首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Epidemiologic and health impact studies of fine particulate matter with diameter < 2.5 μm (PM2.5) are limited by the lack of monitoring data, especially in developing countries. Satellite observations offer valuable global information about PM2.5 concentrations.

Objective

In this study, we developed a technique for estimating surface PM2.5 concentrations from satellite observations.

Methods

We mapped global ground-level PM2.5 concentrations using total column aerosol optical depth (AOD) from the MODIS (Moderate Resolution Imaging Spectroradiometer) and MISR (Multiangle Imaging Spectroradiometer) satellite instruments and coincident aerosol vertical profiles from the GEOS-Chem global chemical transport model.

Results

We determined that global estimates of long-term average (1 January 2001 to 31 December 2006) PM2.5 concentrations at approximately 10 km × 10 km resolution indicate a global population-weighted geometric mean PM2.5 concentration of 20 μg/m3. The World Health Organization Air Quality PM2.5 Interim Target-1 (35 μg/m3 annual average) is exceeded over central and eastern Asia for 38% and for 50% of the population, respectively. Annual mean PM2.5 concentrations exceed 80 μg/m3 over eastern China. Our evaluation of the satellite-derived estimate with ground-based in situ measurements indicates significant spatial agreement with North American measurements (r = 0.77; slope = 1.07; n = 1057) and with noncoincident measurements elsewhere (r = 0.83; slope = 0.86; n = 244). The 1 SD of uncertainty in the satellite-derived PM2.5 is 25%, which is inferred from the AOD retrieval and from aerosol vertical profile errors and sampling. The global population-weighted mean uncertainty is 6.7 μg/m3.

Conclusions

Satellite-derived total-column AOD, when combined with a chemical transport model, provides estimates of global long-term average PM2.5 concentrations.  相似文献   

2.

Background

Recent research highlights the promise of remotely sensed aerosol optical depth (AOD) as a proxy for ground-level particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5). Particular interest lies in estimating spatial heterogeneity using AOD, with important application to estimating pollution exposure for public health purposes. Given the correlations reported between AOD and PM2.5, it is tempting to interpret the spatial patterns in AOD as reflecting patterns in PM2.5.

Objectives

We evaluated the degree to which AOD can help predict long-term average PM2.5 concentrations for use in chronic health studies.

Methods

We calculated correlations of AOD and PM2.5 at various temporal aggregations in the eastern United States in 2004 and used statistical models to assess the relationship between AOD and PM2.5 and the potential for improving predictions of PM2.5 in a subregion, the mid-Atlantic.

Results

We found only limited spatial associations of AOD from three satellite retrievals with daily and yearly PM2.5. The statistical modeling shows that monthly average AOD poorly reflects spatial patterns in PM2.5 because of systematic, spatially correlated discrepancies between AOD and PM2.5. Furthermore, when we included AOD as a predictor of monthly PM2.5 in a statistical prediction model, AOD provided little additional information in a model that already accounts for land use, emission sources, meteorology, and regional variability.

Conclusions

These results suggest caution in using spatial variation in currently available AOD to stand in for spatial variation in ground-level PM2.5 in epidemiologic analyses and indicate that when PM2.5 monitoring is available, careful statistical modeling outperforms the use of AOD.  相似文献   

3.

Background

During the last week of June 2008, central and northern California experienced thousands of forest and brush fires, giving rise to a week of severe fire-related particulate air pollution throughout the region. California experienced PM10–2.5 (particulate matter with mass median aerodynamic diameter > 2.5 μm to < 10 μm; coarse ) and PM2.5 (particulate matter with mass median aerodynamic diameter < 2.5 μm; fine) concentrations greatly in excess of the air quality standards and among the highest values reported at these stations since data have been collected.

Objectives

These observations prompt a number of questions about the health impact of exposure to elevated levels of PM10–2.5 and PM2.5 and about the specific toxicity of PM arising from wildfires in this region.

Methods

Toxicity of PM10–2.5 and PM2.5 obtained during the time of peak concentrations of smoke in the air was determined with a mouse bioassay and compared with PM samples collected under normal conditions from the region during the month of June 2007.

Results

Concentrations of PM were not only higher during the wildfire episodes, but the PM was much more toxic to the lung on an equal weight basis than was PM collected from normal ambient air in the region. Toxicity was manifested as increased neutrophils and protein in lung lavage and by histologic indicators of increased cell influx and edema in the lung.

Conclusions

We conclude that the wildfire PM contains chemical components toxic to the lung, especially to alveolar macrophages, and they are more toxic to the lung than equal doses of PM collected from ambient air from the same region during a comparable season.  相似文献   

4.

Background

The Yangtze River Delta (YRD) in China is a densely populated region with recent dramatic increases in energy consumption and atmospheric emissions.

Objectives

We studied how different emission sectors influence population exposures and the corresponding health risks, to inform air pollution control strategy design.

Methods

We applied the Community Multiscale Air Quality (CMAQ) Modeling System to model the marginal contribution to baseline concentrations from different sectors. We focused on nitrogen oxide (NOx) control while considering other pollutants that affect fine particulate matter [aerodynamic diameter ≤ 2.5 μm (PM2.5)] and ozone concentrations. We developed concentration–response (C-R) functions for PM2.5 and ozone mortality for China to evaluate the anticipated health benefits.

Results

In the YRD, health benefits per ton of emission reductions varied significantly across pollutants, with reductions of primary PM2.5 from the industry sector and mobile sources showing the greatest benefits of 0.1 fewer deaths per year per ton of emission reduction. Combining estimates of health benefits per ton with potential emission reductions, the greatest mortality reduction of 12,000 fewer deaths per year [95% confidence interval (CI), 1,200–24,000] was associated with controlling primary PM2.5 emissions from the industry sector and reducing sulfur dioxide (SO2) from the power sector, respectively. Benefits were lower for reducing NOx emissions given lower consequent reductions in the formation of secondary PM2.5 (compared with SO2) and increases in ozone concentrations that would result in the YRD.

Conclusions

Although uncertainties related to C-R functions are significant, the estimated health benefits of emission reductions in the YRD are substantial, especially for sectors and pollutants with both higher health benefits per unit emission reductions and large potential for emission reductions.  相似文献   

5.

Background

It has been hypothesized that ambient particulate air pollution is able to modify the autonomic nervous control of the heart, measured as heart rate variability (HRV). Previously we reported heterogeneous associations between particulate matter with aerodynamic diameter < 2.5 μm (PM2.5) and HRV across three study centers.

Objectives

We evaluated whether exposure misclassification, effect modification by medication, or differences in particle composition could explain the inconsistencies.

Methods

Subjects with coronary heart disease visited clinics biweekly in Amsterdam, the Netherlands; Erfurt, Germany; and Helsinki, Finland for 6–8 months. The standard deviation (SD) of NN intervals on an electrocardiogram (ECG; SDNN) and high frequency (HF) power of HRV was measured with ambulatory ECG during paced breathing. Outdoor levels of PM2.5 were measured at a central site. In Amsterdam and Helsinki, indoor and personal PM2.5 were measured during the 24 hr preceding the clinic visit. PM2.5 was apportioned between sources using principal component analyses. We analyzed associations of indoor/personal PM2.5, elements of PM2.5, and source-specific PM2.5 with HRV using linear regression.

Results

Indoor and personal PM2.5 were not associated with HRV. Increased outdoor PM2.5 was associated with decreased SDNN and HF at lags of 2 and 3 days only among persons not using beta-blocker medication. Traffic-related PM2.5 was associated with decreased SDNN, and long-range transported PM2.5 with decreased SDNN and HF, most strongly among persons not using beta blockers. Indicators for PM2.5 from traffic and long-range transport were also associated with decreased HRV.

Conclusions

Our results suggest that differences in the composition of particles, beta-blocker use, and obesity of study subjects may explain some inconsistencies among previous studies on HRV.  相似文献   

6.

Background

Population-based studies have estimated health risks of short-term exposure to fine particles using mass of PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter) as the indicator. Evidence regarding the toxicity of the chemical components of the PM2.5 mixture is limited.

Objective

In this study we investigated the association between hospital admission for cardiovascular disease (CVD) and respiratory disease and the chemical components of PM2.5 in the United States.

Methods

We used a national database comprising daily data for 2000–2006 on emergency hospital admissions for cardiovascular and respiratory outcomes, ambient levels of major PM2.5 chemical components [sulfate, nitrate, silicon, elemental carbon (EC), organic carbon matter (OCM), and sodium and ammonium ions], and weather. Using Bayesian hierarchical statistical models, we estimated the associations between daily levels of PM2.5 components and risk of hospital admissions in 119 U.S. urban communities for 12 million Medicare enrollees (≥ 65 years of age).

Results

In multiple-pollutant models that adjust for the levels of other pollutants, an interquartile range (IQR) increase in EC was associated with a 0.80% [95% posterior interval (PI), 0.34–1.27%] increase in risk of same-day cardiovascular admissions, and an IQR increase in OCM was associated with a 1.01% (95% PI, 0.04–1.98%) increase in risk of respiratory admissions on the same day. Other components were not associated with cardiovascular or respiratory hospital admissions in multiple-pollutant models.

Conclusions

Ambient levels of EC and OCM, which are generated primarily from vehicle emissions, diesel, and wood burning, were associated with the largest risks of emergency hospitalization across the major chemical constituents of PM2.5.  相似文献   

7.

Background

Prospective cohort studies constitute the major source of evidence about the mortality effects of chronic exposure to particulate air pollution. Additional studies are needed to provide evidence on the health effects of chronic exposure to particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) because few studies have been carried out and the cohorts have not been representative.

Objectives

This study was designed to estimate the relative risk of death associated with long-term exposure to PM2.5 by region and age groups in a U.S. population of elderly, for the period 2000–2005.

Methods

By linking PM2.5 monitoring data to the Medicare billing claims by ZIP code of residence of the enrollees, we have developed a new retrospective cohort study, the Medicare Cohort Air Pollution Study. The study population comprises 13.2 million participants living in 4,568 ZIP codes having centroids within 6 miles of a PM2.5 monitor. We estimated relative risks adjusted by socioeconomic status and smoking by fitting log-linear regression models.

Results

In the eastern and central regions, a 10-μg/m3 increase in 6-year average of PM2.5 is associated with 6.8% [95% confidence interval (CI), 4.9–8.7%] and 13.2% (95% CI, 9.5–16.9) increases in mortality, respectively. We found no evidence of an association in the western region or for persons ≥ 85 years of age.

Conclusions

We established a cohort of Medicare participants for investigating air pollution and mortality on longer-term time frames. Chronic exposure to PM2.5 was associated with mortality in the eastern and central regions, but not in the western United States.  相似文献   

8.

Background

Research has suggested an association with ambient air pollution and sperm quality.

Objectives

We investigated the effect of exposure to ozone (O3) and particulate matter < 2.5 μm in aerodynamic diameter (PM2.5) on sperm quality.

Methods

We reexamined a previous cohort study of water disinfection by-products to evaluate sperm quality in 228 presumed fertile men with different air pollution profiles. Outcomes included sperm concentration, total sperm per ejaculate (count), and morphology, as well as DNA integrity and chromatin maturity. Exposures to O3 and PM2.5 were evaluated for the 90–day period before sampling. We used multivariable linear regression, which included different levels of adjustment (i.e., without and with season and temperature) to assess the relationship between exposure to air pollutants during key periods of sperm development and adverse sperm outcomes.

Results

Sperm concentration and count were not associated with exposure to PM2.5, but there was evidence of an association (but not statistically significant) with O3 concentration and decreased sperm concentration and count. Additionally, a significant increase in the percentage of sperm cells with cytoplasmic drop [β = 2.64; 95% confidence interval (CI), 0.21–5.06] and abnormal head (β = 0.47; 95% CI, 0.03–0.92) was associated with PM2.5 concentration in the base model. However, these associations, along with all other sperm outcomes, were not significantly associated with either pollutant after controlling for season and temperature. Overall, although we found both protective and adverse effects, there was generally no consistent pattern of increased abnormal sperm quality with elevated exposure to O3 or PM2.5.

Conclusions

Exposures to O3 or PM2.5 at levels below the current National Ambient Air Quality Standards were not associated with statistically significant decrements in sperm outcomes in this cohort of fertile men. However, some results suggested effects on sperm concentration, count, and morphology.  相似文献   

9.

Background

Cardiac autonomic dysfunction has been suggested as a possible biologic pathway for the association between fine particulate matter ≤ 2.5 μm in diameter (PM2.5) and cardiovascular disease (CVD). We examined the associations of PM2.5 with heart rate variability, a marker of autonomic function, and whether metabolic syndrome (MetS) modified these associations.

Methods

We used data from the Multi-Ethnic Study of Atherosclerosis to measure the standard deviation of normal-to-normal intervals (SDNN) and the root mean square of successive differences (rMSSD) of 5,465 participants 45–84 years old who were free of CVD at the baseline examination (2000–2002). Data from the U.S. regulatory monitor network were used to estimate ambient PM2.5 concentrations at the participants’ residences. MetS was defined as having three or more of the following criteria: abdominal obesity, hypertriglyceridemia, low high-density lipoprotein cholesterol, high blood pressure, and high fasting glucose.

Results

After controlling for confounders, we found that an interquartile range (IQR) increase in 2-day average PM2.5 (10.2 μg/m3) was associated with a 2.1% decrease in rMSSD [95% confidence interval (CI), −4.2 to 0.0] and nonsignificantly associated with a 1.8% decrease in SDNN (95% CI, −3.7 to 0.1). Associations were stronger among individuals with MetS than among those without MetS: an IQR elevation in 2-day PM2.5 was associated with a 6.2% decrease in rMSSD (95% CI, −9.4 to −2.9) among participants with MetS, whereas almost no change was found among participants without MetS (p-interaction = 0.005). Similar effect modification was observed in SDNN (p-interaction = 0.011).

Conclusion

These findings suggest that autonomic dysfunction may be a mechanism through which PM exposure affects cardiovascular risk, especially among persons with MetS.  相似文献   

10.

Background

Exposure to ambient fine particles [particulate matter ≤ 2.5 μm diameter (PM2.5)] is a potential factor in the exacerbation of asthma. National air quality particle standards consider total mass, not composition or sources, and may not protect against health impacts related to specific components.

Objective

We examined associations between daily exposure to fine particle components and sources, and symptoms and medication use in children with asthma.

Methods

Children with asthma (n = 149) 4–12 years of age were enrolled in a year-long study. We analyzed particle samples for trace elements (X-ray fluorescence) and elemental carbon (light reflectance). Using factor analysis/source apportionment, we identified particle sources (e.g., motor vehicle emissions) and quantified daily contributions. Symptoms and medication use were recorded on study diaries. Repeated measures logistic regression models examined associations between health outcomes and particle exposures as elemental concentrations and source contributions.

Results

More than half of mean PM2.5 was attributed to traffic-related sources motor vehicles (42%) and road dust (12%). Increased likelihood of symptoms and inhaler use was largest for 3-day averaged exposures to traffic-related sources or their elemental constituents and ranged from a 10% increased likelihood of wheeze for each 5-μg/m3 increase in particles from motor vehicles to a 28% increased likelihood of shortness of breath for increases in road dust. Neither the other sources identified nor PM2.5 alone was associated with increased health outcome risks.

Conclusions

Linking respiratory health effects to specific particle pollution composition or sources is critical to efforts to protect public health. We associated increased risk of symptoms and inhaler use in children with asthma with exposure to traffic-related fine particles.  相似文献   

11.

Background

Recent toxicological and epidemiological studies have shown associations between particulate matter (PM) and adverse health effects, but which PM components are most influential is less well known.

Objectives

In this study, we used time-series analyses to determine the associations between daily fine PM [PM ≤ 2.5 μm in aerodynamic diameter (PM2.5)] concentrations and daily mortality in two U.S. cities—Seattle, Washington, and Detroit, Michigan.

Methods

We obtained daily PM2.5 filters for the years of 2002–2004 and analyzed trace elements using X-ray fluorescence and black carbon using light reflectance as a surrogate measure of elemental carbon. We used Poisson regression and distributed lag models to estimate excess deaths for all causes and for cardiovascular and respiratory diseases adjusting for time-varying covariates. We computed the excess risks for interquartile range increases of each pollutant at lags of 0 through 3 days for both warm and cold seasons.

Results

The cardiovascular and respiratory mortality series exhibited different source and seasonal patterns in each city. The PM2.5 components and gaseous pollutants associated with mortality in Detroit were most associated with warm season secondary aerosols and traffic markers. In Seattle, the component species most closely associated with mortality included those for cold season traffic and other combustion sources, such as residual oil and wood burning.

Conclusions

The effects of PM2.5 on daily mortality vary with source, season, and locale, consistent with the hypothesis that PM composition has an appreciable influence on the health effects attributable to PM.  相似文献   

12.

Background

Previous studies have reported increased risk of myocardial infarction (MI) after increases in ambient particulate matter (PM) air pollution concentrations in the hours and days before MI onset.

Objectives

We hypothesized that acute increases in fine PM with aerodynamic diameter ≤ 2.5 μm (PM2.5) may be associated with increased risk of MI and that chronic obstructive pulmonary disease (COPD) and diabetes may increase susceptibility to PM2.5. We also explored whether both transmural and nontransmural infarctions were acutely associated with ambient PM2.5 concentrations.

Methods

We studied all hospital admissions from 2004 through 2006 for first acute MI of adult residents of New Jersey who lived within 10 km of a PM2.5 monitoring site (n = 5,864), as well as ambient measurements of PM2.5, nitrogen dioxide, sulfur dioxide, carbon monoxide, and ozone.

Results

Using a time-stratified case-crossover design and conditional logistic regression showed that each interquartile-range increase in PM2.5 concentration (10.8 μg/m3) in the 24 hr before arriving at the emergency department for MI was not associated with an increased risk of MI overall but was associated with an increased risk of a transmural infarction. We found no association between the same increase in PM2.5 and risk of a nontransmural infarction. Further, subjects with COPD appeared to be particularly susceptible, but those with diabetes were not.

Conclusions

This PM–transmural infarction association is consistent with earlier studies of PM and MI. The lack of association with nontransmural infarction suggests that future studies that investigate the triggering of MI by ambient PM2.5 concentrations should be stratified by infarction type.  相似文献   

13.

Background

Previous studies have reported relationships between adverse respiratory health outcomes and residential proximity to traffic pollution, but have not shown this at a personal exposure level.

Objective

We compared, among inner-city children with asthma, the associations of adverse asthma outcome incidences with increased personal exposure to particulate matter mass ≤ 2.5 μm in aerodynamic diameter (PM2.5) air pollution versus the diesel-related carbonaceous fraction of PM2.5.

Methods

Daily 24-hr personal samples of PM2.5, including the elemental carbon (EC) fraction, were collected for 40 fifth-grade children with asthma at four South Bronx schools (10 children per school) during approximately 1 month each. Spirometry and symptom scores were recorded several times daily during weekdays.

Results

We found elevated same-day relative risks of wheeze [1.45; 95% confidence interval (CI), 1.03–2.04)], shortness of breath (1.41; 95% CI, 1.01–1.99), and total symptoms (1.30; 95% CI, 1.04–1.62) with an increase in personal EC, but not with personal PM2.5 mass. We found increased risk of cough, wheeze, and total symptoms with increased 1-day lag and 2-day average personal and school-site EC. We found no significant associations with school-site PM2.5 mass or sulfur. The EC effect estimate was robust to addition of gaseous pollutants.

Conclusion

Adverse health associations were strongest with personal measures of EC exposure, suggesting that the diesel “soot” fraction of PM2.5 is most responsible for pollution-related asthma exacerbations among children living near roadways. Studies that rely on exposure to PM mass may underestimate PM health impacts.  相似文献   

14.

Background

Systemic lupus erythematosus (SLE) is a chronic disease of unclear etiology, characterized by an overactive immune system and the production of antibodies that may target normal tissues of many organ systems, including the kidneys. It can arise at any age and occurs mainly in women.

Objective

Our aim was to evaluate the potential influence of particulate matter (PM) air pollution on clinical aspects of SLE.

Methods

We studied a clinic cohort of SLE patients living on the island of Montreal, followed annually with a structured clinical assessment. We assessed the association between ambient levels of fine PM [median aerodynamic diameter ≤ 2.5 μm (PM2.5)] measured at fixed-site monitoring stations and SLE disease activity measured with the SLE Disease Activity Index, version 2000 (SLEDAI-2K), which includes anti–double-stranded DNA (anti-dsDNA) serum-specific autoantibodies and renal tubule cellular casts in urine, which reflects serious renal inflammation. We used mixed effects regression models that we adjusted for daily ambient temperatures and ozone levels.

Results

We assessed 237 patients (223 women) who together had 1,083 clinic visits from 2000 through 2007 (mean age at time of first visit, 41.2 years). PM2.5 levels were associated with anti-dsDNA and cellular casts. The crude and adjusted odds ratios (reflecting a 10-μg/m3 increase in PM2.5 averaged over the 48 hr prior to clinical assessment) were 1.26 [95% confidence interval (CI), 0.96–1.65] and 1.34 (95% CI, 1.02–1.77) for anti-dsDNA antibodies and 1.43 (95% CI, 1.05–1.95) and 1.28 (0.92–1.80) for cellular casts. The total SLEDAI-2K scores were not associated with PM2.5 levels.

Conclusions

We provide novel data that suggest that short-term variations in air pollution may influence disease activity in established autoimmune rheumatic disease in humans. Our results add weight to concerns that pollution may be an important trigger of inflammation and autoimmunity.  相似文献   

15.

Background

Ground-level concentrations of ozone (O3) and fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] have increased since preindustrial times in urban and rural regions and are associated with cardiovascular and respiratory mortality.

Objectives

We estimated the global burden of mortality due to O3 and PM2.5 from anthropogenic emissions using global atmospheric chemical transport model simulations of preindustrial and present-day (2000) concentrations to derive exposure estimates.

Methods

Attributable mortalities were estimated using health impact functions based on long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. Using simulated concentrations rather than previous methods based on measurements allows the inclusion of rural areas where measurements are often unavailable and avoids making assumptions for background air pollution.

Results

Anthropogenic O3 was associated with an estimated 0.7 ± 0.3 million respiratory mortalities (6.3 ± 3.0 million years of life lost) annually. Anthropogenic PM2.5 was associated with 3.5 ± 0.9 million cardiopulmonary and 220,000 ± 80,000 lung cancer mortalities (30 ± 7.6 million years of life lost) annually. Mortality estimates were reduced approximately 30% when we assumed low-concentration thresholds of 33.3 ppb for O3 and 5.8 μg/m3 for PM2.5. These estimates were sensitive to concentration thresholds and concentration–mortality relationships, often by > 50%.

Conclusions

Anthropogenic O3 and PM2.5 contribute substantially to global premature mortality. PM2.5 mortality estimates are about 50% higher than previous measurement-based estimates based on common assumptions, mainly because of methodologic differences. Specifically, we included rural populations, suggesting higher estimates; however, the coarse resolution of the global atmospheric model may underestimate urban PM2.5 exposures.  相似文献   

16.

Background

Particulate matter (PM) air pollution has been associated with cardiovascular morbidity and mortality, and elevated blood pressure (BP) is a known risk factor for cardiovascular disease. A small number of studies have investigated the relationship between PM and BP and found mixed results. Evidence suggests that traffic-related air pollution contributes significantly to PM-related cardiovascular effects.

Objectives

We hypothesized that black carbon (BC), a traffic-related combustion by-product, would be more strongly associated with BP than would fine PM [aerodynamic diameter ≤ 2.5 μm (PM2.5)], a heterogeneous PM mixture, and that these effects would be larger among participants with genetic variants associated with impaired antioxidative defense.

Methods

We performed a repeated-measures analysis in elderly men to analyze associations between PM2.5 and BC exposure and BP using mixed-effects models with random intercepts, adjusting for potential confounders. We also examined statistical interaction between BC and genetic variants related to oxidative stress defense: GSTM1, GSTP1, GSTT1, NQO1, catalase, and HMOX-1.

Results

A 1-SD increase in BC concentration was associated with a 1.5-mmHg increase in systolic BP [95% confidence interval (CI), 0.1–2.8] and a 0.9-mmHg increase in diastolic BP (95% CI, 0.2–1.6). We observed no evidence of statistical interaction between BC and any of the genetic variants examined and found no association between PM2.5 and BP.

Conclusions

We observed positive associations between BP and BC, but not between BP and PM2.5, and found no evidence of effect modification of the association between BC and BP by gene variants related to antioxidative defense.  相似文献   

17.

Background

Exposure to fine airborne particulate matter [≤2.5 μm in aerodynamic diameter (PM2.5)] has been associated with cardiovascular and hematologic effects, especially in older people with cardiovascular disease. Some epidemiologic studies suggest that adults with diabetes also may be a particularly susceptible population.

Objectives

The purpose of this study was to analyze the short-term effects of ambient PM2.5 on markers of endothelial function in diabetic volunteers.

Methods

We conducted a prospective panel study in 22 people with type 2 diabetes mellitus in Chapel Hill, North Carolina (USA), from November 2004 to December 2005. We acquired daily measurements of PM2.5 and meteorologic data at central monitoring sites. On 4 consecutive days, we measured endothelial function by brachial artery ultrasound in all participants and by pulsewave measurements in a subgroup. Data were analyzed using additive mixed models with a random participant effect and adjusted for season, day of the week, and meteorology.

Results

Flow-mediated dilatation decreased in association with PM2.5 during the first 24 hr, whereas small-artery elasticity index decreased with a delay of 1 and 3 days. These PM2.5-associated decrements in endothelial function were greater among participants with a high body mass index, high glycosylated hemoglobin A1c, low adiponectin, or the null polymorphism of glutathione S-transferase M1. However, high levels of myeloperoxidase on the examination day led to strongest effects on endothelial dysfunction.

Conclusions

These data demonstrate that PM2.5 exposure may cause immediate endothelial dysfunction. Clinical characteristics associated with insulin resistance were associated with enhanced effects of PM on endothelial function. In addition, participants with greater oxidative potential seem to be more susceptible.  相似文献   

18.

Background

Several studies suggest that airborne particulate matter (PM) is associated with infant mortality; however, most focused on short-term exposure to larger particles.

Objectives

We evaluated associations between long-term exposure to different sizes of particles [total suspended particles (TSP), PM ≤ 10 μm in aerodynamic diameter (PM10), ≤ 10–2.5 μm (PM10–2.5), and ≤ 2.5 μm (PM2.5)] and infant mortality in a cohort in Seoul, Korea, 2004–2007.

Methods

The study includes 359,459 births with 225 deaths. We applied extended Cox proportional hazards modeling with time-dependent covariates to three mortality categories: all causes, respiratory, and sudden infant death syndrome (SIDS). We calculated exposures from birth to death (or end of eligibility for outcome at 1 year of age) and pregnancy (gestation and each trimester) and treated exposures as time-dependent variables for subjects’ exposure for each pollutant. We adjusted by sex, gestational length, season of birth, maternal age and educational level, and heat index. Each cause of death and exposure time frame was analyzed separately.

Results

We found a relationship between gestational exposures to PM and infant mortality from all causes or respiratory causes for normal-birth-weight infants. For total mortality (all causes), risks were 1.44 (95% confidence interval, 1.06–1.97), 1.65 (1.18–2.31), 1.53 (1.22–1.90), and 1.19 (0.83–1.70) per interquartile range increase in TSP, PM10, PM2.5, and PM10–2.5, respectively; for respiratory mortality, risks were 3.78 (1.18–12.13), 6.20 (1.50–25.66), 3.15 (1.26–7.85), and 2.86 (0.76–10.85). For SIDS, risks were 0.92 (0.33–2.58), 1.15 (0.38–3.48), 1.42 (0.71–2.87), and 0.57 (0.16–1.96), respectively.

Conclusions

Our findings provide supportive evidence of an association of long-term exposure to PM air pollution with infant mortality.  相似文献   

19.

Background

Chronic epidemiologic studies of particulate matter (PM) are limited by the lack of monitoring data, relying instead on citywide ambient concentrations to estimate exposures. This method ignores within-city spatial gradients and restricts studies to areas with nearby monitoring data. This lack of data is particularly restrictive for fine particles (PM with aerodynamic diameter < 2.5 μm; PM2.5) and coarse particles (PM with aerodynamic diameter 2.5–10 μm; PM10–2.5), for which monitoring is limited before 1999. To address these limitations, we developed spatiotemporal models to predict monthly outdoor PM2.5 and PM10–2.5 concentrations for the northeastern and midwestern United States.

Methods

For PM2.5, we developed models for two periods: 1988–1998 and 1999–2002. Both models included smooth spatial and regression terms of geographic information system-based and meteorologic predictors. To compensate for sparse monitoring data, the pre-1999 model also included predicted PM10 (PM with aerodynamic diameter < 10 μm) and extinction coefficients (km−1). PM10–2.5 levels were estimated as the difference in monthly predicted PM10 and PM2.5, with predicted PM10 from our previously developed PM10 model.

Results

Predictive performance for PM2.5 was strong (cross-validation R2 = 0.77 and 0.69 for post-1999 and pre-1999 PM2.5 models, respectively) with high precision (2.2 and 2.7 μg/m3, respectively). Models performed well irrespective of population density and season. Predictive performance for PM10–2.5 was weaker (cross-validation R2 = 0.39) with lower precision (5.5 μg/m3). PM10–2.5 levels exhibited greater local spatial variability than PM10 or PM2.5, suggesting that PM2.5 measurements at ambient monitoring sites are more representative for surrounding populations than for PM10 and especially PM10–2.5.

Conclusions

We provide semiempirical models to predict spatially and temporally resolved long-term average outdoor concentrations of PM2.5 and PM10–2.5 for estimating exposures of populations living in the northeastern and midwestern United States.  相似文献   

20.

Background

The link between concentrations of particulate matter (PM) and respiratory morbidity has been investigated in numerous studies.

Objectives

The aim of this study was to analyze the role of different particle size fractions with respect to respiratory health in Beijing, China.

Methods

Data on particle size distributions from 3 nm to 1 μm; PM10 (PM ≤ 10 μm), nitrogen dioxide (NO2), and sulfur dioxide concentrations; and meteorologic variables were collected daily from March 2004 to December 2006. Concurrently, daily counts of emergency room visits (ERV) for respiratory diseases were obtained from the Peking University Third Hospital. We estimated pollutant effects in single- and two-pollutant generalized additive models, controlling for meteorologic and other time-varying covariates. Time-delayed associations were estimated using polynomial distributed lag, cumulative effects, and single lag models.

Results

Associations of respiratory ERV with NO2 concentrations and 100–1,000 nm particle number or surface area concentrations were of similar magnitude—that is, approximately 5% increase in respiratory ERV with an interquartile range increase in air pollution concentration. In general, particles < 50 nm were not positively associated with ERV, whereas particles 50–100 nm were adversely associated with respiratory ERV, both being fractions of ultrafine particles. Effect estimates from two-pollutant models were most consistent for NO2.

Conclusions

Present levels of air pollution in Beijing were adversely associated with respiratory ERV. NO2 concentrations seemed to be a better surrogate for evaluating overall respiratory health effects of ambient air pollution than PM10 or particle number concentrations in Beijing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号