首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
β-Ionone, a precursor of carotenoids, possesses a variety of biological properties such as anti-cancerous, anti-mutagenic and anti-microbial activity. Nevertheless, anti-inflammatory effects of β-ionone remain unknown. In this study, we investigated whether ION attenuates the expression of lipopolysaccharide (LPS)-induced pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2) and tumor necrosis factor-α (TNF-α) in BV2 microglia cells. Our data showed that β-ionone significantly inhibits secretion of NO, PGE2 and TNF-α. β-Ionone also inhibits the expression of inducible NO synthesis (iNOS), cyclooxygenase-2 (COX-2) and TNF-α protein and their mRNA in LPS-stimulated BV2 microglia cells. In addition, β-ionone significantly reduced DNA-binding activity of nuclear factor-κB (NF-κB) through suppression of nuclear translocation of p50 and p65. We showed that NF-κB inhibitor N-acetyl-L-cysteine (NAC) effectively attenuates the expression of LPS-stimulated iNOS, COX-2 and TNF-α. We also found that LPS-induced NF-κB activation is significantly regulated through inhibition of Akt phosphorylation in the presence of β-ionone. Finally, we showed that β-ionone substantially inhibits the phosphorylation of mitogen-activated protein kinases (MAPKs), including ERK1/2, p38 and JNK, which are closely related to regulation of pro-inflammatory mediator secretion. Taken together, these data imply that β-ionone regulates LPS-induced NF-κB-dependent inflammatory pathways through suppression of Akt and MAPK activation.  相似文献   

3.
A study on the anti-inflammatory activity of brown alga Sargassum siliquastrum led to the isolation of sargachromanol G (SG). In this study, the anti-inflammatory effect and the action mechanism of SG have been investigated in murine macrophage cell line RAW 264.7. SG dosedependently inhibited the production of inflammatory markers [nitric oxide (NO), inducible nitric oxide synthase (iNOS), prostaglandin E(2) (PGE(2)), and cyclooxygenase-2 (COX-2)] and pro-inflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6] induced by LPS treatment. To further elucidate the mechanism of this inhibitory effect of SG, we studied LPS-induced nuclear factor-κB (NF-κB) activation and mitogen-activated protein kinases (MAPKs) phosphorylation. SG inhibited the phosphorylation IκB-α and NF-κB (p65 and p50) and MAPK (ERK1/2, JNK, and p38) in a dose dependent manner. These results suggest that the anti-inflammatory activity of SG results from its modulation of pro-inflammatory cytokines and mediators via the suppression of NF-κB activation and MAPK phosphorylation.  相似文献   

4.
Microglial activation has been implicated in many neurological disorders for its inflammatory and neurotrophic effects. In this study, we investigated the effects of phlorofucofuroeckol B (PFF-B) isolated from Ecklonia stolonifera, on the production of inflammatory mediators in lipopolysaccharide (LPS)-stimulated microglia. PFF-B decreased secretion of pro-inflammatory cytokines including tumor necrosis factor α, interleukin (IL)-1β, and IL-6 and the expression of pro-inflammatory proteins such as cyclooxygenase-2 and inducible nitric oxide synthase in LPS-stimulated BV-2 cells. Profoundly, PFF-B inhibited activation of nuclear factor kappaB (NF-κB) by preventing the degradation of inhibitor κB-α (IκB-α), which led to prevent the nuclear translocation of p65 NF-κB subunit. Moreover, PFF-B inhibited the phosphorylation of Akt, ERK, and JNK. These results indicate that the anti-inflammatory effect of PFF-B on LPS-stimulated microglial cells is mainly regulated by the inhibition of IκB-α/NF-κB and Akt/ERK/JNK pathways. Our study suggests that PFF-B can be considered as a therapeutic agent against neuroinflammation by inhibiting microglial activation.  相似文献   

5.
We here investigated the functional effect of withaferin A on airway inflammation and its action mechanism. Withaferin A inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in human lung epithelial A549 cells stimulated with tumor necrosis factor-α (TNF-α), resulting in the suppression of leukocyte adhesion to lung epithelial A549 cells. In addition, withaferin A inhibited TNF-α-induced expression of adhesion molecules (ICAM-1 and VCAM-1) protein and mRNA in a dose-dependent manner. Withaferin A prevented DNA binding activity of nuclear factor-κB (NF-κB) and nuclear translocation of NF-κB. It also inhibited phosphorylation of Akt and extracellular signal-regulated kinase (ERK), which are upstream in the regulation of adhesion molecules by TNF-α. Furthermore, withaferin A inhibited U937 monocyte adhesion to A549 cells stimulated by TNF-α, suggesting that it may inhibit the binding of these cells by regulating the expression of critical adhesion molecules by TNF-α. Taken together, these results suggest that withaferin A inhibits cell adhesion through inhibition of ICAM-1 and VCAM-1 expression, at least in part, by blocking Akt and down-regulating NF-κB activity.  相似文献   

6.
Kamebakaurin (KA) has anti-cancer and anti-inflammatory activities through direct inhibition of DNA-binding activity of nuclear factor-kappa B (NF-κB) p50. We suggest here another molecular target of KA by the use of lipopolysaccharide-treated dendritic cells. In cell- and enzyme-based assays, KA directly inhibited autophosphorylation and kinase activity of TAK1, followed by the inhibition of TAK1-downstream signaling cascades, such as IKK phosphorylation–IκBα degradation–nuclear translocation of NF-κB, phosphorylation of MEK3/6-p38 mitogen activated protein kinase (MAPK), and MKK4/7-c-Jun N-terminal kinase MAPK. These results demonstrated that TAK1 might be the direct molecular target of KA.  相似文献   

7.
8.
We investigated the anti-fibrotic mechanism of tetrandrine, a bisbenzylisoquinoline alkaloid from the Chinese herb, Stephania tetrandra, on the immortalized HSC-T6 rat hepatic stellate cell line. Tetrandrine (0.39–50 μM) dose- and time-dependently inhibited HSC-T6 cell viability within 24 h and exhibited almost no cytotoxicity at concentrations lower than 6.25 μM in the presence of tumor necrosis factor-α (TNF-α). At a much high concentration (50 μM), tetrandrine caused fatal cytotoxity in both HSCs and hepatocytes. TNF-α time-dependently increased α-smooth muscle actin (α-SMA) expression, while a lower concentration of tetrandrine (6.25 μM) prior to TNF-α treatment reduced the expression of α-SMA and TNFR-1-associated death domain (TRADD). TNF-α treatment induced TGF-β-activated kinase-1 (TAK1) and c-Jun N-terminal kinase (JNK) phosphorylation, which were attenuated by tetrandrine. Furthermore, TNF-α treatment activated nuclear factor-κB (NF-κB) nuclear translocation and IκB-α degradation. Tetrandrine treatment prior to TNF-α reduced nuclear phosphorylated and total NF-κB p65, while the cytosolic IκB-α and NF-κB p65 levels significantly increased. In addition, treatment with only tetrandrine induced the cleavage of caspase-3 and PARP within a range of higher concentrations. Tetrandrine-induced apoptosis was confirmed by the TUNEL assay and flow-cytometric analysis. Treatment with only tetrandrine markedly reduced α-SMA expression, except for at lower concentrations of tetrandrine. A higher concentration of tetrandrine (25 μM) induced a significant increase in JNK and extracellular signal-regulated kinase (ERK) phosphorylation, NF-κB nuclear translocation and IκB-α degradation. In conclusion, the anti-fibrogenic effects of tetrandrine on HSCs involved a dosage-dependent signaling pathway, based on the tetrandrine concentration, by regulating TAK1, JNK and NF-κB. The present data provides strong evidence for the anti-fibrotic dosage-dependent signaling pathway of tetrandrine.  相似文献   

9.
10.
11.
Atherosclerosis is a chronic inflammatory disease and the expression of adhesion molecules on vascular smooth muscle cells (VSMCs) contributes to the progress of the disease. Diosgenin, a precursor of steroid hormones, has been shown to have a variety of biological activities including anti-inflammatory activity; however, its molecular mechanisms are poorly understood. This study examined the effect of diosgenin on the expression of adhesion molecules induced by TNF-α in cultured mouse VSMC cell line, MOVAS-1. Preincubation of VSMCs for 2h with diosgenin (0.1-10 μM) dose-dependently inhibited TNF-α-induced adhesion of THP-1 monocytic cells and mRNA and protein expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Diosgenin abrogated TNF-α induced production of intracellular reactive oxygen species (ROS) and phosphorylation of p38, ERK, JNK and Akt. Diosgenin was also shown to inhibit NK-κB activation induced by TNF-α. Furthermore, diosgenin inhibited TNF-α-induced IκB kinase activation, subsequent degradation of IκBα, and nuclear translocation of NF-κB. Our results indicate that diosgenin inhibits the adhesive capacity of VSMC and the TNF-α-mediated induction of ICAM-1 and VCAM-1 in VSMC by inhibiting the MAPK/Akt/NF-κB signaling pathway and ROS production, which may explain the ability of diosgenin to suppress inflammation within the atherosclerotic lesion and modulate immune response.  相似文献   

12.
Both high level of nitric oxide (NO) and its generating enzyme, inducible NO synthase (iNOS), play important roles in pathophysiological conditions such as inflammatory processes. We previously found that 1,3,5-trihydroxy-4-prenylxanthone (TH-4-PX) isolated from Cudrania cochinchinensis repressed lipopolysaccharide (LPS)-induced NO production in RAW264.7 macrophages. Here we further examined the underlying mechanisms using RT-PCR and Western blot analyses. Consistent with NO inhibition, suppression of LPS-induced iNOS expression by TH-4-PX through abolishing IκB kinase (IKK) phosphorylation, IκB degradation and nuclear factor-κB (NF-κB) nuclear translocation was observed. After LPS stimulation, the increased nuclear level of c-Fos and c-Jun (major components of activator protein-1, AP-1) and the phosphorylated level of upstream signal molecules, such as c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase, (ERK) were all significantly suppressed by TH-4-PX, while p38 remained unaffected. A further experiment revealed that TH-4-PX inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Stimulation with LPS also triggered the modification (phosphorylation and ubiquitination) and eventually the proteasomal degradation of membrane-associated interleukin (IL)-1 receptor-associated serine/threonine kinase 1 (IRAK-1), an essential signaling component to toll-like receptor (TLR)-mediated TAK-1 activation. Interestingly, the modified pattern of IRAK-1 in the presence LPS was significantly attenuated by TH-4-PX treatment. In conclusion, TH-4-PX inhibited LPS-induced NF-κB and AP-1 activations by interfering with the posttranslational modification (phosphorylation and/or ubiquitinylation) of IRAK-1 in the cell membrane to impede TAK1-mediated activation of IKK and MAPKs signal transduction.  相似文献   

13.
We previously demonstrated that monotropein isolated from the roots of Morinda officinalis (Rubiaceae) has anti-inflammatory effects in vivo. In the present study, we investigated the molecular mechanisms underlying the anti-inflammatory effects of monotropein in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced colitis mouse model. Monotropein was found to inhibit the expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) mRNA in LPS-induced RAW 264.7 macrophages. Treatment with monotropein decreased the DNA binding activity of nuclear factor-κB (NF-κB). Consistent with these findings, monotropein also suppressed phosphorylation and degradation of inhibitory κB-α (IκB-α), and consequently the translocations of NF-κB. In the DSS-induced colitis model, monotropein reduced disease activity index (DAI), myeloperoxidase (MPO) activity, and inflammation-related protein expressions by suppressing NF-κB activation in colon mucosa. Taken together, these findings suggest that the anti-inflammatory effects of monotropein are mainly related to the inhibition of the expressions of inflammatory mediators via NF-κB inactivation, and support its possible therapeutic role in colitis.  相似文献   

14.
Although Hydrangea macrophylla is native to Northeast Asia and widely cultivated in many parts of the world, no studies on its anti-inflammatory effects have been reported. In this study, we evaluated the anti-inflammatory effect of a water extract of processed H. macrophylla leaf (WH) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. WH inhibited the expression of LPS-stimulated pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α), as well as their regulatory genes inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α without any accompanying cytotoxicity. Moreover, WH significantly suppressed the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB), as well as the nuclear translocation of the NF-κB subunits, p65 and p50 by suppressing of IκBα phosphorylation and degradation. WH also increased Akt dephosphorylation, leading to the suppression of the DNA-binding activity of NF-κB in LPS-stimulated RAW264.7 macrophage cells. Our results indicate that WH downregulates the expression of pro-inflammatory mediators such as NO, PGE2, and TNF-α by suppressing the Akt-mediated NF-κB activity in LPS-stimulated RAW264.7 macrophage cells.  相似文献   

15.
16.
Most anticancer drugs have their origin in traditional medicinal plants. We describe here a flavone, 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone (PMF), from the leaves of the Thai plant Gardenia obtusifolia, that has anti-inflammatory and anticancer potential. Because the nuclear factor-κB (NF-κB) pathway is linked to inflammation and tumorigenesis, we investigated the effect of PMF on this pathway. We found that PMF suppressed NF-κB activation induced by inflammatory agents, tumor promoters, and carcinogens. This suppression was not specific to the cell type. Although PMF did not directly modify the ability of NF-κB proteins to bind to DNA, it inhibited IκBα (inhibitory subunit of NF-κB) kinase, leading to suppression of phosphorylation and degradation of IκBα, and suppressed consequent p65 nuclear translocation, thus abrogating NF-κB-dependent reporter gene expression. Suppression of the NF-κB cell signaling pathway by the flavone led to the inhibition of expression of NF-κB-regulated gene products that mediate inflammation (cyclooxygenase-2), survival (XIAP, survivin, Bcl-xL, and cFLIP), proliferation (cyclin D1), invasion (matrix metalloproteinase-9), and angiogenesis (vascular endothelial growth factor). Suppression of antiapoptotic gene products by PMF correlated with the enhancement of apoptosis induced by tumor necrosis factor-α and the chemotherapeutic agents cisplatin, paclitaxel, and 5-flurouracil. Overall, our results indicate that PMF suppresses the activation of NF-κB and NF-κB-regulated gene expression, leading to the enhancement of apoptosis. This is the first report to demonstrate that this novel flavone has anti-inflammatory and anticancer effects by targeting the IKK complex.  相似文献   

17.
18.
Cordyceps militaris, a traditional medicinal mushroom, produces the bioactive compound cordycepin (3'-deoxyadenosine). Although cordycepin has been shown to have pharmacological, immunological stimulating, anti-cancer, and anti-inflammatory activities, its activities and cellular mechanisms during microglial activation have yet to be elucidated. Thus, we evaluated the anti-inflammatory effect of cordycepin on the production of inflammatory mediators in lipopolysaccharide (LPS)-stimulated murine BV2 microglia. We also investigated the effects of cordycepin on LPS-induced nuclear factor-kappaB (NF-κB) activation and on phosphorylation of mitogen-activated protein kinases (MAPKs). After LPS stimulation, nitric oxide (NO), prostaglandin E? (PGE?), and pro-inflammatory cytokine production was detected in BV2 microglia. However, we found that cordycepin significantly inhibited the excessive production of NO, PGE?, and pro-inflammatory cytokines in a concentration-dependent manner without causing cytotoxicity. In addition, cordycepin suppressed NF-κB translocation by blocking IkappaB-α (IκB-α) degradation and inhibited the phosphorylation of Akt, ERK-1/2, JNK, and p38 kinase. Our results indicate that the inhibitory effect of cordycepin on LPS-stimulated inflammatory mediator production in BV2 microglia is associated with the suppression of the NF-κB, Akt, and MAPK signaling pathways. Therefore, cordycepin may be useful in treating neurodegenerative diseases by inhibiting inflammatory mediator production in activated microglia.  相似文献   

19.
《Vascular pharmacology》2011,54(5-6):273-280
Atherosclerosis is a chronic inflammatory disease and the expression of adhesion molecules on vascular smooth muscle cells (VSMCs) contributes to the progress of the disease. Diosgenin, a precursor of steroid hormones, has been shown to have a variety of biological activities including anti-inflammatory activity; however, its molecular mechanisms are poorly understood. This study examined the effect of diosgenin on the expression of adhesion molecules induced by TNF-α in cultured mouse VSMC cell line, MOVAS-1. Preincubation of VSMCs for 2 h with diosgenin (0.1–10 μM) dose-dependently inhibited TNF-α-induced adhesion of THP-1 monocytic cells and mRNA and protein expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Diosgenin abrogated TNF-α induced production of intracellular reactive oxygen species (ROS) and phosphorylation of p38, ERK, JNK and Akt. Diosgenin was also shown to inhibit NK-κB activation induced by TNF-α. Furthermore, diosgenin inhibited TNF-α-induced IκB kinase activation, subsequent degradation of IκBα, and nuclear translocation of NF-κB. Our results indicate that diosgenin inhibits the adhesive capacity of VSMC and the TNF-α-mediated induction of ICAM-1 and VCAM-1 in VSMC by inhibiting the MAPK/Akt/NF-κB signaling pathway and ROS production, which may explain the ability of diosgenin to suppress inflammation within the atherosclerotic lesion and modulate immune response.  相似文献   

20.
《Biochemical pharmacology》2008,75(12):1702-1712
The chemokine stromal-derived factor-1α (SDF-1α) and its receptor, CXCR4, play a crucial role in adhesion and migration of human cancer cells. Integrins are the major adhesive molecules in mammalian cells. Here we found that SDF-1α increased the migration and cell surface expression of β1 or β3 integrin in human lung cancer cells (A549 cells). CXCR4-neutralizing antibody, CXCR4 specific inhibitor (AMD3100) or small interfering RNA against CXCR4 inhibited the SDF-1α-induced increase in the migration of lung cancer cells. Stimulation of cells with SDF-1α caused an increase in extracellular signal regulated kinase (ERK) phosphorylation in a time-dependent manner. In addition, treatment of A549 cells with ERK inhibitor (PD98059), NF-κB inhibitor (PDTC) or IκB protease inhibitor (TPCK) inhibited SDF-1α-induced cells migration and integrins expression. Treatment of A549 cells with SDF-1α induced IκB kinase α/β (IKK α/β) phosphorylation, IκBα phosphorylation, IκBα degradation, p65 Ser536 phosphorylation, and κB-luciferase activity. The SDF-1α-mediated increases in IKK α/β phosphorylation, p65 Ser536 phosphorylation, and κB-luciferase activity were inhibited by PD98059 and ERK2 mutant. Taken together, these results suggest that SDF-1α acts through CXCR4 to activate ERK, which in turn activates IKKα/β and NF-κB, resulting in the activations of β1 and β3 integrins and contributing the migration of lung cancer cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号