首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whereas the neuronal substrates underlying the acquisition of auditory fear conditioning have been widely studied, the substrates and mechanisms mediating the acquisition of fear extinction remain largely elusive. Previous reports indicate that consolidation of fear extinction depends on the mitogen-activated protein kinase/extracellular-signal regulated kinase (MAPK/ERK) signalling pathway and on protein synthesis in the medial prefrontal cortex (mPFC). Based on experiments using the fear-potentiated startle paradigm suggesting a role for neuronal plasticity in the basolateral amygdala (BLA) during fear extinction, we directly addressed whether MAPK/ERK signalling in the basolateral amygdala is necessary for the acquisition of fear extinction using conditioned freezing as a read-out. First, we investigated the regional and temporal pattern of MAPK/ERK activation in the BLA following extinction learning in C57Bl/6J mice. Our results indicate that acquisition of extinction is associated with an increase of phosphorylated MAPK/ERK in the BLA. Moreover, we found that inhibition of the MAPK/ERK signalling pathway by intrabasolateral amygdala infusion of the MEK inhibitor, U0126, completely blocks acquisition of extinction. Thus, our results indicate that the MAPK/ERK signalling pathway is required for extinction of auditory fear conditioning in the BLA, and support a role for neuronal plasticity in the BLA during the acquisition of fear extinction.  相似文献   

2.
Mitogen-activated protein kinase (MAPK) is a serine/threonine protein kinase abundantly expressed in postmitotic neurons of the developed nervous system. MAPK is activated in and required for both the induction of long-term potentiation (LTP) in hippocampal slices and the acquisition of fear conditioning training in rats. The present work was performed in order to test the effect of the specific inhibitor of MAPK kinase (MAPKK), PD 098059, on retention of a step-down inhibitory avoidance (IA). Adult male Wistar rats were bilaterally injected (0.5 microl/side) with PD 098059 (at 0.5, 5, or 50 microM) or vehicle into the entorhinal cortex or into the parietal cortex immediately after IA training using a 0.4 mA footshock. Retention testing was carried out 24 h after training. PD 098059 impaired retention when injected into the entorhinal cortex at the dose of 50 microM, but not at the doses of 5 or 0.5 microM. When infused into the parietal cortex, PD 098059 was amnestic at the doses of 5 and 50 microM. The drug had no effect when infused at the highest dose in either structure 6 h after training. Our results suggest that the MAPKK inhibitor impairs IA retention memory in a dose-dependent manner when injected immediately after training into entorhinal cortex or parietal cortex. The effective dose is variable according to the neocortical structure studied.  相似文献   

3.
The present study elucidated whether early life stress alters the extracellular signal-regulated kinase (ERK) pathway that underlies fear retrieval and fear extinction based on a contextual fear conditioning paradigm, using a juvenile stress model. Levels of phospho-ERK (pERK), the active form of ERK, increased after fear retrieval in the hippocampal CA1 region but not in the medial prefrontal cortex (mPFC). ERK activation in the CA1 following fear retrieval was not observed in adult rats who received aversive footshock (FS) stimuli during the second postnatal period (2wFS), which exhibited low levels of freezing. In fear extinction, pERK levels in the CA1 were increased by repeated extinction trials, but they were not altered after extinction retrieval. In contrast, pERK levels in the mPFC did not change during extinction training, but were enhanced after extinction retrieval. These findings were compatible in part with electrophysiological data showing that synaptic transmission in the CA1 field and mPFC was enhanced during extinction training and extinction retrieval, respectively. ERK activation in the CA1 and mPFC associated with extinction processes did not occur in rats that received FS stimuli during the third postnatal period (3wFS), which exhibited sustained freezing behavior. The repressed ERK signaling and extinction deficit observed in the 3wFS group were ameliorated by treatment with the partial N-methyl-D-aspartate receptor agonist D-cycloserine. These findings suggest that early postnatal stress induced the downregulation of ERK signaling in distinct brain regions through region-specific regulation, which may lead to increased behavioral abnormalities or emotional vulnerabilities in adulthood.  相似文献   

4.
The majority of fear conditioning studies in humans have focused on fear acquisition rather than fear extinction. For this reason only a few functional imaging studies on fear extinction are available. A large number of animal studies indicate the medial prefrontal cortex (mPFC) as neuronal substrate of extinction. We therefore determined mPFC contribution during extinction learning after a discriminative fear conditioning in 34 healthy human subjects by using functional near-infrared spectroscopy. During the extinction training, a previously conditioned neutral face (conditioned stimulus, CS+) no longer predicted an aversive scream (unconditioned stimulus, UCS). Considering differential valence and arousal ratings as well as skin conductance responses during the acquisition phase, we found a CS+ related increase in oxygenated haemoglobin concentration changes within the mPFC over the time course of extinction. Late CS+ trials further revealed higher activation than CS- trials in a cluster of probe set channels covering the mPFC. These results are in line with previous findings on extinction and further emphasize the mPFC as significant for associative learning processes. During extinction, the diminished fear association between a former CS+ and a UCS is inversely correlated with mPFC activity--a process presumably dysfunctional in anxiety disorders.  相似文献   

5.
D‐cycloserine (DCS) is currently under clinical trials for a number of neuropsychiatric conditions and has been found to augment fear extinction in rodents and exposure therapy in humans. However, the molecular mechanism of DCS action in these multiple modalities remains unclear. Here, we describe the effect of DCS administration, alone or in conjunction with extinction training, on neuronal activity (c‐fos) and neuronal plasticity [phospho‐extracellular signal‐regulated kinase (pERK)] markers using immunohistochemistry. We found that intraperitoneal administration of DCS in untrained young rats (24–28 days old) increased c‐fos‐ and pERK‐stained neurons in both the prelimbic and infralimbic division of the medial prefrontal cortex (mPFC) and reduced pERK levels in the lateral nucleus of the central amygdala. Moreover, DCS administration significantly increased GluA1, GluN1, GluN2A, and GluN2B expression in the mPFC. In a separate set of animals, we found that DCS facilitated fear extinction and increased pERK levels in the infralimbic prefrontal cortex, prelimbic prefrontal cortex intercalated cells and lateral nucleus of the central amygdala, compared with saline control. In the synaptoneurosomal preparation, we found that extinction training increased iGluR protein expression in the mPFC, compared with context animals. No significant difference in protein expression was observed between extinction‐saline and extinction‐DCS groups in the mPFC. In contrast, in the amygdala DCS, the conjunction with extinction training led to an increase in iGluR subunit expression, compared with the extinction‐saline group. Our data suggest that the efficacy of DCS in neuropsychiatric disorders may be partly due to its ability to affect neuronal activity and signaling in the mPFC and amygdala subnuclei.  相似文献   

6.
Information storage in the brain is a temporally graded process involving different memory types or phases. It has been assumed for over a century that one or more short-term memory (STM) processes are involved in processing new information while long-term memory (LTM) is being formed. Because brain-derived neutrophic factor (BDNF) modulates both short-term synaptic function and activity-dependent synaptic plasticity in the adult hippocampus, we examined the role of BDNF in STM and LTM formation of a hippocampal-dependent one-trial fear-motivated learning task in rats. Using a competitive RT-PCR quantitation method, we found that inhibitory avoidance training is associated with a rapid and transient increase in BDNF mRNA expression in the hippocampus. Bilateral infusions of function-blocking anti-BDNF antibody into the CA, region of the dorsal hippocampus decreased extracellular signal-regulated kinase 2 (ERK2) activation and impaired STM retention scores. Inhibition of ERK1/2 activation by PD098059 produced similar effects. In contrast, intrahippocampal administration of recombinant human BDNF increased ERK1/2 activation and facilitated STM. The infusion of anti-BDNF antibody impaired LTM when given 15 min before or 1 and 4 hr after training, but not at 0 or 6 hr posttraining, indicating that two hippocampal BDNF-sensitive time windows are critical for LTM formation. At the same time points, PD098059 produced no LTM deficits. Thus, our results indicate that endogenous BDNF is required for both STM and LTM formation of an inhibitory avoidance learning. Additionally, they suggest that this requirement involves ERK1/2-dependent and -independent mechanisms.  相似文献   

7.
Fear extinction, an inhibitory learning that suppresses a previously learned fear memory, is diminished during adolescence. Earlier studies have shown that this suppressed fear extinction during adolescence involves an altered glutamatergic plasticity in infralimbic medial prefrontal cortical (IL‐mPFC) pyramidal neurons. However, it is unclear whether the excitability of IL‐mPFC pyramidal neurons plays a role in this development‐dependent suppression of fear extinction. Therefore, we examined whether fear conditioning and extinction affect the active and passive membrane properties of IL‐mPFC layer 5 pyramidal neurons in preadolescent, adolescent and adult mice. Both preadolescent and adult mice exhibited a bidirectional modulation of the excitability of IL‐mPFC layer 5 pyramidal neurons following fear conditioning and extinction, i.e., fear conditioning reduced membrane excitability, whereas fear extinction reversed this effect. However, the fear conditioning‐induced suppression of excitability was not reversed in adolescent mice following fear extinction training. Neither fear conditioning nor extinction affected GABAergic transmission in IL‐mPFC layer 5 pyramidal neurons, suggesting that GABAergic transmission did not play a role in experience‐dependent modulation of neuronal excitability. Our results suggest that the extinction‐specific modulation of excitability is impaired during adolescence.  相似文献   

8.
Accumulative evidence indicates that acute (before extinction) and long-lasting (during extinction) depression can occur at excitatory synapses in mouse medial prefrontal cortex (mPFC) during re-exposure to a tone (conditioned stimulus: CS), previously paired with footshock (unconditioned stimulus: US). As recently shown, the long-term depression (LTD)-like plasticity in the mPFC does not interfere with extinction of CS-evoked freezing but predicts spontaneous recovery of this fear response. Here, the objectives were to investigate: (i). whether a resistance to extinction without any prefrontal acute synaptic plasticity could produce LTD-like changes, and (ii). by the use of paired-pulse facilitation (PPF) analyses, whether pre- or post-synaptic mechanisms were involved in this LTD phenomenon. Preliminary analyses indicated that levels of acute depression did not correlate with the degree of fear acquisition (effects of number of CS-US pairings). As a consequence, mice conditioned with 2CS+ or 2CS+/2CS- (partial reinforcement of the CS known to induce resistance to extinction) exhibited CS-associated freezing without any acute synaptic depression in the mPFC. However, during further CS-alone presentations, the 2CS+/2CS- group developed LTD-like changes that accompanied their resistance to extinguish freezing to the CS. In contrast, the 2CS+ group normally extinguished their conditioned freezing with synaptic transmission remaining at baseline levels. PPF analyses revealed that facilitation was unchanged following prefrontal LTD. These data, combined with our previous findings, (i). support a critical involvement of prefrontal LTD-like changes in spontaneous recovery of fear responses, and (ii). suggest a post-synaptic site for these changes.  相似文献   

9.
Several lines of evidence suggest that the N-methyl-D-aspartate (NMDA) receptor plays a significant role in fear conditioning and extinction. However, our knowledge of the role of d-serine, an endogenous ligand for the glycine site of the NMDA receptor, in fear extinction is quite limited compared to that of d-cycloserine, an exogenous partial agonist for the same site. In the current study, we examined the effects of d-serine on fear extinction and phosphorylation of extracellular signal-regulated kinase (ERK) in the hippocampus, basolateral amygdala (BLA), and medial prefrontal cortex (mPFC) during the process of fear extinction. Systemic administrations of d-serine (2.7 g/kg, i.p.) with or without the ERK inhibitor SL327 (30 mg/kg, i.p.) to C57BL/6 J mice were performed before fear extinction in a cued fear conditioning and extinction paradigm. Cytosolic and nuclear ERK 1/2 phosphorylation in the hippocampus, BLA, and mPFC were measured 1 h after extinction (E1h), 24 h after extinction (E24h), and 1 h after recall (R1h) by Western blotting. We found that d-serine enhanced the extinction of fear memory, and the effects of d-serine were reduced by the ERK phosphorylation inhibitor SL327. The Western blot analyses showed that d-serine significantly increased cytosolic ERK 2 phosphorylation at E1h in the hippocampus and cytosolic ERK 1/2 phosphorylation at R1h in the BLA. The present study suggested that d-serine might enhance fear extinction through NMDA receptor-induced ERK signaling in mice, and that d-serine has potential clinical importance for the treatment of anxiety disorders.  相似文献   

10.
The prefrontal cortex has been extensively implicated in autism to explain deficits in executive and other higher brain functions related to cognition, language, sociability and emotion. Hyper-connectivity and hyper-plasticity at the level of the neuronal microcircuit in the medial prefrontal cortex (mPFC) in the valproic acid (VPA) animal model of autism has been suggested. However, the possible alterations at the system levels are not well understood. The present study investigated the basal synaptic transmission and synaptic plasticity in the mPFC in vivo in the VPA rat model of autism. Furthermore, short-term and long-term retention of fear memories were also examined. The findings displayed that paired-pulse facilitation (PPF) and long-term potentiation (LTP), representing short- and long-term synaptic plasticity, were enhanced by the prenatal exposure to VPA. In addition, the short- and long-term fear memories were enhanced. These results suggest that enhanced synaptic plasticity in the mPFC and fear memories might be one of the mechanisms underlying some symptoms of autism.  相似文献   

11.
The retrieval of fear memory induces two opposite memory process, i.e., reconsolidation and extinction. Brief retrieval induces reconsolidation to maintain or enhance fear memory, while prolonged retrieval extinguishes this memory. Although the mechanisms of reconsolidation and extinction have been investigated, it remains unknown how fear memory phases are switched from reconsolidation to extinction during memory retrieval. Here, we show that an extracellular signal-regulated kinase (ERK)-dependent memory transition process after retrieval regulates the switch of memory phases from reconsolidation to extinction by preventing induction of reconsolidation in an inhibitory avoidance (IA) task in male mice. First, the transition memory phase, which cancels the induction of reconsolidation, but is insufficient for the acquisition of extinction, was identified after reconsolidation, but before extinction phases. Second, the reconsolidation, transition, and extinction phases after memory retrieval showed distinct molecular and cellular signatures through cAMP responsive element binding protein (CREB) and ERK phosphorylation in the amygdala, hippocampus, and medial prefrontal cortex (mPFC). The reconsolidation phase showed increased CREB phosphorylation, while the extinction phase displayed several neural populations with various combinations of CREB and/or ERK phosphorylation, in these brain regions. Interestingly, the three memory phases, including the transition phase, showed transient ERK activation immediately after retrieval. Most importantly, the blockade of ERK in the amygdala, hippocampus, or mPFC at the transition memory phase disinhibited reconsolidation-induced enhancement of IA memory. These observations suggest that the ERK-signaling pathway actively regulates the transition of memory phase from reconsolidation to extinction and this process functions as a switch that cancels reconsolidation of fear memory.SIGNIFICANCE STATEMENT Retrieval of fear memory induces two opposite memory process; reconsolidation and extinction. Reconsolidation maintains/enhances fear memory, while extinction weakens fear memory. It remains unknown how memory phases are switched from reconsolidation to extinction during retrieval. Here, we identified an active memory transition process functioning as a switch that inhibits reconsolidation. This memory transition phase showed a transient increase of extracellular signal-regulated kinase (ERK) phosphorylation in the amygdala, hippocampus and medial prefrontal cortex (mPFC). Interestingly, inhibition of ERK in these regions at the transition phase disinhibited the reconsolidation-mediated enhancement of inhibitory avoidance (IA) memory. These findings suggest that the transition memory process actively regulates the switch of fear memory phases of fear memory by preventing induction of reconsolidation through the activation of the ERK-signaling pathway.  相似文献   

12.
The medial prefrontal cortex (mPFC) is critical for reinstatement of cocaine seeking and is the main source of brain-derived neurotrophic factor (BDNF) to striatal regions of the brain relapse circuitry. To test the hypothesis that BDNF in the mPFC regulates cocaine-seeking behavior, rats were trained to press a lever for cocaine infusions (0.2 mg/inf, 2 h/day) paired with light+tone conditioned stimulus (CS) presentations on 10 consecutive days. After the last self-administration session, rats received a single infusion of BDNF (0.75 microg/0.5 microL/side) into the mPFC; this manipulation produced protracted effects on cocaine-seeking behavior (non-reinforced lever pressing). BDNF pretreatment administered after the last session attenuated cocaine seeking 22 h later and, remarkably, it also blocked cocaine-induced suppression of phospho-extracellular-regulated kinase and elevated BDNF immunoreactivity in the nucleus accumbens. The same pretreatment also suppressed cocaine-seeking behavior elicited by response-contingent CS presentations after 6 days of forced abstinence or extinction training, as well as a cocaine challenge injection (10 mg/kg, i.p.) after extinction training. However, BDNF infused into the mPFC had no effect on food-seeking behavior. Furthermore, BDNF infused on the sixth day of abstinence failed to alter responding, suggesting that the regulatory influence of BDNF is time limited. The suppressive effects of BDNF infused into the mPFC on cocaine seeking indicate that BDNF regulates cortical pathways implicated in relapse to drug seeking and that corticostriatal BDNF adaptations during early abstinence diminish compulsive drug seeking.  相似文献   

13.
Atypical isoforms of protein kinase C (aPKCs; particularly protein kinase M zeta: PKMζ) have been hypothesized to be necessary and sufficient for the maintenance of long‐term potentiation (LTP) and long term memory by maintaining postsynaptic AMPA receptors via the GluA2 subunit. A myristoylated PKMζ pseudosubstrate peptide (ZIP) blocks PKMζ activity. We examined the actions of ZIP in medial prefrontal cortex (mPFC) and hippocampus in associative recognition memory in rats during early memory formation and memory maintenance. ZIP infusion in either hippocampus or mPFC impaired memory maintenance. However, early memory formation was impaired by ZIP in mPFC but not hippocampus; and blocking GluA2‐dependent removal of AMPA receptors did not affect this impairment caused by ZIP in the mPFC. The findings indicate: (i) a difference in the actions of ZIP in hippocampus and medial prefrontal cortex, and (ii) a GluA2‐independent target of ZIP (possibly PKCλ) in the mPFC during early memory formation. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Extinction of classical fear conditioning is thought to involve activity-dependent potentiation of synaptic transmission in the medial prefrontal cortex (mPFC), resulting in the inhibition of amygdala-dependent fear responses. While many studies have addressed the mechanisms underlying extinction learning, it is unclear what determines whether extinction memory is consolidated or whether spontaneous recovery of the fear response occurs. Here we show, using a combined electrophysiological and immunocytochemical approach, that spontaneous recovery of conditioned fear in mice is associated with a prolonged expression of long-term depression of synaptic transmission in the mPFC and the failure of induction of the immediate-early genesc-Fos and zif268 in the mPFC and the basolateral nucleus of the amygdala. This suggests that coordinated activity-dependent changes in gene expression in the mPFC and the amygdala may underlie the formation of long-term fear extinction memory.  相似文献   

15.
What brain regions are involved in regulating behavior when the emotional consequence of a stimulus changes from harmful to harmless? One way to address this question is to study the neural mechanisms underlying extinction of Pavlovian fear conditioning, an important form of emotional regulation that has direct relevance to the treatment of human fear and anxiety disorders. In fear extinction, the capacity of a conditioned stimulus to elicit fear is gradually reduced by repeatedly presenting it in the absence of any aversive consequence. In recent years there has been a dramatic increase in research on the brain mechanisms of fear extinction. One region that has received considerable attention as a component of the brain's extinction circuitry is the medial prefrontal cortex (mPFC). In the present article, we review the historical foundations of the modern notion that the mPFC plays a critical role in emotional regulation, a literature that was largely responsible for studies that explored the role of the mPFC in fear extinction. We also consider the role of the mPFC in a broader neural circuit for extinction that includes the amygdala and hippocampus.  相似文献   

16.
Interest in the medial prefrontal cortex (mPFC) as a source of behavioral inhibition has increased with the mounting evidence for a functional role of the mPFC in extinction of conditioned fear. In fear extinction, a tone-conditioned stimulus (CS) previously paired with a footshock is presented repeatedly in the absence of footshock, causing fear responses to diminish. Here, we review converging evidence from different laboratories implicating the mPFC in memory circuits for fear extinction: (1) lesions of mPFC impair recall of extinction under various conditions, (2) extinction potentiates mPFC physiological responses to the CS, (3) mPFC potentiation is correlated with extinction behavior, and (4) stimulation of mPFC strengthens extinction memory. These findings support Pavlov's original notion that extinction is new learning, rather than erasure of conditioning. In people suffering from posttraumatic stress disorder (PTSD), homologous areas of ventral mPFC show morphological and functional abnormalities, suggesting that extinction circuits are compromised in PTSD. Strategies for augmenting prefrontal function for clinical benefit are discussed.  相似文献   

17.
The medial prefrontal cortex (mPFC) in the rat has been implicated in a variety of cognitive processes, including working memory and expression of fear memory. We investigated the inputs from a brain stem nucleus, the nucleus incertus (NI), to the prelimbic area of the mPFC. This nucleus strongly expresses corticotropin‐releasing factor type 1 (CRF1) receptors and responds to stress. A retrograde tracer was used to verify connections from the NI to the mPFC. Retrogradely labelled cells in the NI expressed CRF receptors. Electrophysiological manipulation of the NI revealed that stimulation of the NI inhibited spontaneous neuronal firing in the mPFC. Similarly, CRF infusion into the NI, in order to mimic a stressful condition, inhibited neuronal firing and burst firing in the mPFC. The effect of concurrent high‐frequency stimulation of the NI on plasticity in the hippocampo‐prelimbic medial prefrontal cortical (HP‐mPFC) pathway was studied. It was found that electrical stimulation of the NI impaired long‐term potentiation in the HP‐mPFC pathway. Furthermore, CRF infusion into the NI produced similar results. These findings might account for some of the extra‐pituitary functions of CRF and indicate that the NI may play a role in stress‐driven modulation of working memory and possibly other cognitive processes subserved by the mPFC.  相似文献   

18.
Mitogen-activated protein kinase (MAPK) cascade is essential for synaptic plasticity and learning. In the hippocampus, three different MAPK subfamilies, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK and c-Jun NH2-terminal protein kinase (JNK), selectively regulate activity-dependent glutamate receptor trafficking during long-term potentiation (LTP), long-term depression (LTD), and depotentiation after LTP, respectively. Although LTP and LTD at cerebellar parallel fibre (PF)-Purkinje cell synapses are thought to be controlled by glutamate receptor trafficking, the involvement of MAPK subfamilies has not been systemically studied in cerebellar slice preparations. To clarify the role of the MAPK cascade in cerebellar LTD, we performed biochemical and electrophysiological analyses using ICR mouse cerebellar slices. Immunoblot analyses using phosphorylation-specific antibodies for MAPKs revealed that among the three MAPKs, ERK1/2 was specifically activated by phorbol ester, which could induce LTD in cerebellar slices. In addition, U0126, a specific inhibitor of the MAPK kinase-ERK1/2 pathway, abrogated the induction of LTD in cerebellar slices, whereas SB203580 and SP600125, specific inhibitors of p38 MAPK and JNK, respectively, had no effect. Although metabotropic glutamate receptor 1 (mGluR1) has been suggested as a possible downstream target of ERK1/2 in cell-culture preparations, mGluR1-activated slow excitatory postsynaptic currents (EPSCs) were not affected by U0126 treatment in slices. These findings indicate that unlike hippocampal LTD mediated by p38 MAPK, glutamate receptor trafficking during cerebellar LTD was regulated by a distinct mechanism involving ERK1/2 in slice preparations.  相似文献   

19.
Dopamine and acetylcholine are two principal transmitters in the striatum and are usually balanced to modulate local neural activity and to maintain striatal homeostasis. This study investigates the role of dopamine and muscarinic acetylcholine receptors in the regulation of a central signaling protein, i.e., the mitogen‐activated protein kinase (MAPK). We focus on the synaptic pool of MAPKs because of the fact that these kinases reside in peripheral synaptic structures in addition to their somatic locations. We show that a systemic injection of dopamine D1 receptor (D1R) agonist SKF81297 enhances phosphorylation of extracellular signal‐regulated kinases (ERKs), a prototypic subclass of MAPKs, in the adult rat striatum. Similar results were observed in another dopamine‐responsive region, the medial prefrontal cortex (mPFC). The dopamine D2 receptor agonist quinpirole had no such effects. Pretreatment with a positive allosteric modulator (PAM) of muscarinic acetylcholine M4 receptors (M4Rs), VU0152100, attenuated the D1R agonist‐stimulated ERK phosphorylation in the two regions, whereas the PAM itself did not alter basal ERK phosphorylation. All drug treatments had no effect on phosphorylation of c‐Jun N‐terminal kinases (JNKs), another MAPK subclass, in the striatum and mPFC. These results demonstrate that dopamine and acetylcholine are integrated to control synaptic ERK but not JNK activation in striatal and mPFC neurons in vivo. Activation of M4Rs exerts an inhibitory effect on the D1R‐mediated upregulation of synaptic ERK phosphorylation. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms of fear acquisition and extinction. However, the neural mechanism of memory consolidation of fear conditioning is not well understood. To address this question, we measured brain activity and the changes in functional connectivity following fear acquisition using resting-state functional magnetic resonance imaging. The amygdala–dorsal anterior cingulate cortex (dACC) and hippocampus–insula functional connectivity were enhanced, whereas the amygdala–medial prefrontal cortex (mPFC) functional coupling was decreased during fear memory consolidation. Furthermore, the amygdala–mPFC functional connectivity was negatively correlated with the subjective fear ratings. These findings suggest the amygdala functional connectivity with dACC and mPFC may play an important role in memory consolidation of fear conditioning. The change of amygdala-mPFC functional connectivity could predict the subjective fear. Accordingly, this study provides a new perspective for understanding fear memory consolidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号