首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and purpose:

The relative contribution of distinct ecto-nucleotidases to the modulation of purinergic signalling may depend on differential tissue distribution and substrate preference.

Experimental approach:

Extracellular ATP catabolism (assessed by high-performance liquid chromatography) and its influence on [3H]acetylcholine ([3H]ACh) release were investigated in the myenteric plexus of rat ileum in vitro.

Key results:

ATP was primarily metabolized via ecto-ATPDase (adenosine 5′-triphosphate diphosphohydrolase) into AMP, which was then dephosphorylated into adenosine by ecto-5′-nucleotidase. Alternative conversion of ATP into ADP by ecto-ATPase (adenosine 5′-triphosphatase) was more relevant at high ATP concentrations. ATP transiently increased basal [3H]ACh outflow in a 2′,3′-O-(2,4,6-trinitrophenyl)adenosine-5′-triphosphate (TNP-ATP)-dependent, tetrodotoxin-independent manner. ATP and ATPγS (adenosine 5′-[γ-thio]triphosphate), but not α,β-methyleneATP, decreased [3H]ACh release induced by electrical stimulation. ADP and ADPβS (adenosine 5′[β-thio]diphosphate) only decreased evoked [3H]ACh release. Inhibition by ADPβS was prevented by MRS 2179 (2′-deoxy-N6-methyl adenosine 3′,5′-diphosphate diammonium salt, a selective P2Y1 antagonist); blockade of ADP inhibition required co-application of MRS 2179 plus adenosine deaminase (which inactivates endogenous adenosine). Blockade of adenosine A1 receptors with 1,3-dipropyl-8-cyclopentyl xanthine enhanced ADPβS inhibition, indicating that P2Y1 stimulation is cut short by tonic adenosine A1 receptor activation. MRS 2179 facilitated evoked [3H]ACh release, an effect reversed by the ecto-ATPase inhibitor, ARL67156, which delayed ATP conversion into ADP without affecting adenosine levels.

Conclusions and implications:

ATP transiently facilitated [3H]ACh release from non-stimulated nerve terminals via prejunctional P2X (probably P2X2) receptors. Hydrolysis of ATP directly into AMP by ecto-ATPDase and subsequent formation of adenosine by ecto-5′-nucleotidase reduced [3H]ACh release via inhibitory adenosine A1 receptors. Stimulation of inhibitory P2Y1 receptors by ADP generated alternatively via ecto-ATPase might be relevant in restraining ACh exocytosis when ATP saturates ecto-ATPDase activity.  相似文献   

2.

Background and Purpose

The existence of functional Kv7 channels in thalamocortical (TC) relay neurons and the effects of the K+-current termed M-current (IM) on thalamic signal processing have long been debated. Immunocytochemical evidence suggests their presence in this brain region. Therefore, we aimed to verify their existence, pharmacological properties and function in regulating activity in neurons of the ventrobasal thalamus (VB).

Experimental Approach

Characterization of Kv7 channels was performed by combining in vitro, in vivo and in silico techniques with a pharmacological approach. Retigabine (30 μM) and XE991 (20 μM), a specific Kv7 channel enhancer and blocker, respectively, were applied in acute brain slices during electrophysiological recordings. The effects of intrathalamic injection of retigabine (3 mM, 300 nL) and/or XE991 (2 mM, 300 nL) were investigated in freely moving animals during hot-plate tests by recording behaviour and neuronal activity.

Key Results

Kv7.2 and Kv7.3 subunits were found to be abundantly expressed in TC neurons of mouse VB. A slow K+-current with properties of IM was activated by retigabine and inhibited by XE991. Kv7 channel activation evoked membrane hyperpolarization, a reduction in tonic action potential firing, and increased burst firing in vitro and in computational models. Single-unit recordings and pharmacological intervention demonstrated a specific burst-firing increase upon IM activation in vivo. A Kv7 channel-mediated increase in pain threshold was associated with fewer VB units responding to noxious stimuli, and increased burst firing in responsive neurons.

Conclusions and Implications

Kv7 channel enhancement alters somatosensory activity and may reflect an anti-nociceptive mechanism during acute pain processing.  相似文献   

3.

Background and purpose:

Verapamil blocks current through the voltage-gated K+ channel Kv1.3 in the open and inactivated state of the channel but not the closed state. The binding site for verapamil was proposed to be close to the selectivity filter and the occupancy of the selectivity filter might therefore influence verapamil affinity.

Experimental“ approach:

We investigated the influence of intra- and extracellular K+ and Rb+ on the effect of verapamil by patch-clamp studies, in COS-7 cells transfected with hKv1.3 channels.

Key results:

Verapamil affinity was highest in high intracellular K+ concentrations ([K+]i) and lowest in low [Rb+]i, indicating an influence of intracellular cations on verapamil affinity. Experiments with a mutant channel (H399T), exhibiting a strongly reduced C-type inactivated state, demonstrated that part of this changed verapamil affinity in wild-type channels could be caused by altered C-type inactivation. External K+ and Rb+ could influence verapamil affinity by a voltage-dependent entry into the channel thereby modifying the verapamil off-rate and in addition causing a voltage-dependent verapamil off-rate.

Conclusions and implications:

Recovery from verapamil block was mainly due to the voltage-dependent closing of channels (state-dependent block), implying a second open state of the channel. This hypothesis was confirmed by the dependency of the tail current time course on duration of the prepulse. We conclude that the wild-type hKv1.3 channel undergoes at least two different conformational changes before finally closing with a low verapamil affinity in one open state and a high verapamil affinity in the other open state.  相似文献   

4.

Background and purpose:

We compared the dose-dependent reductions in cellular superoxide anion (O2) by catalytic agents: superoxide dismutase (SOD), polyethylene glycol (PEG)-SOD and the nitroxide 4-hydroxy-2,2,6,6,-tetramethylpiperidine-1-oxyl (tempol) with uncharacterized antioxidants: 5,10,15,20-tetrakis (4-sulphonatophenyl) porphyrinate iron (III)(Fe-TTPS), (-)-cis-3,3′,4′,5,7-pentahydroxyflavane (2R,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-1(2H)-benzopyran-3,5,7-triol (-epicatechin), 2-phenyl-1,2-benzisoselenazol-3(2H)-one (ebselen) and N-acetyl-L-cysteine (NAC) with the spin trap nitroblue tetrazolium (NBT) and with the vitamins or their analogues: ascorbate, α-tocopherol and 6-hydroxy-2,5,7,8-tetramethylkroman-2-carboxy acid (trolox).

Experimental approach:

O2 was generated in primary cultures of angiotensin II-stimulated preglomerular vascular smooth muscle cells from spontaneously hypertensive rats and detected by lucigenin-enhanced chemiluminescence.

Key results:

SOD, PEG-SOD, NAC and tempol produced a similar maximum inhibition of O2 of 80–90%. -Epicatechin, NBT, ebselen and Fe-TTPS were significantly (P < 0.0125) less effective (50–70%), whereas trolox, α-tocopherol and ascorbate had little action even over 24 h of incubation (<31%). Effectiveness in disrupted and intact cells was similar for the permeable agents, PEG-SOD and tempol, but was enhanced for SOD. Generation of O2 was increased by NAC and NBT at low concentrations but reduced at high concentrations.

Conclusions and implications:

Maximum effectiveness against cellular production of O2 requires cell membrane permeability and catalytic action as exemplified by PEG-SOD or tempol. NAC and NBT have biphasic effects on O2 production. Vitamins C and E or analogues have low efficacy.  相似文献   

5.

BACKGROUND AND PURPOSE

ATP, UTP and UDP act at smooth muscle P2X and P2Y receptors to constrict rat intrapulmonary arteries, but the underlying signalling pathways are poorly understood. Here, we determined the roles of the Ca2+-dependent chloride ion current (ICl,Ca), Cav1.2 ion channels and Ca2+ influx.

EXPERIMENTAL APPROACH

Isometric tension was recorded from endothelium-denuded rat intrapulmonary artery rings (i.d. 200–500 µm) mounted on a wire myograph.

KEY RESULTS

The ICl,Ca blockers, niflumic acid and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid and the Cav1.2 channel blocker, nifedipine, reduced peak amplitude of contractions evoked by UTP and UDP by ∼45–50% and in a non-additive manner. Ca2+-free buffer inhibited responses by ∼70%. Niflumic acid and nifedipine similarly depressed contractions to ATP, but Ca2+-free buffer almost abolished the response. After peaking, contractions to UTP and UDP decayed slowly by 50–70% to a sustained plateau, which was rapidly inhibited by niflumic acid and nifedipine. Contractions to ATP, however, reversed rapidly and fully. Tannic acid contracted tissues per se and potentiated nucleotide-evoked contractions.

CONCLUSIONS AND IMPLICATIONS

ICl,Ca and Ca2+ influx via Cav1.2 ion channels contribute substantially and equally to contractions of rat intrapulmonary arteries evoked by UTP and UDP, via P2Y receptors. ATP also activates these mechanisms via P2Y receptors, but the greater dependence on extracellular Ca2+ most likely reflects additional influx through the P2X1 receptor pore. The lack of a sustained response to ATP is probably due to it acting at P2 receptor subtypes that desensitize rapidly. Thus multiple signalling mechanisms contribute to pulmonary artery vasoconstriction mediated by P2 receptors.  相似文献   

6.

Aim:

To investigate the effects of 2′-hydroxy-4′-methoxyacetophenone (paeonol) on the electrophysiological behavior of a central neuron (right parietal 4; RP4) of the giant African snail (Achatina fulica Ferussac).

Methods:

Intracellular recordings and the two-electrode voltage clamp method were used to study the effects of paeonol on the RP4 neuron.

Results:

The RP4 neuron generated spontaneous action potentials. Bath application of paeonol at a concentration of ≥500 μmol/L reversibly elicited action potential bursts in a concentration-dependent manner. Immersing the neurons in Co2+-substituted Ca2+-free solution did not block paeonol-elicited bursting. Pretreatment with the protein kinase A (PKA) inhibitor KT-5720 or the protein kinase C (PKC) inhibitor Ro 31-8220 did not affect the action potential bursts. Voltage-clamp studies revealed that paeonol at a concentration of 500 μmol/L had no remarkable effects on the total inward currents, whereas paeonol decreased the delayed rectifying K+ current (IKD) and the fast-inactivating K+ current (IA). Application of 4-aminopyridine (4-AP 5 mmol/L), an inhibitor of IA, or charybdotoxin 250 nmol/L, an inhibitor of the Ca2+-activated K+ current (IK(Ca)), failed to elicit action potential bursts, whereas tetraethylammonium chloride (TEA 50 mmol/L), an IKD blocker, successfully elicited action potential bursts. At a lower concentration of 5 mmol/L, TEA facilitated the induction of action potential bursts elicited by paeonol.

Conclusion:

Paeonol elicited a bursting firing pattern of action potentials in the RP4 neuron and this activity relates closely to the inhibitory effects of paeonol on the IKD.  相似文献   

7.

Background and purpose:

Voltage-gated potassium (Kv) channels contribute to resting membrane potential in pulmonary artery smooth muscle cells and are down regulated in patients with pulmonary arterial hypertension (PAH) and a contribution from Kv7 channels has been recently proposed. We investigated the effect of the Kv7 channel activator, flupirtine, on PAH in two independent mouse models: PAH induced by hypoxia and spontaneous PAH in mice over-expressing the 5-HT transporter (SERT+ mice).

Experimental approach:

Right ventricular pressure was assessed in vivo in mice chronically treated with flupirtine (30 mg·kg−1·day−1). In separate in vitro experiments, pulmonary arteries from untreated mice were mounted in a wire myograph. Relaxations to acute administration of flupirtine and contractions to Kv channel blocking drugs, including the Kv7 channel blocker linopirdine, were measured.

Key results:

In wild-type (WT) mice, hypoxia increased right ventricular pressure, pulmonary vascular remodelling and right ventricular hypertrophy. These effects were attenuated by flupirtine, which also attenuated these indices of PAH in SERT+ mice. In the in vitro experiments, flupirtine induced a potent relaxant response in arteries from untreated WT and SERT+ mice. The relaxation was fully reversed by linopirdine, which potently contracted mouse pulmonary arteries while other Kv channel blockers did not.

Conclusions and implications:

Flupirtine significantly attenuated development of chronic hypoxia-induced PAH in mice and reversed established PAH in SERT+ mice, apparently via Kv7 channel activation. These results provide the first direct evidence that drugs activating Kv7 channels may be of benefit in the treatment of PAH with different aetiologies.  相似文献   

8.

BACKGROUND AND PURPOSE

Supraventricular tachyarrhythmias, including atrial fibrillation, are occasionally observed in patients suffering from sepsis. Modulation of cardiac ion channel function and expression by sepsis may have a role in the genesis of tachyarrhythmias.

EXPERIMENTAL APPROACH

Sepsis was induced by LPS (i.p.; 300 µg·kg−1) in guinea pigs. Membrane potentials and ionic currents were measured in atrial myocytes isolated from guinea pigs 10 h after LPS, using whole cell patch-clamp methods.

KEY RESULTS

In atrial cells from LPS-treated animals, action potential duration (APD) was significantly shortened. It was associated with a reduced L-type Ca2+ current and an increased delayed rectifier K+ current. These electrophysiological changes were eliminated when NG-nitro-l-arginine methyl ester (l-NAME) or S-ethylisothiourea was given together with LPS. In atrial tissues from LPS-treated animals, Ca2+ channel subunits (Cav1.2 and Cav1.3) decreased and delayed rectifier K+ channel subunits (Kv11.1 and Kv7.1) increased. However, L-NAME treatment did not substantially reverse such changes in atrial expression in LPS-treated animals, with the exception that Kv11.1 subunits returned to control levels. After LPS injection, inducible NOS in atrial tissues was up-regulated, and atrial NO production clearly increased.

CONCLUSIONS AND IMPLICATIONS

In atrial myocytes from guinea pigs with sepsis, APD was significantly shortened. This may reflect nitration of the ion channels which would alter channel functions, rather than changes in atrial expression of the channels. Shortening of APD could serve as one of the mechanisms underlying atrial tachyarrhythmia in sepsis.  相似文献   

9.

Background and purpose:

As adenosine 5′-triphosphate (ATP) is one of the inhibitory mediators of the bladder outflow region, this study investigates the possible release of ATP or related purines in response to electrical field stimulation (EFS) and the purinoceptor(s) involved in nerve-mediated relaxations of the pig urinary bladder neck.

Experimental approach:

Urothelium-denuded and intact phenylephrine-precontracted strips were mounted in organ baths containing physiological saline solution at 37°C and gassed with 95% O2 and 5% CO2 for isometric force recordings.

Key results:

EFS, in the presence of atropine, guanethidine and NG-nitro-L-arginine, and exogenous purines, produced frequency- and concentration-dependent relaxations respectively. Adenosine 5′-diphosphate (ADP) and adenosine were more potent than ATP in producing relaxation, while uridine 5′-triphosphate, uridine 5′-diphosphate and α,β-methylene ATP were less effective. The non-selective P2 antagonist suramin, and the P2Y1 and P1 receptor blockers 2′-deoxy-N6-methyladenosine 3′,5′-bisphosphate tetrasodium and 8-(p-sulphophenyl)theophylline, respectively, inhibited the responses to EFS and ATP. The P1 agonist''s potency was: 5′-N-ethylcarboxamidoadenosine (NECA)>4-2[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzene propanoic acid hydrochloride>2-chloro-N6-cyclopentyladenosine>-2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-b-D-ribofuranuronamide = adenosine. 4-(-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl) phenol, an A2A antagonist, reduced the relaxations to EFS, adenosine and NECA. In urothelium-intact samples, relaxations to EFS and purines were smaller than in urothelium-denuded preparations. Neuronal voltage-gated Na+ channels blockade failed to modify ATP relaxations. At basal tension, EFS- and ATP-induced contractions were resistant to desensitization or blockade of P2X1 and P2X3 receptors.

Conclusions and implications:

ATP is involved in the non-adrenergic, non-cholinergic, non-nitrergic inhibitory neurotransmission in the pig bladder neck, producing relaxation largely through muscle A2A receptors after breakdown to adenosine, and P2Y1 receptors after breakdown to ADP. Antagonists of these receptors may be useful for urinary incontinence treatment produced by intrinsic sphincteric deficiency.  相似文献   

10.

Background and purpose:

Neuronal ion channels are key targets of general anaesthetics and alcohol, and binding of these drugs to pre-existing and relatively specific sites is thought to alter channel gating. However, the underlying molecular mechanisms of this action are still poorly understood. Here, we investigated the neuronal Shaw2 voltage-gated K+ (Kv) channel to ask whether the inhalational anaesthetic halothane and n-alcohols share a binding site near the activation gate of the channel.

Experimental approach:

Focusing on activation gate mutations that affect channel modulation by n-alcohols, we investigated n-alcohol-sensitive and n-alcohol-resistant Kv channels heterologously expressed in Xenopus oocytes to probe the functional modulation by externally applied halothane using two-electrode voltage clamping and a gas-tight perfusion system.

Key results:

Shaw2 Kv channels are reversibly inhibited by halothane in a dose-dependent and saturable manner (K0.5= 400 µM; nH= 1.2). Also, discrete mutations in the channel''s S4S5 linker are sufficient to reduce or confer inhibition by halothane (Shaw2-T330L and Kv3.4-G371I/T378A respectively). Furthermore, a point mutation in the S6 segment of Shaw2 (P410A) converted the halothane-induced inhibition into halothane-induced potentiation. Lastly, the inhibition resulting from the co-application of n-butanol and halothane is consistent with the presence of overlapping binding sites for these drugs and weak binding cooperativity.

Conclusions and implications:

These observations strongly support a molecular model of a general anaesthetic binding site in the Shaw2 Kv channel. This site may involve the amphiphilic interface between the S4S5 linker and the S6 segment, which plays a pivotal role in Kv channel activation.  相似文献   

11.

BACKGROUND AND PURPOSE

APETx2, a toxin from the sea anemone Anthropleura elegantissima, inhibits acid-sensing ion channel 3 (ASIC3)-containing homo- and heterotrimeric channels with IC50 values < 100 nM and 0.1–2 µM respectively. ASIC3 channels mediate acute acid-induced and inflammatory pain response and APETx2 has been used as a selective pharmacological tool in animal studies. Toxins from sea anemones also modulate voltage-gated Na+ channel (Nav) function. Here we tested the effects of APETx2 on Nav function in sensory neurones.

EXPERIMENTAL APPROACH

Effects of APETx2 on Nav function were studied in rat dorsal root ganglion (DRG) neurones by whole-cell patch clamp.

KEY RESULTS

APETx2 inhibited the tetrodotoxin (TTX)-resistant Nav 1.8 currents of DRG neurones (IC50, 2.6 µM). TTX-sensitive currents were less inhibited. The inhibition of Nav 1.8 currents was due to a rightward shift in the voltage dependence of activation and a reduction of the maximal macroscopic conductance. The inhibition of Nav 1.8 currents by APETx2 was confirmed with cloned channels expressed in Xenopus oocytes. In current-clamp experiments in DRG neurones, the number of action potentials induced by injection of a current ramp was reduced by APETx2.

CONCLUSIONS AND IMPLICATIONS

APETx2 inhibited Nav 1.8 channels, in addition to ASIC3 channels, at concentrations used in in vivo studies. The limited specificity of this toxin should be taken into account when using APETx2 as a pharmacological tool. Its dual action will be an advantage for the use of APETx2 or its derivatives as analgesic drugs.  相似文献   

12.

AIMS

To compare midazolam kinetics between plasma and saliva and to find out whether saliva is suitable for CYP3A phenotyping.

METHODS

This was a two way cross-over study in eight subjects treated with 2 mg midazolam IV or 7.5 mg orally under basal conditions and after CYP3A induction with rifampicin.

RESULTS

Under basal conditions and IV administration, midazolam and 1′-hydroxymidazolam (plasma, saliva), 4-hydroxymidazolam and 1′-hydroxymidazolam-glucuronide (plasma) were detectable. After rifampicin, the AUC of midazolam [mean differences plasma 53.7 (95% CI 4.6, 102.9) and saliva 0.83 (95% CI 0.52, 1.14) ng ml−1 h] and 1′-hydroxymidazolam [mean difference plasma 11.8 (95% CI 7.9, 15.7) ng ml−1 h] had decreased significantly. There was a significant correlation between the midazolam concentrations in plasma and saliva (basal conditions: r = 0.864, P < 0.0001; after rifampicin: r = 0.842, P < 0.0001). After oral administration and basal conditions, midazolam, 1′-hydroxymidazolam and 4-hydroxymidazolam were detectable in plasma and saliva. After treatment with rifampicin, the AUC of midazolam [mean difference plasma 104.5 (95% CI 74.1, 134.9) ng ml−1 h] and 1′-hydroxymidazolam [mean differences plasma 51.9 (95% CI 34.8, 69.1) and saliva 2.3 (95% CI 1.9, 2.7) ng ml−1 h] had decreased significantly. The parameters separating best between basal conditions and post-rifampicin were: (1′-hydroxymidazolam + 1′-hydroxymidazolam-glucuronide)/midazolam at 20–30 min (plasma) and the AUC of midazolam (saliva) after IV, and the AUC of midazolam (plasma) and of 1′-hydroxymidazolam (plasma and saliva) after oral administration.

CONCLUSIONS

Saliva appears to be a suitable matrix for non-invasive CYP3A phenotyping using midazolam as a probe drug, but sensitive analytical methods are required.

WHAT IS ALREADY KNOWN ABOUT THE SUBJECT

  • Midazolam is a frequently used probe drug for CYP3A phenotyping in plasma. Midazolam and its hydroxy-metabolites can be detected in saliva.

WHAT THIS STUDY ADDS

  • The concentrations of midazolam and its hydroxy-metabolites are much lower in saliva than in plasma, but the midazolam concentrations in both matrices show a significant linear correlation.
  • Saliva appears to be a suitable matrix for CYP3A phenotyping with midazolam, but very sensitive methods are required due to the low concentrations of midazolam and its hydroxy-metabolites.
  相似文献   

13.
Expression and function of the K+ channel KCNQ genes in human arteries   总被引:1,自引:0,他引:1  

BACKGROUND AND PURPOSE

KCNQ-encoded voltage-gated potassium channels (Kv7) have recently been identified as important anti-constrictor elements in rodent blood vessels but the role of these channels and the effects of their modulation in human arteries remain unknown. Here, we have assessed KCNQ gene expression and function in human arteries ex vivo.

EXPERIMENTAL APPROACH

Fifty arteries (41 from visceral adipose tissue, 9 mesenteric arteries) were obtained from subjects undergoing elective surgery. Quantitative RT-PCR experiments using primers specific for all known KCNQ genes and immunohistochemsitry were used to show Kv7 channel expression. Wire myography and single cell electrophysiology assessed the function of these channels.

KEY RESULTS

KCNQ4 was expressed in all arteries assessed, with variable contributions from KCNQ1, 3 and 5. KCNQ2 was not detected. Kv7 channel isoform-dependent staining was revealed in the smooth muscle layer. In functional studies, the Kv7 channel blockers, XE991 and linopirdine increased isometric tension and inhibited K+ currents. In contrast, the Kv7.1-specific blocker chromanol 293B did not affect vascular tone. Two Kv7 channel activators, retigabine and acrylamide S-1, relaxed preconstricted arteries, actions reversed by XE991. Kv7 channel activators also suppressed spontaneous contractile activity in seven arteries, reversible by XE991.

CONCLUSIONS AND IMPLICATIONS

This is the first study to demonstrate not only the presence of KCNQ gene products in human arteries but also their contribution to vascular tone ex vivo.

LINKED ARTICLE

This article is commented on by Mani and Byron, pp. 38–41 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.01065.x  相似文献   

14.

Background and purpose:

Reactive oxygen species (ROS) derived from Nox2-containing reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity is reportedly detrimental in cerebrovascular disease. However, ROS generation by other Nox isoforms may have a physiological role. No Nox2-selective inhibitors have yet been identified, and thus it is unclear whether isoform non-selective Nox inhibitors would necessarily improve outcome after stroke. We assessed the effect of apocynin on cerebrovascular ROS production and also on outcome following cerebral ischaemia when administered either before ischaemia or after cerebral reperfusion. The involvement of Nox2-containing NADPH oxidase in the effects of apocynin was assessed using Nox2−/− mice.

Experimental approach:

Transient cerebral ischaemia was induced by 0.5 h middle cerebral artery occlusion followed by 23.5 h reperfusion. Mice received apocynin (2.5 mg·kg−1, i.p.) either 0.5 h before ischaemia or 1 h after reperfusion. In situ superoxide production after cerebral ischaemia-reperfusion was measured in brain sections of wild-type mice at 24 h using dihydroethidium fluorescence.

Key results:

Treatment with apocynin 0.5 h before ischaemia reduced total infarct volume, neurological impairment and mortality in wild-type but not Nox2−/− mice. Conversely, treatment with apocynin 1 h after initiation of reperfusion had no protective effect. Cerebral ischaemia and reperfusion increased superoxide production in the brain at 24 h, and pretreatment but not posttreatment with apocynin reduced superoxide levels.

Conclusions and implications:

Apocynin improves outcome following stroke when administered before ischaemia in wild-type but not Nox2−/− mice.  相似文献   

15.

Aim:

Dilated cardiomyopathy (DCM) is the most common cause of heart failure, and pharmacological intervention is not currently available. Here we investigate the effect of tetramethylpyrazine phosphate (TMPP) on the progression of DCM in the cTnTR141W transgenic mouse model.

Methods:

The cTnTR141W transgenic mice aged 2 months were divided into model group and TMPP group, whereas age-matched nontransgenic mice were used as wild-type control. TMPP 45 mg·kg−1·d−1 was administered for 7 months. Following assessment of cardiac function by echocardiography, cardiac tissues were prepared for histology and electron microscopy. Levels of molecular markers for cardiomyocyte hypertrophy and fibrosis were detected by RT-PCR. Expression of structural proteins of the sarcomere and intercalated disc was determined by Western blot.

Results:

TMPP significantly prevented cardiac dilatation and dysfunction with the development of DCM, and decreased mortality by 54%. TMPP decreased HW/BW ratios and expression of hypertrophic markers BNP and ACTA1, as well as reduced interstitial collagen deposition and expression of profibrotic markers Col1a1 and Col3a1. TMPP attenuated ultrastructural disruption caused by cTnTR141W expression and decreased expression of structural proteins myotilin and E-cadherin which were up-regulated in the cTnTR141W heart. Moreover, TMPP reduced the mRNA expression of Calm1 and Camk2b in the cTnTR141W heart.

Conclusion:

Our results suggest that TMPP could be a promising drug for prevention and treatment of DCM.  相似文献   

16.

Aim:

Methyl eugenol is a major active component extracted from the Chinese herb Asari Radix et Rhizoma, which has been used to treat toothache and other pain. Previous in vivo studies have shown that methyl eugenol has anesthetic and antinociceptive effects. The aim of this study was to determine the possible mechanism underlying its effect on nervous system disorders.

Methods:

The direct interaction of methyl eugenol with Na+ channels was explored and characterized using electrophysiological recordings from Nav1.7-transfected CHO cells.

Results:

In whole-cell patch clamp mode, methyl eugenol tonically inhibited peripheral nerve Nav1.7 currents in a concentration- and voltage-dependent manner, with an IC50 of 295 μmol/L at a −100 mV holding potential. Functionally, methyl eugenol preferentially bound to Nav1.7 channels in the inactivated and/or open state, with weaker binding to channels in the resting state. Thus, in the presence of methyl eugenol, Nav1.7 channels exhibited reduced availability for activation in a steady-state inactivation protocol, strong use-dependent inhibition, enhanced binding kinetics, and slow recovery from inactivation compared to untreated channels. An estimation of the affinity of methyl eugenol for the resting and inactivated states of the channel also demonstrated that methyl eugenol preferentially binds to inactivated channels, with a 6.4 times greater affinity compared to channels in the resting state. The failure of inactivated channels to completely recover to control levels at higher concentrations of methyl eugenol implies that the drug may drive more drug-bound, fast-inactivated channels into drug-bound, slow-inactivated channels.

Conclusion:

Methyl eugenol is a potential candidate as an effective local anesthetic and analgesic. The antinociceptive and anesthetic effects of methyl eugenol result from the inhibitory action of methyl eugenol on peripheral Na+ channels.  相似文献   

17.
Aim: Lithospermate B (LSB) isolated from the traditional Chinese medicine danshen (Salvia miltiorrhiza) is an effective Na+/K+-ATPase inhibitor and used to treat congestive heart failure. The inhibition of LSB on Na+/K+-ATPase is potentiated by forming complexes with transition metal ions. Here we investigated the safety and metabolites of different transition metal-LSB complexes in rats. Methods: LSB complexed with six different transition metal ions (Mg2+, Zn2+, Cr3+, Co2+, Ni2+ and Mn2+) were prepared. Adult male SD rats were injected with the different metal-LSB complexes (50 mg/kg, iv), and their bile and blood samples were collected. The metabolites of the metaI-LSB complexes in the samples were analyzed using mass spectroscopy. Results: In rats injected with LSB complexed with Mg2+, Zn2+, Cr3+, Ni2+ or Mn2+, LSB and its four putative metabolites were equivalently detected in their bile samples. Mn2+-LSB exhibited distinct metabolite profiles compared with the other four metaI-LSB complexes. The four putative metabolites were identified as 3-monomethyI-LSB, 3,3"-dimethyI-LSB, 3,3'"-dimethyI-LSB and 3,3'",3'"-trimethyI-LSB. The tracking of successive bile samples of rats injected with Mg2+-LSB, Zn2+-LSB and Mn2+-LSB concurrently demonstrated that LSB was firstly methylated at position 3, then at position 3", and, finally, the 3'" hydroxyl group. All rats injected with CO2+-LSB died. Conclusion: Zn2+-LSB, Cr3+-LSB, Ni2+-LSB or Mn2+-LSB produces identical four methylated metabolites of LSB in rats, and seemed to be as safe as LSB or Mg2+-LSB.  相似文献   

18.

Background

The marine environment is a unique source of bioactive natural products, of which Sargassum muticum (Yendo) Fensholt is an important brown algae distributed in Jeju Island, Korea. S. muticum is a traditional Korean food stuff and has pharmacological functions including anti-inflammatory effects. However, the active ingredients from S. muticum have not been characterized.

Methods

Bioguided fractionation of the ethanolic extract of S. muticum, collected from Jeju island, led to the isolation of a norisoprenoid. Its structure was determined by analysis of the spectroscopic data. In vitro anti-inflammatory activity and mechanisms of action of this compound were examined using lipopolysaccharide (LPS)-stimulated RAW 264.7 cells through ELISA assays and Western blot analysis.

Results

Apo-9′-fucoxanthinone, belonging to the norisoprenoid family were identified. Apo-9′-fucoxanthinone effectively suppressed LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. This compound also exerted their anti-inflammatory actions by down-regulating of NF-κB activation via suppression of IκB-α in macrophages.

Conclusions

This is the first report describing effective anti-inflammatory activity for apo-9’-fucoxanthinone′-fucoxanthnone isolated from S. muticum. Apo-9′-fucoxanthinone may be a good candidate for delaying the progression of human inflammatory diseases and warrants further studies.  相似文献   

19.

Background and purpose:

The antidiabetic sulphonylurea, glibenclamide, acts by inhibiting the pancreatic ATP-sensitive K+ (KATP) channel, a tetradimeric complex of KIR6.2 and sulphonylurea receptor 1 (KIR6.2/SUR1)4. At room temperature, recovery of channel activity following washout of glibenclamide is very slow and cannot be measured. This study investigates the relation between the recovery of channel activity from glibenclamide inhibition and the dissociation rate of [3H]-glibenclamide from the channel at 37°C.

Experimental approach:

KIR6.2, KIR6.2ΔN5 or KIR6.2ΔN10 (the latter lacking amino-terminal residues 2–5 or 2–10 respectively) were coexpressed with SUR1 in HEK cells. Dissociation of [3H]-glibenclamide from the channel and recovery of channel activity from glibenclamide inhibition were determined at 37°C.

Key results:

The dissociation kinetics of [3H]-glibenclamide from the wild-type channel followed an exponential decay with a dissociation half-time, t1/2(D) = 14 min; however, only limited and slow recovery of channel activity was observed. t1/2(D) for KIR6.2ΔN5/SUR1 channels was 5.3 min and recovery of channel activity exhibited a sluggish sigmoidal time course with a half-time, t1/2(R) = 12 min. t1/2(D) for the ΔN10 channel was 2.3 min; recovery kinetics were again sigmoidal with t1/2(R) ∼4 min.

Conclusions and implications:

The dissociation of glibenclamide from the truncated channels is the rate-limiting step of channel recovery. The sigmoidal recovery kinetics are in quantitative agreement with a model where glibenclamide must dissociate from all four (or at least three) sites before the channel reopens. It is argued that these conclusions hold also for the wild-type (pancreatic) KATP channel.  相似文献   

20.

BACKGROUND AND PURPOSE

Voltage-gated sodium channels are expressed primarily in excitable cells and play a pivotal role in the initiation and propagation of action potentials. Nine subtypes of the pore-forming α-subunit have been identified, each with a distinct tissue distribution, biophysical properties and sensitivity to tetrodotoxin (TTX). Nav1.8, a TTX-resistant (TTX-R) subtype, is selectively expressed in sensory neurons and plays a pathophysiological role in neuropathic pain. In comparison with TTX-sensitive (TTX-S) Navα-subtypes in neurons, Nav1.8 is most strongly inhibited by the µO-conotoxin MrVIB from Conus marmoreus. To determine which domain confers Nav1.8 α-subunit its biophysical properties and MrVIB binding, we constructed various chimeric channels incorporating sequence from Nav1.8 and the TTX-S Nav1.2 using a domain exchange strategy.

EXPERIMENTAL APPROACH

Wild-type and chimeric Nav channels were expressed in Xenopus oocytes, and depolarization-activated Na+ currents were recorded using the two-electrode voltage clamp technique.

KEY RESULTS

MrVIB (1 µM) reduced Nav1.2 current amplitude to 69 ± 12%, whereas Nav1.8 current was reduced to 31 ± 3%, confirming that MrVIB has a binding preference for Nav1.8. A similar reduction in Na+ current amplitude was observed when MrVIB was applied to chimeras containing the region extending from S6 segment of domain I through the S5-S6 linker of domain II of Nav1.8. In contrast, MrVIB had only a small effect on Na+ current for chimeras containing the corresponding region of Nav1.2.

CONCLUSIONS AND IMPLICATIONS

Taken together, these results suggest that domain II of Nav1.8 is an important determinant of MrVIB affinity, highlighting a region of the α-subunit that may allow further nociceptor-specific ligand targeting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号