首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A one-step preparation of nanoparticles with poly(lactide-co-glycolide) (PLGA) pre-modified with polyethylenimine (PEI) is better in requirements for DNA delivery compared to those prepared in a two-step process (preformed PLGA nanoparticles and subsequently coated with PEI). The particles were prepared by emulsification of PLGA/ethyl acetate in an aqueous solution of PVA and PEI. DLS, AFM and SEM were used for the size characteristics. The cytotoxicity of PLGA/PEI nanoparticles was detected by MTT assay. The transfection activity of the particles was measured using pEGFP and pβ-gal plasmid DNA. Results showed that the PLGA/PEI nanoparticles were spherical and non-porous with a size of about 0.2 μm and a small size distribution. These particles had a positive zeta potential demonstrating that PEI was attached. Interestingly, the zeta potential of the particles (from one-step procedure) was substantially higher than that of two-step process and is ascribed to the conjugation of PEI to PLGA via aminolysis. The PLGA/PEI nanoparticles were able to bind DNA and the formed complexes had a substantially lower cytotoxicity and a higher transfection activity than PEI polyplexes. In conclusion, given their small size, stability, low cytotoxicity and good transfection activity, PLGA/PEI-DNA complexes are attractive gene delivery systems.  相似文献   

2.
Cationic polyorganophosphazene has shown the ability to deliver gene. To obtain more efficient transfection, His(Boc)-OMe bearing histidine moiety was introduced to synthesize a new derivative of cationic polyphosphazenes with another side group of 2-dimethylaminoethylamine (DMAEA). The poly(DMAEA/His(Boc)-OMe)phosphazene (PDHP) and DNA could self-assemble into nanoparticles with a size around 110 nm and zeta potential of +15 mV at the PDHP/DNA ratio of 10:1 (w/w). The maximum transfection efficiency of PDHP/DNA self-assembled nanoparticles (PHSNs) against 293 T cells was much higher than that of poly(di-2-dimethylaminoethylamine) phosphazenes (PDAP)/DNA self-assembled nanoparticles (PASNs) and PEI 25/DNA self-assembled nanoparticles (PESNs) at the polymer/DNA ratio of 10:1, but the cytotoxicity of PDHP assayed by MTT was much lower than that of PDAP and PEI 25. These results suggested that PDHP could be a good candidate with high transfection efficiency and low cytotoxicity for gene delivery.  相似文献   

3.
Branched polyethylenimine (PEI; 25 kDa) as a nonviral vector exhibits high transfection efficiency and is a potential candidate for efficient gene delivery. However, the cytotoxicity of PEI limits its application in vivo. PEI was ionically interacted with hexametaphosphate, a compact molecule with high anionic charge density, to obtain nanoparticles (PEI-HMP). Nanoparticles were assessed for their efficacy in protecting complexed DNA against nucleases. The intracellular trafficking of nanoparticles was monitored by confocal microscopy. The cytotoxicity and transfection efficiency of PEI-HMP nanoparticles were evaluated in vitro. In vitro transfection efficiency of PEI-HMP (7.7%) was ~1.3- to 6.4-folds higher than that of the commercial reagents GenePORTER 2TM, FugeneTM, and SuperfectTM. Also, PEI-HMP (7.7%) delivered green fluorescent protein (GFP)-specific small interfering ribonucleic acid (siRNA) in culture cells leading to >80% suppression in GFP gene expression. PEI-HMP nanoparticles protected complexed DNA against DNase for at least 2 hours. A time-course uptake of PEI-HMP (7.7%) nanoparticles showed the internalization of nanoparticles inside the cell nucleus in 2 hours. Thus, PEI-HMP nanoparticles efficiently transfect cells with negligible cytotoxicity and show great promise as nonviral vectors for gene delivery.From the Clinical EditorBranched polyethylenimine (PEI) as a non-viral vector exhibits high transfection efficiency for gene delivery, but its cytotoxicity limits its applications. PEI hexametaphosphate nanoparticles (PEI-HMP) demonstrated a 1.3-6.4 folds higher transfection rate compared to commercial reagents. Overall, PEI-HMP nanoparticles efficiently transfect cells with negligible cytotoxicity and show great promise as non-viral vectors for gene delivery.  相似文献   

4.
Both polyethylenimine (PEI) polymers and cationic nanoparticles have been widely used for non-viral DNA transfection. Previously, we reported that cationic nanoparticles composed of cholesteryl-3beta-carboxyamidoethylene-N-hydroxyethylamine and Tween 80 (NP-OH) could deliver plasmid DNA (pDNA) with high transfection efficiency. To increase the transfection activity of NP-OH, we investigated the potential synergism of PEI and NP-OH for the transfection of DNA into human prostate tumor PC-3, human cervices tumor Hela, and human lung adenocarcinoma A549 cells. The transfection efficiency with low-molecular PEI (MW 600) was low, but that with a combination of NP-OH and PEI was higher than with NP-OH alone, being comparable to commercially available lipofectamine 2,000 and lipofectamine LTX, with very low cytotoxicity. Low-molecular weight PEI could not compact pDNA in size, but rather might help to dissociate pDNA from the complex and release pDNA from the endosome to cytoplasm by the proton sponge effect. Therefore, the combination of cationic cholesterol-based nanoparticles and a low-molecular PEI has potential as a non-viral DNA vector for gene delivery.  相似文献   

5.
The derivatives of polyethylenimine (PEI 25 and 750kDa) were synthesized by partially substituting their amino groups with imidazolyl moieties. The series of imidazolyl-PEIs thus obtained were cross-linked with polyethylene glycol (PEG) to get imidazolyl-PEI-PEG nanoparticles (IPP). The component of hydrophobicity was introduced by grafting the lauryl groups in the maximal substituted IPP nanoparticles (IPPL). The nanoparticles were characterized with respect to DNA interaction, hydrodynamic diameter, zeta potential, in vitro cytotoxicity and transfection efficiency on model cell lines. The IPP and IPPL nanoparticles formed a loose complex with DNA compared to the corresponding native PEI, leading to more efficient unpackaging of DNA. The DNA loading capacity of IPP and IPPL nanoparticles was also lower compared to PEI. The imidazolyl substitution improved the gene delivery efficiency of PEI (750kDa) by nine- to ten-fold and PEI (25kDa) by three- to four-fold. At maximum transfection efficiency, the zeta potential of nanoparticles was positive after forming a complex with DNA. The maximum level of reporter gene expression was mediated by IPPL nanoparticles in both the series. The cytotoxicity, another pertinent problem with cationic polymers, was also negligible in case of IPP and IPPL nanoparticles.  相似文献   

6.
In this study we describe a novel polymer, mPPS-FA, synthesized as a potential gene transfer vector. To complete mPPS-FA, folic acid was conjugated to a backbone (named mPPS) consisting of a copolymer of methyl PEG-2000, PEI-600, and sebacoyl chloride. (1)H NMR, FT-IR, and UV spectroscopy were used to characterize the structure of mPPS-FA. It was revealed that mPPS-FA holds the ability to bind plasmid DNA yielding positively charged particles (polyplexes). Dynamic light scattering (DLS) and TEM techniques were used to study the size and morphology of the formed mPPS-FA/DNA nanocomplexes. The mPPS-FA/DNA nanoparticles exhibited low cytotoxicity as transfection of B16-F0, U87MG, CHO-1, and Ho-8910 cells produced >80% viability indicating low cytotoxicity of the polymer. The ability of mPPS-FA to deliver EGFP plasmid to melanoma B16-F0, U87, CHO-1, Ho-8910, and A549 cells was investigated in vitro as compared to the lipid-based transfection agent Lipofectamine2000 and Linear PEI 22 kDa (L-PEI 22 kDa). We found that mPPS-FA/DNA complexes yielded the highest GFP transfection efficiency in B16-F0, U87, CHO-1, and Ho-8910 cells, which all highly express folate receptors (FR), at an mPPS-FA/DNA ratio (w/w) of 15. Furthermore, the transfection of mPPS-FA/DNA complexes in CHO-1 cells could be competitively blocked by free folic acid molecules. In contrast, in low FR expressing A549 cells, mPPS-FA showed similar low transfection efficiency as mPPS. Taken together, mPPS-FA showed the highest efficiency in vitro and the potential to be developed as a nonviral gene carrier.  相似文献   

7.
史疆  尹东锋 《中国药师》2012,15(1):26-29
目的:考察泊洛沙姆407修饰对聚乙烯亚胺(PEI)的毒性和转染性质的影响.方法:使用琥珀酰亚胺碳酸脂法将P407连接在PEI的氨基上,得到新聚合物,通过1H-NMR确定新聚合物的结构,将该聚合物与DNA形成复合物,测定复合物的zeta电位,MTT法考察复合物的细胞毒性,使用质粒pGL3-lus作为报告基因,测定虫荧光素酶活性评价复合物对Hela细胞的转染效率.结果:1H-NMR结果表明合成的聚合物具有较高的纯度.复合物的Zeta电位随氮/磷比(N/P)值的增加而增高.复合物的细胞毒性随着N/P值的增加而增大,新聚合物其细胞毒性显著低于未修饰的PEI.新聚合物在高N/P值时仍能保持较高的转染效率.结论:泊洛沙姆407修饰的PEI可以作为一种有效的非病毒基因栽体.  相似文献   

8.
Three blending methods were introduced to combine a biodegradable cationic- polyurethane (PUg3) and polyethylenimine (PEI) together with DNA by different mixing sequences. Results of gel electrophoresis assays and particle size measurements show that complexes prepared by method 1 and 3 bear an ability to condense DNA into small nanoparticles. On the contrary, the use of method 2 in making complexes produces significantly large particles because of the weaker interaction with DNA and lack of DNA condensation. Moreover, cell proliferation assays show that no cytotoxicity of the DNA/blended-polymers complexes (exhibited by method 1) was found and due to a result of the outer coating of PUg3, reducing cytotoxic PEI exposure outside the complexes. With a new technique in pharmaceutics, the complexes prepared for DNA delivery by mixing of PEI and PUg3 with DNA in a sequence (method 1) could achieve an even better transfection efficiency (reaching 40% higher) than using PEI alone as well as reduce the cytotoxicity substantially. In conclusion, a new class of complexes (non-viral combo-system) made by a skillful blending sequence (method 1) has been designed and demonstrated to obtain the beneficial properties from two useful and individual polymers for gene delivery. This method can be used in greatly improving the transfection efficiency of polymer-based gene vectors. The blended polymers with DNA also have a better biocompatibility and no cytotoxicity, which are the requirements and critical points for great success in performing gene therapy in vivo.  相似文献   

9.
Due to large surface area, tunable pore size, easy surface manipulation, and low-toxicity mesoporous silica nanoparticles (MSNs) may act as a suitable vector for gene delivery. In order to make MSNs as a suitable gene delivery system, we modified the surface of phosphonated MSNs (PMSN) with polyethyleneimine (PEI) 10 and 25?KDa. Then nanoparticles were loaded with chloroquine (CQ) (a lysosomotropic agent) and complexed with plasmid DNA. The transfection efficiency and cytotoxicity of these nanoparticles was examined using green fluorescent protein plasmid (pGFP) and cytotoxicity assay. All PEI coated nanoparticles showed positive zeta potential and mean size was ranged between 170 and 215?nm with polydispersity index bellow 0.35. PEI-coated MSNs significiantly enhanced GFP gene expression in Neuro-2?A cells compared to PEI 10 and 25?KDa. The results of the cytotoxicity assays showed that these nanoparticles have an acceptable level of viability but CQ loaded nanoparticles showed higher cytotoxicity and lower transfection activity than CQ free nanoparticles.  相似文献   

10.
The goal of this study was to develop a gene delivery vehicle that can specifically target cell surface receptors with low nonspecific protein adsorption and low cytotoxicity. Toward this goal, four-arm poly(ethylene glycol) vehicles were functionalized with DNA-binding peptides (DBPs) and integrin-binding (RGD) peptides. We have previously described a novel PEG-based gene delivery vehicle functionalized with DBPs that successfully transfected Chinese hamster ovary (CHO) cells with low toxicity and low protein adsorption. This work investigated whether incorporating RGD peptides onto PEG-DBP vehicles could target specific cell surface receptors and increase transfection efficiency of HEPG2 cells. DBP and RGD peptides were coupled onto PEG-tetraacrylate (PEG-TA) in three combinations (molar ratios of DBP:RGD of 1:3, 2:2, and 3:1) and characterized by measuring particle size, zeta potential, and transfection efficiency as a function of charge ratio (peptide amine groups:DNA phosphate). Nonspecific protein adsorption and cytotoxicity of PEG-DBP-RGD vehicles were also measured. Dynamic light scattering showed that PEG-DBP-RGD vehicles condensed DNA into particles having mean diameters of 250-300 nm and zeta potentials ranging from -10 to 7 mV. It was found that coupling two RGD peptides to the PEG-DBP 2 vehicle increased the transfection efficiency at a polymer/DNA charge ratio of 5:1 (+/-) and 6:1 (+/-) and that these vehicles had transfection efficiencies similar to those of polyethylenimine (PEI)/DNA particles. However, coupling one or three RGD peptides to PEG-DBP vehicles did not increase the transfection efficiency. Additionally, the PEG-DBP-RGD/DNA particles adsorbed less protein than PEI particles and were less toxic to HEPG2 cells.  相似文献   

11.
The main objective of this study was to prepare two types of nanoparticles with poly(d,l-lactide-co-glycolide) (PLGA) and polyethylenimine (PEI) polymers. Plasmid DNA (pDNA) was adsorbed either on PLGA/PEI nanoparticles, or as PEI/DNA complex onto the surface of PLGA nanoparticles. Both types of nanoparticles were prepared by the double emulsion method. The nanoparticles were characterized by their size, zeta potential and pDNA or PEI/DNA complex adsorption. The PEI/DNA complex adsorption was confirmed with ethidium bromide assay. pDNA adsorption onto PLGA/PEI nanoparticles (PLGA/PEI-DNA) was studied by electrophoresis on agarose gel. Cytotoxicity and transfection efficiency of both types of nanoparticle and PEI/DNA complexes formulations were studied in head and neck squamous carcinoma cell line (FaDu). To improve endosomal release, photochemical internalization (PCI) was used. The zeta potential increased when the PEI/DNA complex adsorbed onto PLGA nanoparticles (PLGA-PEI/DNA). Optimal pDNA adsorption efficiency was achieved for nitrogen/phosphorous ratio≥20/1. In vitro transfection and cells viability on FaDu cells with or without PCI were found to be variable depending on the type and concentration of nanoparticles. The results showed that transfection efficiency for PLGA/PEI-DNA or PLGA-PEI/DNA nanoparticles ranged between 2 and 80%, respectively. PCI was found to slightly improve the transfection efficiency for all formulations.  相似文献   

12.
Polyethylenimine (PEI) is one of the most efficient polycationic non-viral gene delivery vectors. Its efficiency and cytotoxicity depends on molecular weight, with the 25-kDa PEI being most efficient but accompanied with cytotoxicity. In the present study, enhancement in gene delivery efficiency along with reduction in cytotoxicity by attachment of guanidinium side group was explored. The hypothesis was that the guanidination would lead to the delocalization of charge present on primary amines of the polymer thereby leading to enhancement in gene delivery efficiency along with reduction in cytotoxicity. The polymer was guanidinated using O-methylisourea hemisulfate and the chemical linkage characterized by FTIR spectroscopy. The hydrodynamic diameter of guanidinated PEI-DNA complexes was determined using DLS. Subsequently, these complexes were used for DNA binding assay and zeta-potential measurements, taking native PEI as reference. Further, guanidinated PEI-DNA complexes were investigated for their gene delivery efficacy on HEK 293 cells. The hydrodynamic diameter of guanidinated PEI-DNA complexes was found to be in the range of 176-548 nm. As expected, the zeta potential values increased, on increasing the N/P ratios. It was found that guanidinated PEI had higher transfection efficiency at the majority of the N/P ratios tested as compared to commercially available transfecting agent lipofectin and native PEI itself. The toxicity of guanidinated PEI-DNA complexes was also reduced considerably in comparison to PEI polymer, as determined by MTT colorimetric assay. Out of the various derivatives prepared, gPEI 56% was found to be the most efficient in in vitro transfection.  相似文献   

13.
尹东锋  游庆霞  刘璟  曾平 《中国药房》2009,(34):2673-2676
目的:考察聚氧乙烯硬脂酸酯(POES)修饰聚乙烯亚胺(PEI)后聚合物的细胞毒性及其与DNA形成复合物后的载体性质。方法:使用琥珀酰亚胺碳酸脂法将POES连接在PEI上,通过1H-NMR确定接枝聚合物的结构,将接枝聚合物与DNA形成复合物后考察其琼脂糖凝胶电泳行为及测定其粒径、Zeta电位;MTT法考察接枝聚合物的细胞毒性,使用质粒pGL3-lus作为报告基因,测定虫荧光素酶活性以评价复合物对Hela细胞的转染效率。结果:1H-NMR结果表明接枝聚合物具有较高的纯度。凝胶电泳表明接枝聚合物对DNA的包裹能力随着N/P值的增加而升高,随着POES接枝数目的增大而降低。复合物的粒径小于300nm,Zeta电位随N/P值的增加而升高。接枝聚合物细胞毒性显著低于PEI,POES接枝数目低的聚合物转染效率较高。结论:POES修饰的PEI可以作为一种有效的非病毒基因载体。  相似文献   

14.
Abstract

Nucleic acids therapeutic efficiency is generally limited by their low stability and intracellular bioavailability, and by the toxicity of the carriers used to deliver them to the target sites. Aminated poly(glycerol methacrylate) polymers are biodegradable and pH-sensitive polymers that have been used previously to deliver antisense oligonucleotide and show high transfection efficiency. The purpose of this study is to compare the efficiency and toxicity of aminated linear poly(glycerol methacrylate) (ALT) biodegradable polymer to the most commonly used cationic degradable (i.e. chitosan) and non-degradable (i.e. polyethylenimine (PEI)) polymers for delivery of short interfering RNA (siRNA). ALT, PEI and chitosan polymers were able to form nanosized particles with siRNA. Size, size-distribution and zeta-potential were measured over a wide range of nitrogen-to-phosphate (N/P) ratios, and the stability of the formed nanoparticles in saline and upon freeze-drying was also assessed. No significant cytotoxicity at the range of the tested concentrations of ALT and chitosan nanoparticles was observed, whereas the non-degradable PEI showed significant toxicity in huh-7 hepatocyte-derived carcinoma cell line. The safety profiles of the degradable polymers (ALT and chitosan) over non-degradable PEI were demonstrated in vitro and in vivo. In addition, ALT nanoparticles were able to deliver siRNA in vivo with significantly higher efficiency than chitosan nanoparticles. The results in the present study give evidence of the great implications of ALT nanoparticles in biomedical applications due to their biocompatibility, low cytotoxicity, high stability and simple preparation method.  相似文献   

15.
Purpose  A novel core-shell gene delivery system was fabricated in order to improve its gene transfection efficiency, particularly in the presence of serum. Materials and Methods  α, β–poly (L-aspartate-graft-PEI) (PAE) was simply synthesized by ring-opening reaction of poly (L-succinimide) with low molecular weight (LMW) linear polyethylenimine (PEI, Mn = 423). PAE/DNA nanoparticles were characterized. Condensation and protection ability of plasmid by PAE were confirmed by agarose gel electrophoresis assay. Cytotoxicity of the polymer and polymer/DNA nanoparticles were measured by MTS assay. Gene transfection efficiencies were evaluated both in vitro and in vivo. Results  Core-shell nanoparticles assembled between DNA and PAE showed positive zeta potential, narrow size distribution, and spherical compact shapes with size below 250 nm when N/P ratio is above 10. Cytotoxicity of PAE was rather lower than that of PEI 25K, while the most efficient gene transfection and serum resistant ability of PAE/DNA complexes were higher than that of PEI 25K. Bafilomycin A1 treatment suggested “proton sponge” mechanism of PAE-mediated gene transfection. PAE/pEGFP-N2 nanoparticles also showed good gene expression in vivo and were dominantly distributed in kidney, liver, spleen and lung after intravenous administration. Conclusions  The results demonstrated the potential use of PAE as an effective gene carrier. J.-H. Yu and J.-S. Quan have contributed equally to this work.  相似文献   

16.
Non-viral vectors such as liposomes, polycations, and nanoparticles have been used as gene delivery systems. In this study, we prepared and characterized biodegradable poly(L-lactic acid) (PLA)/polyethylenimine (PEI) nanoparticles as gene carriers. pCMV/β-gal and pEGFP-C1 were utilized as model plasmid DNAs (pDNA). Nanoparticles were prepared using a double emulsion-solvent evaporation technique, and their pDNA binding capacity was assessed by agarose gel electrophoresis. Transfection was studied in HEK 293 and HeLa cell lines, and the transfection efficiencies were determined by β-galactosidase assay or flow cytometry. Three kinds of PLA/PEI systems were studied by varying the molecular weight of PEI. The PLA/PEI 25K system had a higher transfection efficiency than the PLA/PEI 0.8K or PLA/PEI 750K systems. The transfection efficiency was found to be dependent on the ratio of PLA/PEI nanoparticles to pDNA with an optimum ratio of 60:1 (w/w). The cytotoxicity was dependent on the quantity of PLA/PEI nanoparticles used, but it was comparable to that of commercial Lipofectin™. These results demonstrate the potential of PLA/PEI nanoparticles as gene carriers.  相似文献   

17.
A new aqueous nanoparticle system has been developed using complex coacervation employing the oppositely charged polymers polyethylenimine (PEI) and dextran sulfate (DS), with zinc sulfate as a stabilizing agent. Amphotericin B (AmB) was loaded into the nanoparticles as a model drug. The nanoparticles contained PEI and DS in the weight ratio of approximately 1:2. They possessed a zeta potential of approximately +30 mV and demonstrated a narrow size distribution in the range 100-600 nm with a polydispersity index of 0.2. Electron microscopy revealed spherical nanocapsules with a smooth surface. Very favorable drug entrapment and recovery efficiencies of up to 85% were routinely observed. Processing parameters, such as the pH of the PEI solutions, ratio of the two polymers, as well as the concentrations of DS and zinc sulfate, all played a significant role in controlling particle size. Dissolution studies demonstrated a fast release that is dependent on the model drug solubility. The AmB-loaded nanoparticles displayed no toxicity in tissue culture in contrast to free drug and were almost as efficacious as free drug in killing Candida albicans. Advantages of this simple technique are (1) ease of manufacturing and mild preparation conditions, (2) employment of completely aqueous processing conditions, (3) use of biocompatible polymers that can be prepared aseptically, (4) ability to control their size, and (5) a high level of drug entrapment.  相似文献   

18.
Linear polyethylenimine (lPEI, 25 kDa) nanoparticles' (LPN) series was synthesized by varying percentage of cross-linking with 1,4-butanediol diglycidyl ether (BDE) and their size, surface charge, morphology, pDNA protection/release, cytotoxicity and transfection efficiency were evaluated. Synthesized nanoparticles (NPs) were spherical in shape (size: ~109 - 235 nm; zeta potential: +38 to +16 mV). These NPs showed increased buffering capacity with increasing percent cross-linking and also exhibited excellent transfection efficiency (i.e., ~1.3 - 14.7 folds in case of LPN-5) in comparison with lPEI and the commercial transfection agents used in this study. LPN-5 based GFP-specific siRNA delivery resulted in ~86% suppression of targeted gene expression. These particles were relatively nontoxic in vitro (in cell lines) and in vivo (in Drosophila). In vivo gene expression studies using LPN-5 in Balb/c mice through intravenous injection showed maximum expression of the reporter gene in the spleen. These results together demonstrate the potential of these particles as efficient transfection reagents. FROM THE CLINICAL EDITOR: The authors demonstrate a novel method of synthesizing linear PEI nanoparticles to utilize these as transfection agents.  相似文献   

19.
Polyethylenimine (750 kDa) has been derivatized to influence the proton sponge mechanism and hydrophobic-hydrophilic balance. The polymer was acylated using acid anhydrides of varying carbon chain length, followed by cross-linking with PEG-bis-P to form compact nanoparticles. The chemical linkages in the particles were characterized by FTIR and NMR spectroscopy. The hydrodynamic diameter of nanoparticles was found to be in the range of 83.5-124 nm. AFM imaging of native and DNA-loaded nanoparticles revealed highly compact and spherical shape. The positive surface charge on particles decreased with the increase in percentage of acylation and also on complexing with DNA. The buffering capacity of PEI was reduced considerably on preparing acylated nanoparticles. The nanoparticles formed stable complexes with DNA and higher weight ratios were required for formation of electro-neutral complexes. Further, these nanoparticles were investigated for their gene delivery efficacy on COS-1 cells. It was found that acylated PEI nanoparticles were 5-12-fold more efficient transfecting agents as compared to native PEI (750 kDa) and commercially available transfecting agent lipofectin. The MTT colorimetric assay revealed of considerable reduction in toxicity of acylated PEI nanoparticles as compared PEI. Of all the systems prepared, nanoparticles with 30% acylation using propionic anhydride were found to be the most efficient in in vitro transfection.  相似文献   

20.
藻酸盐/PEI/DNA复合载体作为一种新型基因递送系统   总被引:4,自引:0,他引:4  
目的克服多聚乙烯亚胺(PEI,polyethlenimine)/DNA载体对细胞的毒性以及在含血清培养基里对癌细胞基因的转移率低的问题。方法利用具有水溶性、可生物降解的、并带有负电的藻酸盐(alginate)对PEI/DNA载体进行包衣,制备出复合载体,并在体外含50%血清培养基里,与PEI/DNA载体比较对C3癌细胞转染率。结果 在含50%血清的培养基里,藻酸盐包衣制备的复合体载体[alginate:DNA,0.15 (w/w);PEI:DNA,N:P=10]与PEI/DNA载体相比,对C3癌细胞基因转染率高出10~30倍,而且其表面正电荷数比PEI/DNA载体减少了一半,颗粒较小,并降低对细胞毒性和红血球集聚反应。结论作为新型的藻酸盐包衣制备的复合载体能提高在体外含高浓度血清培养基里对C3癌细胞的转染率,并能减少其对细胞毒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号