首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
Smoking during pregnancy is the largest modifiable risk factor for pregnancy-related morbidity and mortality. The success of bupropion for smoking cessation warrants its investigation for the treatment of pregnant patients. Nevertheless, the use of bupropion for the treatment of pregnant smokers requires additional data on its bio-disposition during pregnancy. Therefore, the aim of this investigation was to determine the metabolism of bupropion in placentas obtained from nonsmoking and smoking women, identify metabolites formed and the enzymes catalyzing their formation, as well as the kinetics of the reaction. Data obtained revealed that human placentas metabolized bupropion to hydroxybupropion, erythro- and threohydrobupropion. The rates for formation of erythro- and threohydrobupropion exceeded that for hydroxybupropion by several folds, were dependent on the concentration of bupropion and exhibited saturation kinetics with an apparent Km value of 40 μM. Human placental 11β-hydroxysteroid dehydrogenases were identified as the major carbonyl-reducing enzymes responsible for the reduction of bupropion to threo- and erythrohydrobupropion in microsomal fractions. On the other hand, CYP2B6 was responsible for the formation of OH-bupropion. These data suggest that both placental microsomal carbonyl-reducing and oxidizing enzymes are involved in the metabolism of bupropion.  相似文献   

2.
Simultaneous determination of aniracetam and its related impurities (2-pyrrolidinone, p-anisic acid, 4-p-anisamidobutyric acid and (p-anisoyl)-4-methyl-2-pyrrolidinone) was accomplished in the bulk drug and in a tablet formulation using a high performance liquid chromatographic method with UV detection. Separation was achieved on a Hypersil BDS-CN column (150 mm × 4.0 mm, 5 μm) using a gradient elution program with solvent A composed of phosphate buffer (pH 4.0; 0.010 M) and solvent B of acetonitrile-phosphate buffer (pH 4.0; 0.010 M) (90:10, v/v). The flow rate of the mobile phase was 1.0 mL min−1 and the total elution time, including the column re-equilibration, was approximately 20 min. The UV detection wavelength was varied appropriately among 210, 250 and 280 nm. Injection volume was 20 μL and experiments were conducted at ambient temperature. The developed method was validated in terms of system suitability, selectivity, linearity, range, precision, accuracy, limits of detection and quantification for the impurities, short term and long term stability of the analytes in the prepared solutions and robustness, following the ICH guidelines. Therefore, the proposed method was suitable for the simultaneous determination of aniracetam and its studied related impurities.  相似文献   

3.
Tefluthrin is a synthetic pyrethroid and involved in acute neurotoxic effects. How this compound affects ion currents in endocrine or neuroendocrine cells remains unclear. Its effects on membrane ion currents in pituitary tumor (GH3) cells and in hypothalamic (GT1-7) neurons were investigated. Application of Tef (10 μM) increased the amplitude of voltage-gated Na+ current (INa), along with a slowing in current inactivation and deactivation in GH3 cells. The current–voltage relationship of INa was shifted to more negative potentials in the presence of this compound. Tef increased INa with an EC50 value of 3.2 ± 0.8 μM. It also increased the amplitude of persistent INa. Tef reduced the amplitude of L-type Ca2+ current. This agent slightly inhibited K+ outward current; however, it had no effect on the activity of large-conductance Ca2+-activated K+ channels. Under cell-attached voltage-clamp recordings, Tef (10 μM) increased amplitude and frequency of spontaneous action currents, along with appearance of oscillatory inward currents. Tef-induced inward currents were suppressed after further application of tetrodotoxin, riluzole or ranolazine. In GT1-7 cells, Tef also increased the amplitude and frequency of action currents. Taken together, the effects of Tef and its structural related pyrethroids on ion currents can contribute to the underlying mechanisms through which they affect endocrine or neuroendocrine function in vivo.  相似文献   

4.
Dipeptidyl peptidase 4 (DPP4) inhibitors represent a novel class of oral anti-hyperglycemic agents. The complete pharmacological profile of these protease inhibitors remains unclear. In order to gain deeper insight into the in vivo effects caused by DPP4 inhibition, two different DPP4 inhibitors (vildagliptin and AB192) were analyzed using differential peptide display. Wistar rats were treated with the DPP4 inhibitors (0.3 mg kg−1; 1 mg kg−1 or 3 mg kg−1 body weight) and DPP4 activity was measured before and at the end of the experiment. One hour after compound administration, blood plasma samples were collected to generate peptide displays and to subsequently identify differentially regulated peptides. A dose-dependent decrease in blood plasma DPP4 activity was measured for both inhibitors. DPP4 inhibition influenced collagen metabolism leading to depletion of collagen derived peptides (e.g. collagen alpha 1 (III) 521-554) and accumulation of related N-terminally extended collagen derived peptides (e.g. collagen alpha 1 (III) 519-554). Furthermore, the intact amyloid rat BRI (1-23) peptide was detected in plasma following in vivo DPP4 inhibition. DPP4 catalyzed cleavage kinetics of the BRI peptide were determined in vitro. The kcat and Km for cleavage by DPP4 were 5.2 s−1 and 14 μM, respectively, resulting in a specificity constant kcat/Km of 0.36 × 106 s−1 M−1. Our results demonstrate that differential peptide analysis can be applied to monitor action of DPP4 inhibition in blood plasma. For the first time effects on basal collagen metabolism following DPP4 inhibition in vivo were demonstrated and the BRI amyloid peptide was identified as a novel DPP4 substrate.  相似文献   

5.
6.
Alveolar type II epithelial or other pulmonary cells secrete GM-CSF that regulates surfactant catabolism and mucosal host defense through its capacity to modulate the maturation and activation of alveolar macrophages. GM-CSF enhances expression of scavenger receptors MARCO and SR-A. The alveolar macrophage SP-R210 receptor binds the surfactant collectin SP-A mediating clearance of respiratory pathogens. The current study determined the effects of epithelial-derived GM-CSF in host resistance to influenza A pneumonia. The results demonstrate that GM-CSF enhanced resistance to infection with 1.9 × 104 ffc of the mouse-adapted influenza A/Puerto Rico/8/34 (PR8) H1N1 strain, as indicated by significant differences in mortality and mean survival of GM-CSF-deficient (GM−/−) mice compared to GM−/− mice in which GM-CSF is expressed at increased levels. Protective effects of GM-CSF were observed both in mice with constitutive and inducible GM-CSF expression under the control of the pulmonary-specific SFTPC or SCGB1A1 promoters, respectively. Mice that continuously secrete high levels of GM-CSF developed desquamative interstitial pneumonia that impaired long-term recovery from influenza. Conditional expression of optimal GM-CSF levels at the time of infection, however, resulted in alveolar macrophage proliferation and focal lymphocytic inflammation of distal airways. GM-CSF enhanced alveolar macrophage activity as indicated by increased expression of SP-R210 and CD11c. Infection of mice lacking the GM-CSF-regulated SR-A and MARCO receptors revealed that MARCO decreases resistance to influenza in association with increased levels of SP-R210 in MARCO−/− alveolar macrophages. In conclusion, GM-CSF enhances early host resistance to influenza. Targeting of MARCO may reinforce GM-CSF-mediated host defense against pathogenic influenza.  相似文献   

7.
The K+ channel blocker, TEA is known to increase action potential amplitude and insulin secretion of mouse β-cells when added to a nutrient secretagogue. In the presence of a maximally effective sulfonylurea concentration (2.7 μM glipizide) the nutrient secretagogue α-ketoisocaproic acid (KIC, 10 mM) strongly increased insulin secretion (about elevenfold). Instead of enhancing the effect of KIC, TEA reduced the KIC-induced secretion by more than 50%. Also, the secretion rate produced by 2.7 μM glipizide alone was significantly reduced by TEA. In contrast, TEA enhanced the insulinotropic effect of glipizide when a basal glucose concentration (5 mM) was present. In the presence as well as in the absence of glucose glipizide produced a plateau depolarization with superimposed action potentials. Under both conditions, TEA increased the glipizide-induced action potential amplitude and further elevated the cytosolic free calcium concentration ([Ca2+]i) with an oscillatory characteristic. These effects depended on the activity of L-type Ca2+ channels, even though the effect of TEA differed from that of 1 μM of the Ca2+ channel opener, Bay K8644, which primarily increased action potential duration. TEA did not negatively affect parameters of β-cell energy metabolism (NAD(P)H fluorescence and ATP/ADP ratio), rather, it slightly increased NAD(P)H fluorescence. Apparently, TEA inhibits insulin secretion in the absence of glucose in spite of a persistent ability to block K+ ion conductance. Thus, the signalling role of action potential depolarization in insulin secretion may require reconsideration and ion conductance-independent actions of K+ channels may be involved in this paradox effect of TEA.  相似文献   

8.
Wu SN  Chen BS  Lo YC 《Toxicology》2011,289(1):11-18
Aconitine (ACO) is a highly toxic diterpenoid alkaloid and known to exert the immunomodulatory action. However, whether it has any effects on ion currents in immune cells remains unknown. The effects of ACO and other related compounds on ion currents in Jurkat T-lymphocytes were investigated in this study. ACO suppressed the amplitude of delayed-rectifier K+ current (IK(DR)) in a time- and concentration-dependent manner. Margatoxin (100 nM), a specific blocker of KV1.3-encoded current, decreased the IK(DR) amplitude in these cells and the ACO-induced inhibition of IK(DR) was not reversed by 1-ethyl-2-benzimidazolinone (30 μM) or nicotine (10 μM). The IC50 value for ACO-mediated inhibition of IK(DR) was 5.6 μM. ACO accelerated the inactivation of IK(DR) with no change in the activation rate of this current. Increasing the ACO concentration not only reduced the IK(DR) amplitude, but also accelerated the inactivation time course of the current. With the aid of minimal binding scheme, the inhibitory action of ACO on IK(DR) was estimated with a dissociation constant of 6.8 μM. ACO also shifted the inactivation curve of IK(DR) to a hyperpolarized potential with no change in the slope factor. Cumulative inactivation for IK(DR) was enhanced in the presence of ACO. In Jurkat cells incubated with amiloride (30 μM), the ACO-induced inhibition of IK(DR) remained unaltered. In RAW 264.7 murine macrophages, ACO did not modify the kinetics of IK(DR), although it suppressed IK(DR) amplitude. Taken together, these effects can significantly contribute to its action on functional activity of immune cells if similar results are found in vivo.  相似文献   

9.
The toxic effects of diazinon and its irradiated solutions were investigated using cultivated human blood cells (lymphocytes and erythrocytes) and skin fibroblasts. Ultra Performance Liquid Chromatography (UPLC)–UV/VIS system was used to monitor the disappearance of starting diazinon during 115-min photodegradation and formation of its by-products (diazoxon and 2-isopropyl-6-methyl-4-pyrimidinol (IMP)) as a function of time. Dose-dependent AChE and Na+/K+-ATPase inhibition by diazinon was obtained for all investigated cells. Calculated IC50 (72 h) values, in M, were: 7.5 × 10−6/3.4 × 10−5, 8.7 × 10−5/6.6 × 10−5, and 3.0 × 10−5/4.6 × 10−5 for fibroblast, erythrocyte and lymphocyte AChE/Na+/K+-ATPase, respectively. Results obtained for reference commercially purified target enzymes indicate similar sensitivity of AChE towards diazinon (IC50 (20 min)-7.8 × 10−5M), while diazinon concentrations below 10 mM did not noticeably affect Na+/K+-ATPase activity. Besides, diazinon and IMP induced increasing incidence of micronuclei (via clastogenic mode of action) in a dose-dependent manner up to 2 × 10−6 M and significant inhibition of cell proliferation and increased level of malondialdehyde at all investigated concentrations. Although after 15-min diazinon irradiation formed products do not affect purified commercial enzymes activities, inhibitory effect of irradiated solutions on cell enzymes increased as a function of time exposure to UV light and resulted in significant reduction of AChE (up to 28–45%) and Na+/K+-ATPase (up to 35–40%) at the end of irradiation period. Moreover, photodegradation treatment strengthened prooxidative properties of diazinon as well as its potency to induce cytogenetic damage.  相似文献   

10.
Antimicrobial fluoroquinolones induce, with strongly varying frequency, life-threatening hypoglycemias, which is explained by their ability to block KATP channels in pancreatic B-cells and thus to initiate insulin secretion. In apparent contradiction to this, we observed that none of the fluoroquinolones in this study (gatifloxacin, moxifloxacin, ciprofloxacin, and a number of fluorophenyl-substituted compounds) initiated insulin secretion of perifused mouse islets when the glucose concentration was basal (5 mM). Only when the glucose concentration was stimulatory by itself (10 mM), the fluoroquinolones enhanced secretion. The fluoroquinolones were ineffective on SUR1 Ko islets, which do not have functional KATP channels. All of these fluoroquinolones depolarized the membrane potential of mouse B-cells (patch-clamping in the whole-cell mode). Using metabolically intact B-cells (perforated-patch mode) however, 100 μM of gatifloxacin, ciprofloxacin or moxifloxacin were unable to depolarize when the glucose concentration was 5 mM, whereas other KATP channel blockers (tolbutamide and efaroxan) remained effective. Only at a very high concentration (500 μM) gatifloxacin and moxifloxacin, but not ciprofloxacin induced repetitive depolarizations which could be antagonized by diazoxide. In the presence of 10 mM glucose all fluoroquinolones which enhanced secretion markedly elevated cytosolic calcium concentration ([Ca2+]i). In the presence of 5 mM glucose gatifloxacin and moxifloxacin at 500 μM but not at 100 μM elevated [Ca2+]i. It is concluded that fluoroquinolones in the clinically relevant concentration range are not initiators, but rather enhancers of glucose-induced insulin secretion. The block of KATP channels appears necessary but not sufficient to explain the hypoglycemic effect of fluoroquinolones.  相似文献   

11.
The kinetics of epimerization and degradation of moxalactam in aqueous solution was investigated by HPLC. The pH-rate profiles of the degradation and epimerization were determined separately over the pH range of 1.0-11.5 at 37 degrees C and constant ionic strength 0.5. The degradation and simultaneous epimerization were followed by measuring both of the residual R- and S-epimers of moxalactam and were found to follow pseudo-first-order kinetics. The degradation was subjected to hydrogen ion and hydroxide ion catalyses and influenced by the dissociation of the side chain phenolic group. The epimerization rates were influenced significantly in the acidic region by the dissociation of the side chain carboxylic acid group and in the basic region by hydroxide ion catalysis. The pH-degradation rate profile of moxalactam showed a minimum degradation rate constant between pH 4.0 and 6.0. The pH-epimerization rate profiles of moxalactam showed minimum epimerization rate constants at pH 7.0. The epimerization rate constants of the R- and S-epimers were not very different.  相似文献   

12.
Antioxidant activity (AO) of commercial propolis extracts (PEs), available on Serbian market, was determined by direct current (DC) polarography. Polarographic anodic current of 5.0 mmol L−1 alkaline solution of H2O2 was recorded at potentials of mercury dissolution. Decrease of the current was plotted against the volume of gradually added PEs. The volume of PE causing 20% current decrease was determined from the linear part of the plot. Antioxidant activity was expressed in H2O2 equivalent (HPEq), representing the volume of PE that corresponds to 1.0 mmol L−1 H2O2 decrease. Resulting HPEq ranged between 1.71 ± 0.11 and 8.00 ± 0.18 μL. Range of 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity was from 0.093 ± 0.004% to 0.346 ± 0.006%. Total phenolic content (TCP) of PE with superior AO activity was 5.31 ± 0.05%g GAE, while the extract with the lowest activity contained 1.45 ± 0.02%g GAE. Antioxidant activity, determined by polarographic method, was correlated with DPPH scavenging activity (R2 = 0.991) and TCP (R2 = 0.985). Validity of obtained results was further confirmed using ANOVA and post hoc Tukey HSD test.  相似文献   

13.
We have investigated the characteristics of voltage-gated K+ channels and L-type Ca2+ channels in GH3 rat pituitary cells and the effects of the xenoestrogen (XEs) nonylphenol (NP) on these ion channel currents. Our results have shown that the lower concentrations (10−15–10−14 M) of NP decreased the amplitudes of voltage-gated K+ currents (IKv) and activated L-type Ca2+ currents (ICa-L) by reducing half-activation membrane potentials of activation kinetics curves. However, the higher concentrations (10−10–10−9 M) of NP increased the amplitudes of IKv and inhibited ICa-L by reducing the peak values of ICa-L. Thus, NP affects IKv and ICa-L in an opposite and non-monotonic manner.  相似文献   

14.
A novel, simple and rapid high performance liquid chromatographic method has been developed and validated for the determination of sinafloxacin, a new fluoroquinolone, in rat plasma using 96-well protein precipitation, fused-core C18-silica column (4.6 mm × 50 mm, 2.7 μm) packed with a new solid support, which is made of 2.7 μm particles that consist of a 1.7 μm solid core covered with a 0.5 μm thick shell of porous silica.The chromatographic separation was achieved with a mobile phase of 20:80 (v/v) of acetonitrile and phosphate buffer (pH = 3.0) at a flow rate of 1 ml min−1. Fluorescence detection was employed with λex 295 nm and λem 505 nm. Lomefloxacin was used as internal standard (IS). The total analysis time was as short as 3 min. The method was sensitive with a limit of detection (LOD) of 2 ng ml−1, with good linearity (R2 = 0.9996) over the linear range of 5–500 ng ml−1. The intra-day and inter-day precision was less than 5.8% and accuracy ranged from 100.3% to 103.5% for quality control (QC) samples at three concentrations of 10, 50 and 400 ng ml−1.The fused-core C18-silica column method offered high sample throughput, low injection volume and low consumption of organic solvents. The method was successfully employed in the pharmacokinetic study of sinafloxacin formulation product after tail vein injection to healthy rats.  相似文献   

15.
The aim of this investigation was to determine the biotransformation of bupropion by baboon hepatic and placental microsomes, identify the enzyme(s) catalyzing the reaction(s) and determine its kinetics. Bupropion was metabolized by baboon hepatic and placental microsomes to hydroxybupropion (OH-BUP), threo- (TB) and erythrohydrobupropion (EB). OH-bupropion was the major metabolite formed by hepatic microsomes (Km 36 ± 6 μM, Vmax 258 ± 32 pmol mg protein−1 min−1), however the formation of OH-BUP by placental microsomes was below the limit of quantification. The apparent Km values of bupropion for the formation of TB and EB by hepatic and placental microsomes were similar. The selective inhibitors of CYP2B6 (ticlopidine and phencyclidine) and monoclonal antibodies raised against human CYP2B6 isozyme caused 80% inhibition of OH-BUP formation by baboon hepatic microsomes. The chemical inhibitors of aldo-keto reductases (flufenamic acid), carbonyl reductases (menadione), and 11β-hydroxysteroid dehydrogenases (18β-glycyrrhetinic acid) significantly decreased the formation of TB and EB by hepatic and placental microsomes. Data indicate that CYP2B of baboon hepatic microsomes is responsible for biotransformation of bupropion to OH-BUP, while hepatic and placental short chain dehydrogenases/reductases and to a lesser extent aldo-keto reductases are responsible for the reduction of bupropion to TB and EB.  相似文献   

16.
A simple, inexpensive and rapid liquid chromatography (LC) method has been developed for the quantitative determination of Lomustine, an chemotherapy drug. Degradation studies were performed on the bulk drug by heating to 60 °C, exposure to UV light at an energy of 200 Wh/m2and to visible light at an illumination of not less than 1.2 million lux hours, acid (0.1N hydrochloric acid), base (0.1N sodium hydroxide) aqueous hydrolysis and oxidation with 6.0% (v/v) hydrogen peroxide. Good resolution between the peaks corresponding to impurities produced during synthesis, degradation products and the analyte was achieved on a Symmetry C 8 LC column using a mobile phase consisting of a mixture of aqueous potassium dihydrogen phosphate and acetonitrile. The degradation samples were assayed against the reference standard of Lomustine and the mass balance in each case was close to 99.9%. Validation of the method was carried out as per International Conference on Harmonization (ICH) requirements.  相似文献   

17.
Thermodynamic parameters ΔG°, ΔH° and ΔS° of the binding equilibrium of 12 ligands (six agonists and six antagonists) to the A2B adenosine receptor subtype have been determined by affinity measurements carried out on HEK 293 cells stably transfected with human A2B adenosine receptors at six different temperatures (4, 10, 15, 20, 25, 30 °C) and van’t Hoff plot analysis have been performed. Affinity constants were obtained from saturation experiments of [3H]MRE 2029-F20 or by its displacement in inhibition assays for the other compounds. van’t Hoff plots were essentially linear in the temperature range investigated, showing that the ΔCp° of the binding equilibrium is nearly zero. Thermodynamic parameters are in the range 7 ≤ ΔH° ≤ 23 kJ mol−1and 123 ≤ ΔS° ≤ 219 J K−1 mol−1 for agonists and −40 ≤ ΔH° ≤ −20 kJ mol−1 and 10 ≤ ΔS° ≤ 91 J K−1 mol−1 for antagonists indicating that agonistic binding is always totally entropy-driven while antagonistic binding is enthalpy and entropy-driven. In the −TΔS° versus ΔH° plot the thermodynamic data are clearly arranged in separate clusters for agonists and antagonists, which, therefore, turn out to be thermodynamically discriminated.  相似文献   

18.
Mercuric ions accumulate preferentially in renal tubular epithelial cells and bond with intracellular thiols. Certain metal-complexing agents have been shown to promote extraction of mercuric ions via the multidrug resistance-associated protein 2 (MRP2). Following exposure to a non-toxic dose of inorganic mercury (Hg2+), in the absence of complexing agents, tubular cells are capable of exporting a small fraction of intracellular Hg2+ through one or more undetermined mechanisms. We hypothesize that MRP2 plays a role in this export. To test this hypothesis, Wistar (control) and TR rats were injected intravenously with a non-nephrotoxic dose of HgCl2 (0.5 μmol/kg) or CH3HgCl (5 mg/kg), containing [203Hg], in the presence or absence of cysteine (Cys; 1.25 μmol/kg or 12.5 mg/kg, respectively). Animals were sacrificed 24 h after exposure to mercury and the content of [203Hg] in blood, kidneys, liver, urine and feces was determined. In addition, uptake of Cys-S-conjugates of Hg2+ and methylmercury (CH3Hg+) was measured in inside-out membrane vesicles prepared from either control Sf9 cells or Sf9 cells transfected with human MRP2. The amount of mercury in the total renal mass and liver was significantly greater in TR rats than in controls. In contrast, the amount of mercury in urine and feces was significantly lower in TR rats than in controls. Data from membrane vesicles indicate that Cys-S-conjugates of Hg2+ and CH3Hg+ are transportable substrates of MRP2. Collectively, these data indicate that MRP2 plays a role in the physiological handling and elimination of mercuric ions from the kidney.  相似文献   

19.
This study was designed to determine whether K+ channels play a role in nitric oxide (NO)-dependent acetylcholine relaxation in porcine internal mammary artery (IMA). IMA segments were isolated and mounted in organ baths to record isometric tension. Acetylcholine-elicited vasodilation was abolished by muscarinic receptor blockade with atropine (10-6 M). Incubation with indomethacin (3 × 106 M), superoxide dismutase (150 U/ml) and bosentan (105 M) did not modify the acetylcholine response ruling out the participation of cyclooxygenase-derivates, reactive oxygen species or endothelin. The relaxation response to acetylcholine was strongly diminished by NO synthase- or soluble guanylyl cyclase-inhibition using l-NOArg (104 M) or ODQ (3 × 106 M), respectively. The vasodilation induced by acetylcholine and a NO donor (NaNO2) was reduced when rings were contracted with an enriched K+ solution (30 mM), by voltage-dependent K+ (Kv) channel blockade with 4-amynopiridine (4-AP; 104 M), by Ca2+-activated K+ (KCa) channel blockade with tetraethylammonium (TEA; 103 M), and by apamin (5 × 107 M) plus charybdotoxin (ChTx; 107 M) but not when these were added alone. In contrast, large conductance KCa (BKCa), ATP-sensitive K+ (KATP) and inwardly rectifying K+ (Kir) channel blockade with iberiotoxin (IbTx; 107 M), glibenclamide (106 M) and BaCl2 (3 × 105 M), respectively, did not alter the concentration-response curves to acetylcholine and NaNO2. Na+−K+ ATPase pump inhibition with ouabain (105 M) practically abolished acetylcholine and NaNO2 relaxations. Our findings suggest that acetylcholine-induced relaxation is largely mediated through the NO-cGMP pathway, involving apamin plus ChTx-sensitive K+ and Kv channels, and Na+−K+-ATPase pump activation.  相似文献   

20.

Purpose

The purpose of the current investigation is to understand the kinetics of de-agglomeration (kd) of micronised salbutamol sulphate (SS) and lactohale 300 (LH300) under varying air flow rates (30-180 l min−1) from three dry powder inhaler devices (DPIs), Rotahaler® (RH), Monodose Inhaler® (MI) and Handihaler® (HH).

Results

Cumulative fine particle mass vs. time profiles were obtained from the powder concentration, emitted mass and volume percent <5.4 μm, embedded in the particle size distributions of the aerosol at specific times. The rate of de-agglomeration (kd), estimated from non-linear least squares modelling, increased with increasing air flow rates. The kdvs. air flow rate profiles of SS and LH300 were significantly different at high air flow rates. The kd was highest from RH and lowest from MI. Differences in kd between the devices were related to device mode of operation while the differences between the materials were due to the powder bed structure.

Conclusion

This approach provided a methodology to measure the rate constant for cohesive powder de-agglomeration following aerosolisation from commercial devices and an initial understanding of the influence of device, air flow rate and material on these rate constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号