首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and purpose:

Diadenosine polyphosphates are normally present in cells at low levels, but significant increases in concentrations can occur during cellular stress. The aim of this study was to investigate the effects of diadenosine pentaphosphate (Ap5A) and an oxidized analogue, oAp5A on the gating of sheep cardiac ryanodine receptors (RyR2).

Experimental approach:

RyR2 channel function was monitored after incorporation into planar bilayers under voltage-clamp conditions.

Key results:

With10 µmol·L−1 cytosolic Ca2+, a significant ‘hump’ or plateau at the base of the dose–response relationship to Ap5A was revealed. Open probability (Po) was significantly increased to a plateau of approximately 0.2 in the concentration range 100 pmol·L−1–10 µmol·L−1. High Po values were observed at >10 µmol·L−1 Ap5A, and Po values close to 1 could be achieved. Nanomolar levels of ATP and adenosine also revealed a hump at the base of the dose–response relationships, although GTP did not activate at any concentration, indicating a common, high-affinity binding site on RyR2 for adenine-based compounds. The oxidized analogue, oAp5A, did not significantly activate RyR2 via the high-affinity binding site; however, it could fully open the channel with an EC50 of 16 µmol·L−1 (Ap5A EC50 = 140 µmol·L−1). Perfusion experiments suggest that oAp5A and Ap5A dissociate slowly from their binding sites on RyR2.

Conclusions and implications:

The ability of Ap5A compounds to increase Po even in the presence of ATP and their slow dissociation from the channel may enable these compounds to act as physiological regulators of RyR2, particularly under conditions of cellular stress.  相似文献   

2.

Background and Purpose

Quercetin is a natural polyphenolic flavonoid that displays anti-diabetic properties in vivo. Its mechanism of action on insulin-secreting beta cells is poorly documented. In this work, we have analysed the effects of quercetin both on insulin secretion and on the intracellular calcium concentration ([Ca2+]i) in beta cells, in the absence of any co-stimulating factor.

Experimental Approach

Experiments were performed on both INS-1 cell line and rat isolated pancreatic islets. Insulin release was quantified by the homogeneous time-resolved fluorescence method. Variations in [Ca2+]i were measured using the ratiometric fluorescent Ca2+ indicator Fura-2. Ca2+ channel currents were recorded with the whole-cell patch-clamp technique.

Key Results

Quercetin concentration-dependently increased insulin secretion and elevated [Ca2+]i. These effects were not modified by the SERCA inhibitor thapsigargin (1 μmol·L−1), but were nearly abolished by the L-type Ca2+ channel antagonist nifedipine (1 μmol·L−1). Similar to the L-type Ca2+ channel agonist Bay K 8644, quercetin enhanced the L-type Ca2+ current by shifting its voltage-dependent activation towards negative potentials, leading to the increase in [Ca2+]i and insulin secretion. The effects of quercetin were not inhibited in the presence of a maximally active concentration of Bay K 8644 (1 μmol·L−1), with the two drugs having cumulative effects on [Ca2+]i.

Conclusions and Implications

Taken together, our results show that quercetin stimulates insulin secretion by increasing Ca2+ influx through an interaction with L-type Ca2+ channels at a site different from that of Bay K 8644. These data contribute to a better understanding of quercetin''s mechanism of action on insulin secretion.  相似文献   

3.

Background and purpose

The objective of this study was to characterize the effects of the cysteinyl leukotriene receptor antagonist, montelukast (0.1–2 µmol·L−1), on Ca2+-dependent pro-inflammatory activities, cytosolic Ca2+ fluxes and intracellular cAMP in isolated human neutrophils activated with the chemoattractants, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (1 µmol·L−1) and platelet-activating factor (200 nmol·L−1).

Experimental approach

Generation of reactive oxygen species was measured by lucigenin- and luminol-enhanced chemiluminescence, elastase release by a colourimetric assay, leukotriene B4 and cAMP by competitive binding ELISA procedures, and Ca2+ fluxes by fura-2/AM-based spectrofluorimetric and radiometric (45Ca2+) procedures.

Key results

Pre-incubation of neutrophils with montelukast resulted in dose-related inhibition of the generation of reactive oxygen species and leukotriene B4 by chemoattractant-activated neutrophils, as well as release of elastase, all of which were maximal at 2 µmol·L−1 (mean percentages of the control values of 30 ± 1, 12 ± 3 and 21 ± 3 respectively; P < 0.05). From a mechanistic perspective, treatment of chemoattractant-activated neutrophils with montelukast resulted in significant reductions in both post-peak cytosolic Ca2+ concentrations and store-operated Ca2+ influx. These montelukast-mediated alterations in Ca2+ handling by the cells were associated with a significant elevation in basal cAMP levels, which resulted from inhibition of cyclic nucleotide phosphodiesterases.

Conclusions and implications

Montelukast, primarily a cysteinyl leukotriene (CysLT1) receptor antagonist, exhibited previously undocumented, secondary, neutrophil-directed anti-inflammatory properties, which appeared to be cAMP-dependent.  相似文献   

4.

Background and purpose:

The heart of the canine model of chronic atrioventricular block is known to have a ventricular electrical remodelling, which mimics the pathophysiology of long QT syndrome. Using this model, we explored a new pharmacological therapeutic strategy for the prevention of cardiac sudden death.

Experimental approach:

The L-type Ca2+ channel blocker amlodipine (2.5 mg·day−1), L/N-type Ca2+ channel blocker cilnidipine (5 mg·day−1), or the angiotensin II receptor blocker candesartan (12 mg·day−1) was administered orally to the dogs with chronic atrioventricular block for 4 weeks. Electropharmacological assessments with the monophasic action potential (MAP) recordings and blood sample analyses were performed before and 4 weeks after the start of drug administration.

Key results:

Amlodipine and cilnidipine decreased the blood pressure, while candesartan hardly affected it. The QT interval, MAP duration and beat-to-beat variability of the ventricular repolarization period were shortened only in the cilnidipine group, but such effects were not observed in the amlodipine or candesartan group. Plasma concentrations of adrenaline, angiotensin II and aldosterone decreased in the cilnidipine group. In contrast, plasma concentrations of angiotensin II and aldosterone were elevated in the amlodipine group, whereas in the candesartan group an increase in plasma levels of angiotensin II and a decrease in noradrenaline and adrenaline concentrations were observed.

Conclusions and implications:

Long-term blockade of L/N-type Ca2+ channels ameliorated the ventricular electrical remodelling in the hypertrophied heart which causes the prolongation of the QT interval. This could provide a novel therapeutic strategy for the treatment of cardiovascular diseases.  相似文献   

5.

Background and purpose

Changes in smooth muscle tone of the prostate gland are involved in aetiology of symptomatic prostatic hyperplasia, however the control mechanisms of prostatic smooth muscle are not well understood. Here, we have examined the role of internal Ca2+ compartments in regulating slow wave activity in the guinea pig prostate.

Experimental approach

Standard intracellular membrane potential recording techniques were used.

Key results

The majority (89%) of impaled cells displayed ‘slow wave’ activity. Cyclopiazonic acid (10 µmol·L−1) transiently depolarized (3–9 mV) the membrane potential of the prostatic stroma and transiently increased slow wave frequency. Thereafter, slow wave frequency slowly decreased over 20–30 min. Ryanodine transiently increased slow wave frequency, although after 30 min exposure slow wave frequency and time course returned to near control values. Caffeine (1 mmol·L−1) reduced slow wave frequency, accompanied by membrane depolarization of about 8 mV. Blockade of inositol trisphosphate receptor (IP3R)-mediated Ca2+ release with 2-aminoethoxy-diphenylborate (60 µmol·L−1) or Xestospongin C (3 µmol·L−1) or inhibiting phospholipase C and IP3 formation using U73122 (5 µmol·L−1) or neomycin (1 and 4 mmol·L−1) reduced slow wave frequency, amplitude and duration. The mitochondrial uncouplers, p-trifluoromethoxy carbonyl cyanide phenyl hydrazone (1–10 µmol·L−1), carbonyl cyanide m-chlorophenylhydrazone (1–3 µmol·L−1) or rotenone (10 µmol·L−1), depolarized the membrane (8–10 mV) before abolishing electrical activity.

Conclusion and implications

These results suggest that slow wave activity was dependent on the cyclical release of Ca2+ from IP3-controlled internal stores and mitochondria. This implies that intracellular compartments were essential in the initiation and/or maintenance of the regenerative contractile activity in the guinea pig prostate gland.  相似文献   

6.

BACKGROUND AND PURPOSE

P2X receptors mediate sympathetic control and autoregulation of the renal circulation triggering contraction of renal vascular smooth muscle cells (RVSMCs) via an elevation of intracellular Ca2+ concentration ([Ca2+]i). Although it is well-appreciated that the myocyte Ca2+ signalling system is composed of microdomains, little is known about the structure of the [Ca2+]i responses induced by P2X receptor stimulation in vascular myocytes.

EXPERIMENTAL APPROACHES

Using confocal microscopy, perforated-patch electrical recordings, immuno-/organelle-specific staining, flash photolysis and RT-PCR analysis we explored, at the subcellular level, the Ca2+ signalling system engaged in RVSMCs on stimulation of P2X receptors with the selective agonist αβ-methylene ATP (αβ-meATP).

KEY RESULTS

RT-PCR analysis of single RVSMCs showed the presence of genes encoding inositol 1,4,5-trisphosphate receptor type 1(IP3R1) and ryanodine receptor type 2 (RyR2). The amplitude of the [Ca2+]i transients depended on αβ-meATP concentration. Depolarization induced by 10 µmol·L−1αβ-meATP triggered an abrupt Ca2+ release from sub-plasmalemmal (‘junctional’) sarcoplasmic reticulum enriched with IP3Rs but poor in RyRs. Depletion of calcium stores, block of voltage-gated Ca2+ channels (VGCCs) or IP3Rs suppressed the sub-plasmalemmal [Ca2+]i upstroke significantly more than block of RyRs. The effect of calcium store depletion or IP3R inhibition on the sub-plasmalemmal [Ca2+]i upstroke was attenuated following block of VGCCs.

CONCLUSIONS AND IMPLICATIONS

Depolarization of RVSMCs following P2X receptor activation induces IP3R-mediated Ca2+ release from sub-plasmalemmal (‘junctional’) sarcoplasmic reticulum, which is activated mainly by Ca2+ influx through VGCCs. This mechanism provides convergence of signalling pathways engaged in electromechanical and pharmacomechanical coupling in renal vascular myocytes.  相似文献   

7.
8.

Background and purpose

β1- and β2-adrenoceptors coexist in rat heart but β2-adrenoceptor-mediated inotropic effects are hardly detectable, possibly due to phosphodiesterase (PDE) activity. We investigated the influence of the PDE3 inhibitor cilostamide (300 nmol·L−1) and the PDE4 inhibitor rolipram (1 µmol·L−1) on the effects of (−)-catecholamines.

Experimental approach

Cardiostimulation evoked by (−)-noradrenaline (ICI118551 present) and (−)-adrenaline (CGP20712A present) through β1- and β2-adrenoceptors, respectively, was compared on sinoatrial beating rate, left atrial and ventricular contractile force in isolated tissues from Wistar rats. L-type Ca2+-current (ICa-L) was assessed with whole-cell patch clamp.

Key results

Rolipram caused sinoatrial tachycardia. Cilostamide and rolipram did not enhance chronotropic potencies of (−)-noradrenaline and (−)-adrenaline. Rolipram but not cilostamide potentiated atrial and ventricular inotropic effects of (−)-noradrenaline. Cilostamide potentiated the ventricular effects of (−)-adrenaline but not of (−)-noradrenaline. Concurrent cilostamide + rolipram uncovered left atrial effects of (−)-adrenaline. Both rolipram and cilostamide augmented the (−)-noradrenaline (1 µmol·L−1) evoked increase in ICa-L. (−)-Adrenaline (10 µmol·L−1) increased ICa-L only in the presence of cilostamide but not rolipram.

Conclusions and implications

PDE4 blunts the β1-adrenoceptor-mediated inotropic effects. PDE4 reduces basal sinoatrial rate in a compartment distinct from compartments controlled by β1- and β2-adrenoceptors. PDE3 and PDE4 jointly prevent left atrial β2-adrenoceptor-mediated inotropy. Both PDE3 and PDE4 reduce ICa-L responses through β1-adrenoceptors but the PDE3 component is unrelated to inotropy. PDE3 blunts both ventricular inotropic and ICa-L responses through β2-adrenoceptors.  相似文献   

9.

Background and purpose:

Bladder contractility is regulated by intrinsic myogenic mechanisms interacting with autonomic nerves. In this study, we have investigated the physiological role of spontaneous release of acetylcholine in guinea pig and rat bladders.

Experimental approach:

Conventional isotonic or pressure transducers were used to record contractile activity of guinea pig and rat bladders.

Key results:

Hyoscine (3 µmol·L−1), but not tetrodotoxin (TTX, 1 µmol·L−1), reduced basal tension, distension-evoked contractile activity and physostigmine (1 µmol·L−1)-evoked contractions of the whole guinea pig bladder and muscle strips in vitro. ω-Conotoxin GVIA (0.3 µmol·L−1) did not affect physostigmine-induced contractions when given either alone or in combination with ω-agatoxin IVA (0.1 µmol·L−1) and SNX 482 (0.3 µmol·L−1). After 5 days in organotypic culture, when extrinsic nerves had significantly degenerated, the ability of physostigmine to induce contractions was reduced in the dorso-medial strips, but not in lateral strips (which have around 15 times more intramural neurones). Most muscle strips from adult rats lacked intramural neurones. After 5 days in culture, physostigmine-induced or electrical field stimulation-induced contractions of the rat bladder strips were greatly reduced. In anaesthetized rats, topical application of physostigmine (5–500 nmol) on the bladder produced a TTX-resistant tonic contraction that was abolished by atropine (4.4 µmol·kg−1 i.v.).

Conclusions and implications:

The data indicate that there is spontaneous TTX-resistant release of acetylcholine from autonomic cholinergic extrinsic and intrinsic nerves, which significantly affects bladder contractility. This release is resistant to blockade of N, P/Q and R type Ca2+ channels.British Journal of Pharmacology (2009) 157, 607–619; doi:10.1111/j.1476-5381.2009.00166.x; published online 3 April 2009  相似文献   

10.

Background and Purpose

In suburothelial venules of rat bladder, pericytes (perivascular cells) develop spontaneous Ca2+ transients, which may drive the smooth muscle wall to generate spontaneous venular constrictions. We aimed to further explore the morphological and functional characteristics of pericytes in the mouse bladder.

Experimental Approach

The morphological features of pericytes were investigated by electron microscopy and fluorescence immunohistochemistry. Changes in diameters of suburothelial venules were measured using video microscopy, while intracellular Ca2+ dynamics were visualized using Fluo-4 fluorescence Ca2+ imaging.

Key Results

A network of α-smooth muscle actin immunoreactive pericytes surrounded venules in the mouse bladder suburothelium. Scanning electron microscopy revealed that this network of stellate-shaped pericytes covered the venules, while transmission electron microscopy demonstrated that the venular wall consisted of endothelium and adjacent pericytes, lacking an intermediate smooth muscle layer. Pericytes exhibited spontaneous Ca2+ transients, which were accompanied by phasic venular constrictions. Nicardipine (1 μM) disrupted the synchrony of spontaneous Ca2+ transients in pericytes and reduced their associated constrictions. Residual asynchronous Ca2+ transients were suppressed by cyclopiazonic acid (10 μM), 2-aminoethoxydiphenyl borate (10 μM), U-73122 (1 μM), oligomycin (1 μM) and SKF96365 (10 μM), but unaffected by ryanodine (100 μM) or YM-244769 (1 μM), suggesting that pericyte Ca2+ transients rely on Ca2+ release from the endoplasmic reticulum via the InsP3 receptor and also require Ca2+ influx through store-operated Ca2+ channels.

Conclusions and Implications

The pericytes in mouse bladder can generate spontaneous Ca2+ transients and contractions, and thus have a fundamental role in promoting spontaneous constrictions of suburothelial venules.  相似文献   

11.

Background and purpose:

Extracellular nucleotides play a crucial role in the regulation of vascular tone and blood flow. Stimulation of endothelial cell P2Y1 receptors evokes concentration-dependent full dilatation of resistance arteries. However, this GPCR can desensitize upon prolonged exposure to the agonist. Our aim was to determine the extent and nature of P2Y1 desensitization in isolated and pressurized rat small mesenteric arteries.

Experimental approach:

The non-hydrolyzable selective P2Y1 agonist ADPβS (3 µM) was perfused through the lumen of arteries pressurized to 70 mmHg. Changes in arterial diameter and endothelial cell [Ca2+]i were obtained in the presence and absence of inhibitors of protein kinase C (PKC).

Key results:

ADPβS evoked rapid dilatation to the maximum arterial diameter but faded over time to a much-reduced plateau closer to 35% dilatation. This appeared to be due to desensitization of the P2Y1 receptor, as subsequent endothelium-dependent dilatation to acetylcholine (1 µM) remained unaffected. Luminal treatment with the PKC inhibitors BIS-I (1 µM) or BIS-VIII (1 µM) tended to augment concentration-dependent dilatation to ADPβS (0.1–3 µM) and prevented desensitization. Another PKC inhibitor, Gö 6976 (1 µM), was less effective in preventing desensitization. Measurements of endothelial cell [Ca2+]i in pressurized arteries confirmed the P2Y1 receptor but not M3 muscarinic receptor desensitization.

Conclusions and implications:

These data demonstrate for the first time the involvement of PKC in the desensitization of endothelial P2Y1 receptors in pressurized rat mesenteric arteries, which may have important implications in the control of blood flow by circulating nucleotides.  相似文献   

12.

Background and Purpose

Ca2+ imaging reveals subcellular Ca2+ sparks and global Ca2+ waves/oscillations in vascular smooth muscle. It is well established that Ca2+ sparks can relax arteries, but we have previously reported that sparks can summate to generate Ca2+ waves/oscillations in unpressurized retinal arterioles, leading to constriction. We have extended these studies to test the functional significance of Ca2+ sparks in the generation of myogenic tone in pressurized arterioles.

Experimental Approach

Isolated retinal arterioles (25–40 μm external diameter) were pressurized to 70 mmHg, leading to active constriction. Ca2+ signals were imaged from arteriolar smooth muscle in the same vessels using Fluo4 and confocal laser microscopy.

Key Results

Tone development was associated with an increased frequency of Ca2+ sparks and oscillations. Vasomotion was observed in 40% of arterioles and was associated with synchronization of Ca2+ oscillations, quantifiable as an increased cross-correlation coefficient. Inhibition of Ca2+ sparks with ryanodine, tetracaine, cyclopiazonic acid or nimodipine, or following removal of extracellular Ca2+, resulted in arteriolar relaxation. Cyclopiazonic acid-induced dilatation was associated with decreased Ca2+ sparks and oscillations but with a sustained rise in the mean global cytoplasmic [Ca2+] ([Ca2+]c), as measured using Fura2 and microfluorimetry.

Conclusions and Implications

This study provides direct evidence that Ca2+ sparks can play an excitatory role in pressurized arterioles, promoting myogenic tone. This contrasts with the generally accepted model in which sparks promote relaxation of vascular smooth muscle. Changes in vessel tone in the presence of cyclopiazonic acid correlated more closely with changes in spark and oscillation frequency than global [Ca2+]c, underlining the importance of frequency-modulated signalling in vascular smooth muscle.  相似文献   

13.

Background and purpose:

In order to use the transient response to an antagonist (prazosin) to evaluate properties of agonist interactions with the α1-adrenoceptor system, an integrative mechanistic model of cardiac uptake of prazosin and its competitive interaction with phenylephrine at the receptor site was developed. Based on the operational model of agonism, the aim was to evaluate both the receptor binding and signal transduction process as determinants of the inotropic effect of phenylephrine.

Experimental approach:

In Langendorff-perfused rat hearts, prazosin outflow concentration and left ventricular developed pressure were measured, first in the presence of 12.3 µmol·L−1 phenylephrine following a 1 min infusion of 1.27 nmol [3H]-prazosin, and second, when after 30 min the phenylephrine concentration in perfusate was reduced to 6.1 µmol·L−1, the 1 min infusion of 1.27 nmol [3H]-prazosin was repeated.

Key results:

The kinetic model accounted for cardiac uptake and receptor binding kinetics of prazosin (dissociation constant, mean ± SD: 0.057 ± 0.012 nmol·L−1), assuming that the competitive displacement of phenylephrine (dissociation constant: 101 ± 13 nmol·L−1) reduced the receptor occupation by the agonist and, consequently, contractility. This competitive binding process appeared to be the rate-determining step in response generation. The relationship between receptor occupancy and inotropic response was described by an efficacy parameter (τ, ratio of receptor density and coupling efficiency) of 4.9.

Conclusions and implications:

Mechanistic pharmacodynamic modelling of the kinetics of antagonism by prazosin allows quantitative assessment of the α1-adrenoceptor system both at the receptor and post-receptor levels.  相似文献   

14.

Background and purpose:

Bisphenol A (BPA) is used to manufacture plastics, including containers for food into which it may leach. High levels of exposure to this oestrogenic endocrine disruptor are associated with diabetes and heart disease. Oestrogen and oestrogen receptor modulators increase the activity of large conductance Ca2+/voltage-sensitive K+ (Maxi-K; KCa1.1) channels, but the effects of BPA on Maxi-K channels are unknown. We tested the hypothesis that BPA activates Maxi-K channels through a mechanism that depends upon the regulatory β1 subunit.

Experimental approach:

Patch-clamp recordings of Maxi-K channels were made in human and canine coronary smooth muscle cells as well as in AD-293 cells expressing pore-forming α or α plus β1 subunits.

Key results:

BPA (10 µM) activated an outward current in smooth muscle cells that was inhibited by penitrem A (1 µM), a Maxi-K blocker. BPA increased Maxi-K activity in inside-out patches from coronary smooth muscle, but had no effect on single channel conductance. In AD-293 cells with Maxi-K channels composed of α subunits alone, 10 µM BPA did not affect channel activity. When channels in AD-293 cells contained β1 subunits, 10 µM BPA increased channel activity. Effects of BPA were rapid (<1 min) and reversible. A higher concentration of BPA (100 µM) increased Maxi-K current independent of the β1 subunit.

Conclusions and implications:

Our data indicate that BPA increased the activity of Maxi-K channels and may represent a basis for some potential toxicological effects.  相似文献   

15.

Aim:

To investigate the effects of high glucose (HG) medium on expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in cultured rat retinal Müller cells and to determine the signaling pathways mediating the effects.

Methods:

Primary cultures of retinal Müller cells were prepared from Sprague-Dawley rats, and incubated in a medium containg HG (30 mmol/L) in the presence of the membrane-permeable Ca2+ chelator BAPTA-AM (10 μmol/L) or the CaMKII inhibitor KN93 (10 μmol/L). The levels of CaMKII, p-CaMKII, CREB, p-CREB, HIF-1α, and VEGF proteins were measured with Western blotting, while HIF-1á and VEGF mRNA levels were determined using real-time RT-PCR.

Results:

The stimulation of retinal Müller cell with HG for 24 h remarkably increased the expression levels of HIF-1α and VEGF. These responses were significantly inhibited in the presence of BAPTA-AM or KN93. Both BAPTA-AM and KN93 also significantly inhibited HG-induced phosphorylation of CaMKII and CREB in the cultured retinal Müller cells. Transfection of the cultured retinal Müller cells with antisense CREB oligonucleotide (300 nmol/L) was similarly effective in blocking the HG-induced increase of HIF-1α and VEGF.

Conclusion:

HG-induced HIF-1α and VEGF expression in cultured rat retinal Müller cells depends on intracellular free Ca2+ and activation of CaMKII-CREB pathway. The activation of CaMKII-CREB pathway by HG may be a possible mechanism underlying the pathogenesis of diabetic retinopathy.  相似文献   

16.

Background and Purpose

N-arachidonoyl glycine (NAGly) is a lipoamino acid with vasorelaxant properties. We aimed to explore the mechanisms of NAGly''s action on unstimulated and agonist-stimulated endothelial cells.

Experimental Approach

The effects of NAGly on endothelial electrical signalling were studied in combination with vascular reactivity.

Key Results

In EA.hy926 cells, the sustained hyperpolarization to histamine was inhibited by the non-selective Na+/Ca2+ exchanger (NCX) inhibitor bepridil and by an inhibitor of reversed mode NCX, KB-R7943. In cells dialysed with Cs+-based Na+-containing solution, the outwardly rectifying current with typical characteristics of NCX was augmented following histamine exposure, further increased upon external Na+ withdrawal and inhibited by bepridil. NAGly (0.3–30 μM) suppressed NCX currents in a URB597- and guanosine 5′-O-(2-thiodiphosphate) (GDPβS)-insensitive manner, [Ca2+]i elevation evoked by Na+ removal and the hyperpolarization to histamine. In rat aorta, NAGly opposed the endothelial hyperpolarization and relaxation response to ACh. In unstimulated EA.hy926 cells, NAGly potentiated the whole-cell current attributable to large-conductance Ca2+-activated K+ (BKCa) channels in a GDPβS-insensitive, paxilline-sensitive manner and produced a sustained hyperpolarization. In cell-free inside-out patches, NAGly stimulated single BKCa channel activity.

Conclusion and Implications

Our data showed that NCX is a Ca2+ entry pathway in endothelial cells and that NAGly is a potent G-protein-independent modulator of endothelial electrical signalling and has a dual effect on endothelial electrical responses. In agonist pre-stimulated cells, NAGly opposes hyperpolarization and relaxation via inhibition of NCX-mediated Ca2+ entry, while in unstimulated cells, it promotes hyperpolarization via receptor-independent activation of BKCa channels.  相似文献   

17.

BACKGROUND AND PURPOSE

The aim of this study was to clarify the mechanisms by which hydrogen sulphide (H2S) affects ion secretion across rat distal colonic epithelium.

EXPERIMENTAL APPROACH

Changes in short-circuit current induced by the H2S-donor, sodium hydrosulphide (NaHS; 10 mmol·L−1), were measured in Ussing chambers after permeabilization of the apical membrane with nystatin. Cytosolic Ca2+ concentration ([Ca2+]i) and Ca2+ in intracellular stores were measured with fluorescent dyes. Changes in mitochondrial membrane potential were estimated with rhodamine 123.

KEY RESULTS

NaHS had a biphasic effect on overall currents across the basolateral membrane: an initial inhibition followed by a secondary stimulation. Both a scilliroside-sensitive action on the Na+-K+-ATPase and modulation of glibenclamide-sensitive and tetrapentylammonium-sensitive (i.e. ATP-sensitive and Ca2+-dependent) basolateral K+ channels were involved in this action. Experiments with rhodamine 123 revealed that NaHS induced a hyperpolarization of the mitochondrial membrane. NaHS evoked a biphasic change in [Ca2+]i, an initial decrease followed by a secondary increase, known to be mediated by the release of stored Ca2+. Initial falls in [Ca2+]i were not mediated by a sequestration of Ca2+ in intracellular Ca2+ storing organelles, as the Mag-Fura-2 signal was unaffected by NaHS. Falls in [Ca2+]i were inhibited by 2′,4′-dichlorobenzamil, an inhibitor of the Na+-Ca2+-exchanger, and attenuated in Na+-free buffer, suggesting a transient stimulation of Ca2+ outflow by this transporter, directly demonstrated by Mn2+ quenching experiments.

CONCLUSIONS AND IMPLICATIONS

ATP-sensitive and Ca2+-dependent basolateral K+ conductances, the basolateral Na+-K+-pump as well as Ca2+ transporters were involved in the action of H2S in regulating colonic ion secretion.  相似文献   

18.

BACKGROUND AND PURPOSE

The calcimimetic, (R)-N-(3-(3-(trifluoromethyl)phenyl)propyl)-1-(1-napthyl)ethylamine hydrochloride (cinacalcet), which activates Ca2+-sensing receptors (CaR) in parathyroid glands, is used to treat hyperparathyroidism. Interestingly, CaR in perivascular nerves or endothelial cells is also thought to modulate vascular tone. This study aims to characterize the vascular actions of calcimimetics.

EXPERIMENTAL APPROACH

In rat isolated small mesenteric arteries, the relaxant responses to the calcimimetics, cinacalcet and (R)-2-[[[1-(1-naphthyl)ethyl]amino]methyl]-1H-indole hydrochloride (calindol) were characterized, with particular emphasis on the role of CaR, endothelium, perivascular nerves, K+ channels and Ca2+ channels. Effects of L-ornithine, which activates a Ca2+-sensitive receptor related to CaR (GPRC6A), were also tested.

KEY RESULTS

Cinacalcet induced endothelium-independent relaxation (pEC50 5.58 ± 0.07, Emax 97 ± 6%) that was insensitive to sensory nerve desensitization by capsaicin or blockade of large-conductance Ca2+-activated K+ channels by iberiotoxin. Calindol, another calcimimetic, caused more potent relaxation (pEC50 6.10 ± 0.10, Emax 101 ± 6%), which was attenuated by endothelial removal or capsaicin, but not iberiotoxin. The negative modulator of CaR, calhex 231 or changes in [Ca2+]o had negligible effect on relaxation to both calcimimetics. The calcimimetics relaxed vessels precontracted with high [K+]o and inhibited Ca2+ influx in endothelium-denuded vessels stimulated by methoxamine, but not ionomycin. They also inhibited contractions to the L-type Ca2+ channel activator, BayK8644. L-ornithine induced small relaxation alone and had no effect on the responses to calcimimetics.

CONCLUSION AND IMPLICATIONS

Cinacalcet and calindol are potent arterial relaxants. Under the experimental conditions used, they predominantly act by inhibiting Ca2+ influx through L-type Ca2+ channels into vascular smooth muscle, whereas Ca2+-sensitive receptors (CaR or GPRC6A) play a minor role.  相似文献   

19.

BACKGROUND AND PURPOSE

Vasculopathies represent the main cause of morbidity and mortality in diabetes. Vascular malfunctioning in diabetes is associated with abnormal vasoconstriction and Ca2+ handling by smooth muscle cells (SMC). Phosphatidylinositol 3-kinases (PI3K) are key mediators of insulin action and have been shown to modulate the function of voltage-dependent L-type Ca2+ channels (CaV1.2). In the present work, we investigated the involvement of PI3K signalling in regulating Ca2+ current through CaV1.2 (ICa,L) and vascular dysfunction in a mouse model of type I diabetes.

EXPERIMENTAL APPROACH

Changes in isometric tension were recorded on myograph. Ca2+ currents in freshly dissociated mice aortic SMCs were measured using the whole-cell patch-clamp technique. Antisense techniques were used to knock-down the PI3Kδ isoform.

KEY RESULTS

Contractile responses to phenylephrine and KCl were strongly enhanced in diabetic aorta independent of a functional endothelium. The magnitude of phenylephrine-induced ICa,L was also greatly augmented. PI3Kδ expression, but not PI3Kα, PI3Kβ, PI3Kγ, was increased in diabetic aortas and treatment of vessels with a selective PI3Kδ inhibitor normalized ICa,L and contractile response of diabetic vessels. Moreover, knock-down of PI3Kδin vivo decreased PI3Kδ expression and normalized ICa,L and contractile response of diabetic vessels ex vivo.

CONCLUSIONS AND IMPLICATIONS

Phosphatidylinositol 3-kinase δ was essential to the increased vascular contractile response in our model of type I diabetes. PI3Kδ signalling was up-regulated and most likely accounted for the increased ICa,L, leading to increased vascular contractility. Blockade of PI3Kδ may represent a novel therapeutic approach to treat vascular dysfunction in diabetic patients.

LINKED ARTICLE

This article is commented on by Sturek, pp. 1455–1457 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00997.x  相似文献   

20.

Background and purpose:

The Na+/Ca2+ exchanger (NCX) may contribute to triggered activity and transmural dispersion of repolarization, which are substrates of torsades de pointes (TdP) type arrhythmias. This study examined the effects of selective inhibition of the NCX by SEA0400 on the occurrence of dofetilide-induced TdP.

Experimental approach:

Effects of SEA0400 (1 µmol·L−1) on dofetilide-induced TdP was studied in isolated, Langendorff-perfused, atrioventricular (AV)-blocked rabbit hearts. To verify the relevance of the model, lidocaine (30 µmol·L−1) and verapamil (750 nmol·L−1) were also tested against dofetilide-induced TdP.

Key results:

Acute AV block caused a chaotic idioventricular rhythm and strikingly increased beat-to-beat variability of the RR and QT intervals. SEA0400 exaggerated the dofetilide-induced increase in the heart rate-corrected QT interval (QTc) and did not reduce the incidence of dofetilide-induced TdP [100% in the SEA0400 + dofetilide group vs. 75% in the dofetilide (100 nmol·L−1) control]. In the second set of experiments, verapamil further increased the dofetilide-induced QTc prolongation and neither verapamil nor lidocaine reduced the dofetilide-induced increase in the beat-to-beat variability of the QT interval. However, lidocaine decreased and verapamil prevented the development of dofetilide-induced TdP as compared with the dofetilide control (TdP incidence: 13%, 0% and 88% respectively).

Conclusions and implications:

Na+/Ca2+ exchanger does not contribute to dofetilide-induced TdP, whereas Na+ and Ca2+ channel activity is involved in TdP genesis in isolated, AV-blocked rabbit hearts. Neither QTc prolongation nor an increase in the beat-to-beat variability of the QT interval is a sufficient prerequisite of TdP genesis in rabbit hearts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号