首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytadherence-related molecules of Mycoplasma gallisepticum strain R-low were identified by Tn4001 transposon mutagenesis with the hemadsorption (HA) assay as an indicator for cytadherence. Three Gm(r) HA-negative (HA(-)) colonies displaying a stable HA(-) phenotype through several successive generations in which gentamicin selection was maintained were isolated from four independent transformation experiments and characterized. Southern blot analysis showed that the transposon was inserted as a single copy within the genome of each of the HA(-) mutants, suggesting that the transposon insertion was directly responsible for their inability to attach to erythrocytes. Sequence analysis of the transposon insertion sites revealed that in two mutants, the transposon was inserted at two distinct sites within the gapA structural gene. In the third mutant, the insertion was mapped within the crmA gene, which is located immediately downstream of the gapA gene as part of the same operon. In vitro attachment experiments with the MRC-5 human lung fibroblast cell line showed that the cytadherence capabilities of the HA(-) mutants were less than 25% those of original strain R. Experimental infection of chickens, the natural host of M. gallisepticum, with each of the three mutants demonstrated significantly impaired colonization and host responses. These data demonstrate conclusively the role of both GapA and CrmA proteins in the adherence of M. gallisepticum to host cells in model systems and in vivo colonization. Furthermore, these results underscore the relevance of in vitro cytadherence model systems for studying the pathogenesis of natural infections in chickens.  相似文献   

2.
Johne's disease, caused by Mycobacterium paratuberculosis infection, is a worldwide problem for the dairy industry and has a possible involvement in Crohn's disease in humans. To identify virulence determinants of this economically important pathogen, a library of 5,060 transposon mutants was constructed using Tn5367 insertion mutagenesis, followed by large-scale sequencing to identify disrupted genes. In this report, 1,150 mutants were analyzed and 970 unique insertion sites were identified. Sequence analysis of the disrupted genes indicated that the insertion of Tn5367 was more prevalent in genomic regions with G+C content (50.5 to 60.5%) lower than the average G+C content (69.3%) of the rest of the genome. Phenotypic screening of the library identified disruptions of genes involved in iron, tryptophan, or mycolic acid metabolic pathways that displayed unique growth characteristics. Bioinformatic analysis of disrupted genes identified a list of potential virulence determinants for further testing with animals. Mouse infection studies showed a significant decrease in tissue colonization by mutants with a disruption in the gcpE, pstA, kdpC, papA2, impA, umaA1, or fabG2_2 gene. Attenuation phenotypes were tissue specific (e.g., for the umaA1 mutant) as well as time specific (e.g., for the impA mutant), suggesting that those genes may be involved in different virulence mechanisms. The identified potential virulence determinants represent novel functional classes that could be necessary for mycobacterial survival during infection and could provide suitable targets for vaccine and drug development against Johne's and Crohn's diseases.  相似文献   

3.
Mycoplasmas possess complex pathogenicity determinants that are largely unknown at the molecular level. Mycoplasma agalactiae serves as a useful model to study the molecular basis of mycoplasma pathogenicity. The generation and in vivo screening of a transposon mutant library of M. agalactiae were employed to unravel its host colonization factors. Tn4001mod mutants were sequenced using a novel sequencing method, and functionally heterogeneous pools containing 15 to 19 selected mutants were screened simultaneously through two successive cycles of sheep intramammary infections. A PCR-based negative selection method was employed to identify mutants that failed to colonize the udders and draining lymph nodes in the animals. A total of 14 different mutants found to be absent from ≥95% of samples were identified and subsequently verified via a second round of stringent confirmatory screening where 100% absence was considered attenuation. Using this criterion, seven mutants with insertions in genes MAG1050, MAG2540, MAG3390, uhpT, eutD, adhT, and MAG4460 were not recovered from any of the infected animals. Among the attenuated mutants, many contain disruptions in hypothetical genes, implying their previously unknown role in M. agalactiae pathogenicity. These data indicate the putative role of functionally different genes, including hypothetical ones, in the pathogenesis of M. agalactiae. Defining the precise functions of the identified genes is anticipated to increase our understanding of M. agalactiae infections and to develop successful intervention strategies against it.  相似文献   

4.
Staphylococcus aureus is an important human pathogen that is also able to kill the model nematode Caenorhabditis elegans. We constructed a 2,950-member Tn917 transposon insertion library in S. aureus strain NCTC 8325. Twenty-one of these insertions exhibited attenuated C. elegans killing, and of these, 12 contained insertions in different genes or chromosomal locations. Ten of these 12 insertions showed attenuated killing phenotypes when transduced into two different S. aureus strains, and 5 of the 10 mutants correspond to genes that have not been previously identified in signature-tagged mutagenesis studies. These latter five mutants were tested in a murine renal abscess model, and one mutant harboring an insertion in nagD exhibited attenuated virulence. Interestingly, Tn917 was shown to have a very strong bias for insertions near the terminus of DNA replication.  相似文献   

5.
We describe and characterize a method for insertional mutagenesis of the yeast pathogen Candida glabrata using the bacterial transposon Tn7. Tn7 was used to mutagenize a C. glabrata genomic fosmid library. Pools of random Tn7 insertions in individual fosmids were recovered by transformation into Escherichia coli. Subsequently, these were introduced by recombination into the C. glabrata genome. We found that C. glabrata genomic fragments carrying a Tn7 insertion could integrate into the genome by nonhomologous recombination, by single crossover (generating a duplication of the insertionally mutagenized locus), and by double crossover, yielding an allele replacement. We were able to generate a highly representative set of approximately 10(4) allele replacements in C. glabrata, and an initial characterization of these shows that a wide diversity of genes were targeted in the mutagenesis. Because the identity of disrupted genes for any mutant of interest can be rapidly identified, this method should be of general utility in functional genomic characterization of this important yeast pathogen. In addition, the method might be broadly applicable to mutational analysis of other organisms.  相似文献   

6.
Mutagenesis of murine cytomegalovirus using a Tn3-based transposon   总被引:6,自引:0,他引:6  
A transposon derived from Escherichia coli Tn3 was introduced into the genome of murine cytomegalovirus (MCMV) to generate a pool of viral mutants. We analyzed three of the constructed recombinant viruses that contained the transposon within the M25, M27, and m155 open reading frames. Our studies provide the first direct evidence to suggest that M25 and M27 are not essential for viral replication in mouse NIH 3T3 cells. Studies in cultured cells and Balb/c mice indicated that the transposon insertion is stable during viral propagation both in vitro and in vivo. Moreover the virus that contained the insertion mutation in M25 exhibited a titer similar to that of the wild-type virus in the salivary glands, lungs, livers, spleens, and kidneys of the Balb/c mice that were intraperitoneally infected with these viruses. These results suggest that M25 is dispensable for viral growth in these organs and the presence of the transposon sequence in the viral genome does not significantly affect viral replication in vivo. The Tn3-based system can be used as a mutagenesis approach for studying the function of MCMV genes in both tissue culture and in animals.  相似文献   

7.
P. multocida is the causative agent of several economically significant veterinary diseases occurring in numerous species worldwide. Signature-tagged mutagenesis (STM) is a powerful genetic technique used to simultaneously screen multiple transposon mutants of a pathogen for their inability to survive in vivo. We have designed an STM system based on a mini-Tn10 transposon, chemiluminescent detection and semi-quantitative analysis and have identified transposon insertions into genes of Pasteurella multocida that attenuate virulence in a septicemic mouse model. A bank of 96 transposons containing strongly-hybridizing tags was used to create 19 pools of P. multocida transposon mutants containing approximately 70-90 mutants/pool. A total of 62 mutants were attenuated when checked individually, and 25 unique single transposon insertion mutations were identified from this group. The sequence of the disrupted ORF for each attenuated mutant was determined by either cloning or PCR-amplifying and sequencing the flanking regions. The attenuated mutants contained transposon insertions in genes encoding biosynthetic enzymes, virulence factors, regulatory components and unknown functions. This study should contribute to an understanding of the pathogenic mechanisms by which P. multocida and other pathogens in the Pasteurellaceae family cause disease and identify novel live vaccine candidates and new potential antibiotic targets.  相似文献   

8.
Moraxella catarrhalis ETSU-9 was subjected to random transposon insertion mutagenesis to identify genes encoding products involved in the ability of the organism to form biofilms in vitro. Screening of approximately 3,000 transposon insertion mutants in the crystal violet-based biofilm assay system yielded six mutants that exhibited greatly reduced abilities to form biofilms. Three of these mutants had transposon insertions in the uspA2H gene, which encodes a surface protein previously shown to be involved in the ability of M. catarrhalis to both attach to human cell lines in vitro and resist killing by normal human serum. Random insertion mutagenesis of the uspA2H gene, involving the introduction of a 15-nucleotide fragment encoding 5 amino acids, was used to attempt to identify the domain(s) necessary for biofilm formation. Most of these insertions adversely affected biofilm formation, whereas the abilities of these same mutants to attach to Chang conjunctival epithelial cells in vitro were usually not reduced. Gain-of-function experiments showed that introduction of the M. catarrhalis ETSU-9 uspA2H gene into Escherichia coli conferred biofilm formation ability on this recombinant strain. Two of the other three M. catarrhalis ETSU-9 transposon insertion mutants that had greatly reduced abilities to form biofilms were shown to have insertions in genes encoding products predicted to be directly or indirectly involved in cell wall metabolism.  相似文献   

9.
Leptospira interrogans is the most common cause of leptospirosis in humans and animals. Genetic analysis of L. interrogans has been severely hindered by a lack of tools for genetic manipulation. Recently we developed the mariner-based transposon Himar1 to generate the first defined mutants in L. interrogans. In this study, a total of 929 independent transposon mutants were obtained and the location of insertion determined. Of these mutants, 721 were located in the protein coding regions of 551 different genes. While sequence analysis of transposon insertion sites indicated that transposition occurred in an essentially random fashion in the genome, 25 unique transposon mutants were found to exhibit insertions into genes encoding 16S or 23S rRNAs, suggesting these genes are insertional hot spots in the L. interrogans genome. In contrast, loci containing notionally essential genes involved in lipopolysaccharide and heme biosynthesis showed few transposon insertions. The effect of gene disruption on the virulence of a selected set of defined mutants was investigated using the hamster model of leptospirosis. Two attenuated mutants with disruptions in hypothetical genes were identified, thus validating the use of transposon mutagenesis for the identification of novel virulence factors in L. interrogans. This library provides a valuable resource for the study of gene function in L. interrogans. Combined with the genome sequences of L. interrogans, this provides an opportunity to investigate genes that contribute to pathogenesis and will provide a better understanding of the biology of L. interrogans.  相似文献   

10.
Mycoplasma gallisepticum, the cause of chronic respiratory infections in the avian host, possesses a family of M9/pMGA genes encoding an adhesin(s) associated with hemagglutination. Nucleotide sequences of M9/pMGA gene family members indicate extensive sequence similarity in the promoter regions of both the transcribed and silent genes. The mechanism that regulates M9/pMGA gene expression is unknown, but studies have revealed an apparent correlation between gene expression and the number of tandem GAA repeat motifs located upstream of the putative promoter. In this study, transposon Tn4001 was used as a vector with the Escherichia coli lacZ gene as the reporter system to examine the role of the GAA repeats in M9/pMGA gene expression in M. gallisepticum. A 336-bp M9 gene fragment (containing the GAA repeat region, the promoter, and the translation start codon) was amplified by PCR, ligated with a lacZ gene from E. coli, and inserted into the Tn4001-containing plasmid pISM2062. This construct was transformed into M. gallisepticum PG31. Transformants were filter cloned on agar supplemented with 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal) to monitor lacZ gene expression on the basis of blue/white color selection. Several cycles of filter cloning resulted in cell lineages in which lacZ gene expression alternated between the On and Off states in successive generations of progeny clones. The promoter regions of the M9-lacZ hybrid genes of individual progeny clones were amplified by PCR and sequenced. The only differences between the promoter regions of the blue and white colonies were in the number of GAA repeats. Clones that expressed lacZ had exactly 12 tandem copies of the GAA repeat. Clones that did not express lacZ invariably had either more than 12 (14 to 16) or fewer than 12 (5 to 11) GAA repeats. Southern analysis of M. gallisepticum chromosomal DNA confirmed that the phase-variable expression of the lacZ reporter gene was not caused by Tn4001 transposition. These data strongly indicate that changes in the length of the GAA repeat region are responsible for regulating M9/pMGA gene expression.  相似文献   

11.
Mutants of Bordetella pertussis deficient in virulence-associated factors were identified by using the transposon Tn5 lac. Tn5 lac is a derivative of Tn5 which generates promoter fusions for beta-galactosidase. Tn5 lac insertions in the vir-regulated genes of B. pertussis were identified by selecting for kanamycin-resistant mutants that expressed beta-galactosidase when the vir-regulated genes were expressed but not when the vir-regulated genes were turned off. Fourteen different mutations in vir-regulated genes were identified. Two mutants were deficient in the production of the filamentous hemagglutinin, two mutants were deficient in the production of adenylate cyclase toxin and hemolysin, and one mutant was deficient in the production of dermonecrotic toxin. One insertion mapped adjacent to the pertussis toxin gene, but the mutant produced pertussis toxin. The phenotypes of the remaining eight mutants were not determined, but the mutants did not appear to be deficient in the production of the 69,000-dalton outer membrane protein (agglutinogen 3) or the capsule. Screening for mutations in either of the fimbrial genes proved to be problematic since the parental strain was found to switch from a fimbriated to a nonfimbriated state at a high frequency, which was suggestive of the metastable expression of pili in other bacteria. We used Southern blot analysis with a 30-mer specific for the fimbrial sequences. No bands with the predicted increase in size due to the 12 kilobases from Tn5 lac were observed, which suggests that none of these genes were mutated. Southern blot analysis also revealed that seven of the eight unidentified mutations mapped to different restriction fragments, which suggests that they could be deficient in as many as seven different genes.  相似文献   

12.
Salmonella typhimurium loci involved in survival within macrophages.   总被引:14,自引:7,他引:14       下载免费PDF全文
A set of Tn10 mutants of Salmonella typhimurium which have a diminished capacity to survive in murine macrophages and decreased virulence in mice has been described previously. In this study, we characterized 30 of these mutants and determined map locations of Tn10 insertions for 23 of these strains. In addition, short fragments of transposon-flanking DNA were cloned, and the nucleotide sequence was determined for 23 mutants. Seven mutants carried transposon insertions in known genes, representing six loci: htrA, prc, purD, fliD, nagA, and smpB. The possible roles of these genes in Salmonella virulence are discussed. One insertion was found to be in an unknown gene which shared homology with the open reading frames Bv' and Bv located in the pin inversion system of Shigella boydii. In one mutant, Tn10 was found to be inserted in a gene with significant homology to adhE of Escherichia coli and Clostridium acetobutylicum. The map location and degree of homology indicate that the Salmonella gene encodes a related, but different, dehydrogenase. In 14 of the mutants analyzed, Tn10 was inserted into genes which had no significant homologies to entries in the DNA and protein data bases. In conclusion, 16 insertions define loci, termed ims for impaired macrophage survival, which have not yet been described in S. typhimurium but have been shown previously to be necessary for full virulence in mice. Although most ims loci are distributed randomly throughout the genome, a cluster was found between 75 and 78 min on the Salmonella chromosome.  相似文献   

13.
We used transposon (Tn) mutagenesis to study the role of capsular polysaccharide/adhesin (PS/A) and slime in adherence of Staphylococcus epidermidis to catheters. pLTV1, containing Tn917-LTV1, was transformed into S. epidermidis M187 by protoplast fusion with S. aureus RN4220(pLTV1), creating M187(pLTV1). Tn mutants were isolated following growth at 42 degrees C; mutants deficient in PS/A and slime production were selected. PS/A- and slime-deficient Tn mutants had a 10-fold decrease in vitro in the initial phase of adherence to catheters, comparable to levels of strains that do not produce PS/A. Introduction of Tn917-LTV1-interrupted DNA from PS/A-deficient mutant M187sn3 into the parental strain via transformation of protoplasts yielded recipients with inserts identical to those of the Tn mutant that were PS/A and slime deficient. Chromosomal DNA flanking the Tn in mutant M187sn3 was cloned into Escherichia coli. The cloned DNA was found to hybridize to approximately 5-kb EcoRI fragments from the parental strain and from control Tn mutants that express parental levels of PS/A and to either approximately 9- or approximately 14-kb EcoRI fragments from other highly adherent, PS/A-producing strains. Mapping studies demonstrated that in the eight PS/A-deficient mutants that have been isolated, the Tn insertions all occur within a region of approximately 11.6 kb that is defined by three EcoRI sites. These results support previous findings indicating that in S. epidermidis PS/A is involved with in vitro adherence to plastic biomaterials and elaboration of PS/A is closely associated with slime production.  相似文献   

14.
Actinobacillus pleuropneumoniae is a strict respiratory tract pathogen of swine and is the causative agent of porcine pleuropneumonia. We have used signature-tagged mutagenesis (STM) to identify genes required for survival of the organism within the pig. A total of 2,064 signature-tagged Tn10 transposon mutants were assembled into pools of 48 each, and used to inoculate pigs by the endotracheal route. Out of 105 mutants that were consistently attenuated in vivo, only 11 mutants showed a >2-fold reduction in growth in vitro compared to the wild type, whereas 8 of 14 mutants tested showed significant levels of attenuation in pig as evidenced from competitive index experiments. Inverse PCR was used to generate DNA sequence of the chromosomal domains flanking each transposon insertion. Only one sibling pair of mutants was identified, but three apparent transposon insertion hot spots were found--an anticipated consequence of the use of a Tn10-based system. Transposon insertions were found within 55 different loci, and similarity (BLAST) searching identified possible analogues or homologues for all but four of these. Matches included proteins putatively involved in metabolism and transport of various nutrients or unknown substances, in stress responses, in gene regulation, and in the production of cell surface components. Ten of the sequences have homology with genes involved in lipopolysaccharide and capsule production. The results highlight the importance of genes involved in energy metabolism, nutrient uptake and stress responses for the survival of A. pleuropneumoniae in its natural host: the pig.  相似文献   

15.
Using transposon mutagenesis in the haploid Saccharomyces cerevisiae strain W303-1A we have identified genes required for growth in high salt medium, survival of a hypo-osmotic shock and growth at 15 degrees C. Screening 25,000 transposon insertions revealed a total of 61 insertions that caused salt-sensitivity; and those insertions affected 31 genes. Only 12 of those genes were previously known to be required for salt-tolerance. Among the 61 insertions, three caused general osmo-sensitivity. We identified one single insertion mutant in the already-known gene, FPS1, required for survival of hypo-osmotic shock. A total of 31 insertions caused failure to grow at low temperature. Those identified ten different genes, three of which had previously been reported to affect cold-tolerance. Four genes were identified in both the salt and the cold-sensitivity screen. We found several unusual insertion mutations: (1) insertions in or close to essential genes, (2) insertion in an intergenic region and (3) insertions causing stress-sensitivity in W303-1A, while the deletion mutant in BY4741 did not show such a phenotype. Surprisingly, our mutant set and that reported in the large-scale transposon insertion project (TRIPLES, http://ygacmed.yale.edu/triples/triples.htm) only marginally overlap. We discuss some of the features of transposon mutagenesis in light of the availability of the complete set of yeast deletion mutants and we discuss the possible roles of the genes we identified.  相似文献   

16.
We have established a transposon mutagenesis procedure for the moderate halophile Halomonas eurihalina, a bacteria that produces an exopolysaccharide (EPS) of considerable biotechnological interest. We used suicide plasmids pUT and pSUP102 to introduce the transposons mini-Tn5 and Tn1732 into H. eurihalina via Escherichia coli mediated conjugation. Southern hybridization analysis demonstrated that insertions of the transposon mini-Tn5 into H. eurihalina occurred randomly at single sites in the chromosome, whereas Tn1732 insertion also took place at random, but simultaneously, at several sites. Phenotypic analysis revealed that different mutants were generated by using mini-Tn5. The isolation of exopolysaccharide-defective strains is the first stage towards carrying out genetic studies on EPS production by this microorganism.  相似文献   

17.
To identify genes involved in the decolorization of malachite green, random mutants generated by transposon insertion in the malachite green-decolorizing bacterium, Citrobacter sp. were isolated. The resulting mutant bank yielded 24 mutants with complete defects in their abilities to decolorize malachite green. Southern hybridization with a Tn5 fragment as a probe showed a single hybridized band in 7 mutants, which appeared to have insertions at different sites of the chromosome. The Tn5-inserted genes were isolated and the DNA sequence flanking Tn5 was determined. Based on a sequence database, the putative protein products encoded by the mg genes were identified as follows. mg3, an ABC transporter homolog; mg6, a LysR-type regulatory protein; m11, an oxidoreductase; mg17, a MalG protein in the maltose transport system; and mg21, a sugar kinase. The deduced sequences from two mg genes (mg7 and mg18) showed no significant similarity to any protein with a known function, suggesting that these two mg genes encode unidentified proteins that are responsible for the decolorization of malachite green.  相似文献   

18.
Pathogenic mycobacteria survive and replicate within host macrophages, but the molecular mechanisms involved in this necessary step in the pathogenesis of infection are not completely understood. Mycobacterium marinum has recently been used as a model for aspects of the pathogenesis of tuberculosis because of its close genetic relationship to Mycobacterium tuberculosis and because of similarities in the pathology and course of infection caused by this organism in its natural hosts, fish and frogs, with tuberculosis in humans. In order to advance the utility of the M. marinum model, we have developed efficient transposon mutagenesis of the organism by using a Drosophila melanogaster mariner-based transposon. To determine the efficiency of transposition, we have analyzed pigmentation mutants from the transposon mutant library. In addition to insertions in four known genes in the pathway of pigment biosynthesis, two insertions in novel genes were identified in our mutant library. One of these is in a putative inhibitor of the carotenoid biosynthesis pathway. The second unexpected insertion is in an intergenic region between two genes homologous to Rv2603c and Rv2604c of M. tuberculosis. In addition to a pigmentation defect, this mutant showed increased susceptibility to singlet oxygen and grew poorly in murine macrophages. Complementation with M. tuberculosis genomic DNA encompassing Rv2603c to Rv2606c corrected the pigmentation and growth defects of the mutant. These data demonstrate the utility of mariner-based transposon mutagenesis of M. marinum and that M. marinum can be used to study the function of M. tuberculosis genes involved in intracellular survival and replication.  相似文献   

19.
We report application of a transposition methodology that allows the easy characterization and mutation of genes encoded on an infectious bacterial artificial chromosome (BAC) clone. We characterized mutants generated by transposome (Tn) mutagenesis of a BAC clone of guinea pig cytomegalovirus (GPCMV). A pool of Tn mutant GPCMV BACs were screened initially by restriction profile analysis to verify they were full-length, and subsequently GPCMV BAC DNA from individual mutants was transfected onto guinea pig lung fibroblast cells in order to generate virus. Tn GPCMV BAC mutants were classed as either essential or non-essential gene insertions, depending upon their ability to regenerate viable, replication-competent virus. Representative mutants were more fully characterized. Analysis by sequencing the Tn insertion site on the mutated BACs, and by regeneration of virus using transfection of guinea pig fibroblasts (GPL), demonstrated that a recombinant with a Tn insertion in the UL35 homolog gene (GP35) was a non-essential gene for viral replication in tissue culture. A mutant with an insertion in the UL46 homolog (GP46) was nonviable, a phenotype which could be rescued by homologous recombination of BAC DNA with wild-type UL46 sequences, suggesting an essential role of this putative capsid gene in virus replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号