40 mJ/m2), while BIS-GMA composites are in the zone of poor adhesion (values below 30 mJ/m2). Study of the surface energy of different dental materials may contribute to the development of the thermodynamic model of bacterial adhesion, based on the surface free energies, and accelerate the investigation of biomaterial interaction in the biological environment.  相似文献   

15.
Erosive wear due to the fact of sand severely affects hydrocarbon production industries and, consequently, various sectors of the mineral processing industry. In this study, the effect of the elbow geometrical configuration on the erosive wear of carbon steel for silt–water–air flow conditions were investigated using material loss analysis, surface roughness analysis, and microscopic imaging technique. Experiments were performed under the plug flow conditions in a closed flow loop at standard atmospheric pressure. Water and air plug flow and the disperse phase was silt (silica sand) with a 2.5 wt % concentration, and a silt grain size of 70 µm was used for performing the tests. The experimental analysis showed that silt impact increases material disintegration up to 1.8 times with a change in the elbow configuration from 60° to 90° in plug flow conditions. The primary erosive wear mechanisms of the internal elbow surface were sliding, cutting, and pit propagation. The maximum silt particle impaction was located at the outer curvature in the 50° position in 60° elbows and the 80° position in 90° elbows in plug flow. The erosion rate decreased from 10.23 to 5.67 mm/year with a change in the elbow angle from 90° to 60°. Moreover, the microhardness on the Vickers scale increased from 168 to 199 in the 90° elbow and from 168 to 184 in the 60° elbow.  相似文献   

16.
Bipolar hemiarthroplasty (BHA) is one of the common procedures done for the treatment of femur neck fracture. One of the frequently encountered complication with this surgery is erosion of the acetabular cartilage. This study was conducted to investigate acetabular erosion after BHA according to the difference in diameter between femoral head and implanted cup at minimum 10-year follow-up.We retrospectively reviewed 117 patients (117 hips) undergoing BHA with fracture of neck of the femur. Their mean age was 77.8 years (range, 65–96 years) and male: female ratio was 32:85. Patients were divided into 3 groups; Group A – bipolar cup size > actual head size, Group B – cup size < head size, Group C – cup size = head size. The degree of both superior and medial acetabular cartilage erosion was identified and calculated on postoperative radiographs using line of acetabular margin and Kohler line.The mean superior and medial acetabular erosion were 1.62 ± 1.6 mm (range, 0–4.4) and 4.15 ± 2.7 mm (range, 0–8.2) in Group A, 1.30 ± 1.3 mm (range, 0–3.8) and 4.11 ± 2.7 mm (range, 0–7.8) in Group B, and 0.90 ± 1.1 mm (range, 0–2.6) and 3.16 ± 2.9 mm (range, 0–7.9) in Group C (P = .039 and P = .187, respectively). The superior acetabular erosion showed significant difference between the 3 groups. During mean follow-up period of 12.3 years, 5 patients (5/117, 4.3%) underwent conversion to total hip arthroplasty due to superior acetabular erosion. All of 3 patient underwent BHA with a larger bipolar cup than the actual femoral head.A lager sized cup accelerated superior cartilage erosion of acetabulum after BHA. An optimal cup size should be considered when undergoing BHA in elderly patients.  相似文献   

17.
There is a new long-period stacking ordered structure in Mg–RE–Zn magnesium alloys, namely the LPSO phase, which can effectively improve the yield strength, elongation, and corrosion resistance of Mg alloys. According to different types of Mg–RE–Zn alloy systems, two transformation modes are involved in the heat treatment transformation process. The first is the alloy without LPSO phase in the as-cast alloy, and the MgxRE phase changes to 14H-LPSO phase. The second is the alloy containing LPSO phase in the as-cast state, and the 14H-LPSO phase is obtained by the transformations of 6H, 18R, and 24R. The effects of different solution parameters on the second phase of Mg–9Gd–2Y–2Zn–0.5Zr alloy were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The precipitation mechanism of 14H-LPSO phase during solution treatment was further clarified. At a solution time of 13 h, the grain size increased rapidly initially and then decreased slightly with increasing solution temperature. The analysis of the volume fraction of the second phase and lattice constant showed that Gd and Y elements in the alloy precipitated from the matrix and formed 14H-LPSO phase after solution treatment at 490 °C for 13 h. At this time, the hardness of the alloy reached the maximum of 74.6 HV. After solution treatment at 500 °C for 13 h, the solid solution degree of the alloy increases, and the grain size and hardness of the alloy remain basically unchanged.  相似文献   

18.
The microstructure, electrical properties and microhardness of as-cast and cold rolled AlYb and AlMnYbZr alloys were investigated. The addition of Mn, Yb and Zr has a positive influence on grain size. A deformed structure of the grains with no changes of their size was observed after cold rolling. The Al3Yb particles coherent with the matrix were observed in the AlYb alloys. The size of the particles was about 20 nm in the initial state; after isochronal treatment up to 540 °C the particles coarsen, and their number density was lower. The deformation has a massive effect on the microhardness behavior until treatment at 390 °C, after which the difference in microhardness changes between as-cast and cold rolled alloys disappeared. Relative resistivity changes show a large decrease in the temperature interval of 330–540 °C which is probably caused by a combination of recovery of dislocations and precipitation of the Al3(Yb,Zr) particles. Precipitation hardening was observed between 100 and 450 °C in the AlYb alloy after ageing at 625 °C/24 h and between 330 and 570 °C in the AlMnYbZr alloy after ageing at 625 °C/24 h.  相似文献   

19.
In the current study, the creep properties of magnesium alloy reinforced with SiC particles were investigated. For this purpose, ZK60/SiCp composite was produced by the stir casting method following the KoBo extrusion and precipitation hardening processes. The creep tests were performed at 150 °C under 10–110 MPa. The results showed that the stress exponent (n) and the average true activation energy (Q) was changed at high stresses, was found with increasing stress, the creep mechanism changing from grain boundary sliding to dislocation climb. The results of microstructure characterization after the creep test showed that at low stresses, the dynamic recrystallization resulting from twinning induced the GBS mechanism. However, at high stresses, with increasing diffusion rates, conditions are provided for dynamic precipitation and the dislocation climb of the dominant creep mechanism. Examination of the fracture surfaces and the surrounding areas showed that the cavity nucleation in the ternary boundary and surrounding precipitation was the main cause of damage. The evaluation of the samples texture after creep showed that the unreinforced alloy showed a moderately strong fiber texture along the angle of ϕ1 = 0–90°, which was tilted about Φ = 10°. A new strong texture component was observed at (90°, 5°, 0°) for the composite sample, which crept due to minor splitting of the basal pole by ~5° toward RD.  相似文献   

20.
In this study, it was found that an ancient bronze sword had special microstructures, i.e., a tin (Sn)-rich layer (Sn: 38.51 wt.%), that was around 0.1–0.3 mm in thickness in the bronze substrate (Sn: 18.57 wt.%). This sword was unearthed from the same Chu tombs of the “Sword of Gou Jian”, and dated back to the late Spring and Autumn Period (496 BC–464 BC). The experimental and theoretical analyses revealed that (1) the Sn-rich layer exhibited higher microhardness (around 650 HV) than the sword body (around 300 HV); (2) the Sn-rich layer showed a brittle fracture due to the formation of a large amount of α + δ eutectoid, while the sword body was of good toughness due to a large amount of α-Cu solid solution phase; and (3) theoretical calculations of Sn diffusion in the Cu substrate indicated that this Sn-rich layer could have been formed within several hours or several days if the temperature was above 600 °C. Therefore, this sword was proposed to be a novel kind of composite bronze sword, and the possible manufacturing technique was a surface treatment called “dip or wipe tinning” or tin amalgam, which was widely used in the Bronze Age. Technically, this process possesses more advantages than the well-known two-times casting for making the “double-colour” or bi-metallic composite bronze sword. This research showed that the materials processing level was beyond our expectations for ancient China 2500 years ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号