首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine the contribution of sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a) to early heart failure, we subjected transgenic (TG) mice expressing SERCA2a gene and wild-type (WT) mice to aortic stenosis (AS) for 7 weeks. At an early stage of hypertrophy (4-week AS), in vivo hemodynamic and echocardiographic indices were similar in TG and WT mice. By 7 weeks of AS, which is the stage of early failure in this model, TG mice with AS had lower mortality than WT mice with AS (6.7% versus 29%). The magnitude of left ventricular (LV) hypertrophy was similar in WT and TG 7-week AS mice. In vivo LV systolic function was higher in TG than in WT 7-week AS mice. In LV myocytes loaded with fluo-3, fractional cell shortening and the amplitude of the [Ca(2+)](i) transients were higher in TG than in WT 7-week AS mice under baseline conditions (0.5 Hz, 1.5 mmol/L [Ca(2+)](o), 25 degrees C). The rates of relengthening and decay in [Ca(2+)](i) were faster in TG than in WT 7-week AS myocytes. In myocytes from WT 7-week AS compared with sham-operated WT mice, contractile reserve in response to rapid pacing was depressed with impaired augmentation of both peak-systolic [Ca(2+)](i) and the SR Ca(2+) load. In contrast, contractile reserve and the capacity to augment SR Ca(2+) load were maintained in TG 7-week AS mice. SERCA2a protein levels were depressed in WT 7-week AS mice, but were preserved in TG 7-week AS mice. These data suggest that defective SR Ca(2+) loading contributes to the onset of contractile failure in animals with chronic pressure overload.  相似文献   

2.
To determine whether cellular aging leads to a cardiomyopathy and heart failure, markers of cellular senescence, cell death, telomerase activity, telomere integrity, and cell regeneration were measured in myocytes of aging wild-type mice (WT). These parameters were similarly studied in insulin-like growth factor-1 (IGF-1) transgenic mice (TG) because IGF-1 promotes cell growth and survival and may delay cellular aging. Importantly, the consequences of aging on cardiac stem cell (CSC) growth and senescence were evaluated. Gene products implicated in growth arrest and senescence, such as p27Kip1, p53, p16INK4a, and p19ARF, were detected in myocytes of young WT mice, and their expression increased with age. IGF-1 attenuated the levels of these proteins at all ages. Telomerase activity decreased in aging WT myocytes but increased in TG, paralleling the changes in Akt phosphorylation. Reduction in nuclear phospho-Akt and telomerase resulted in telomere shortening and uncapping in WT myocytes. Senescence and death of CSCs increased with age in WT impairing the growth and turnover of cells in the heart. DNA damage and myocyte death exceeded cell formation in old WT, leading to a decreased number of myocytes and heart failure. This did not occur in TG in which CSC-mediated myocyte regeneration compensated for the extent of cell death preventing ventricular dysfunction. IGF-1 enhanced nuclear phospho-Akt and telomerase delaying cellular aging and death. The differential response of TG mice to chronological age may result from preservation of functional CSCs undergoing myocyte commitment. In conclusion, senescence of CSCs and myocytes conditions the development of an aging myopathy.  相似文献   

3.
We overexpressed cardiac Gsalpha in rabbits using the beta-myosin heavy chain promoter. Gsalpha protein levels in the heart were increased 3-fold by Western blotting in both juvenile (3-4 months), adult (8-10 months), and older (11-16 months) rabbits, compared with wild type (WT) littermates. In transgenic (TG) rabbits, baseline levels of heart rate were elevated, P<0.05 (268+/-17 vs. 209+/-15 beats/min), as well as left ventricular (LV) contractility (LV dP/dt 5475+/-482 vs. 3740+/-246 mm Hg/s). These values and LV ejection fraction remained significantly elevated in older TG rabbits (11-16 months). However, maximal levels of LV dP/dt and heart rate with a high dose of isoproterenol (0.4 microg/kg/min) were similar in adult TG and WT rabbits. In isolated myocytes from the LV of adult rabbits, baseline percent contraction was increased, P<0.05, in TG (11.2+/-0.5%) compared to WT (9.3+/-0.5%), while maximal responses to isoproterenol (100 nM) were similar in adult TG (16.2+/-0.5%) and WT myocytes (15.6+/-0.4%). Although TG mice with overexpressed cardiac Gsalpha develop cardiomyopathy at 8-12 months of age, even at 16 months of age, there was no evidence of cardiomyopathy either in terms of LV function or histology in TG rabbits. In addition, Gialpha was elevated in the LV of adult (8-10 months old) TG rabbits compared to WT, but not in juvenile (3-5 months old) TG rabbits. Although both TG mice and rabbits with overexpressed cardiac Gsalpha exhibited enhanced heart rate and contractility, the TG rabbit does not develop cardiomyopathy, potentially due to a compensatory increase in Gialpha.  相似文献   

4.
BackgroundAlterations in expression and activity of cardiac Na+/Ca2+ exchanger (NCX1) have been implicated in the pathogenesis of heart failure.Methods and ResultsUsing transgenic mice in which expression of rat NCX1 was induced at 5 weeks of age, we performed transverse aortic constriction (TAC) at 8 weeks and examined cardiac and myocyte function at 15–18 weeks after TAC (age 23–26 weeks). TAC induced left ventricular (LV) and myocyte hypertrophy and increased myocardial fibrosis in both wild-type (WT) and NCX1-overexpressed mice. NCX1 and phosphorylated ryanodine receptor expression was increased by TAC, whereas sarco(endo)plasmic reticulum Ca2+-ATPase levels were decreased by TAC. Action potential duration was prolonged by TAC, but to a greater extent in NCX1 myocytes. Na+/Ca2+ exchange current was similar between WT-TAC and WT-sham myocytes, but was higher in NCX1-TAC myocytes. Both myocyte contraction and [Ca2+]i transient amplitudes were reduced in WT-TAC myocytes, but restored to WT-sham levels in NCX1-TAC myocytes. Despite improvement in single myocyte contractility and Ca2+ dynamics, induced NCX1 overexpression in TAC animals did not ameliorate LV hypertrophy, increase ejection fraction, or enhance inotropic (maximal first derivative of LV pressure rise, +dP/dt) responses to isoproterenol.ConclusionsIn pressure-overload hypertrophy, induced overexpression of NCX1 corrected myocyte contractile and [Ca2+]i transient abnormalities but did not aggravate or improve myocardial dysfunction.  相似文献   

5.
A chronic pressure overload animal model was created in young guinea pigs by surgical constriction of the descending thoracic aorta. Hemodynamics, echocardiography and myocyte size characterization demonstrated compensated pressure overloaded left ventricular (LV) hypertrophy at 4 weeks (4 wk), and congestive left heart failure 6 months (6 mo) after aortic constriction. Compared to age-matched sham-surgery control groups, the cell length and length/width ratio of isolated LV myocytes were significantly increased at 6 mo but not at 4 wk. LV myocyte lengthening was statistically correlated to an increase in LV chamber dimension and diastolic wall stress at 6 mo. These data demonstrate that myocyte lengthening occurs in mechanical overload-induced congestive heart failure, contributes to LV chamber dilatation, and is associated with increased end-diastolic wall stress. Myocytes of the other three chambers remained morphometrically normal at 4 wk. Hypertrophy of left atrial (LA) and right ventricular and atrial myocytes was evident at 6 mo. Increases in both cell length and cross-sectional area contributed significantly to the hypertrophy in the three chambers. More than 85% of LV myocytes were binucleate and the binucleation remained unchanged in the sham-surgery group from the tested 4 wk to 6 mo time point. LV hypertrophy and failure showed no significant effects on the binucleation of LV myocytes. By contrast, over 96% of LA myocytes were mononucleate. The mononucleate percent of LA myocytes was not appreciably altered during either normal growth or hypertrophy induced by secondary hemodynamic overload due to LV failure.  相似文献   

6.
Although sarcomere protein gene mutations cause familial hypertrophic cardiomyopathy (FHC), individuals bearing a mutant cardiac myosin binding protein C (MyBP-C) gene usually have a better prognosis than individuals bearing beta-cardiac myosin heavy chain (MHC) gene mutations. Heterozygous mice bearing a cardiac MHC missense mutation (alphaMHC(403/+) or a cardiac MyBP-C mutation (MyBP-C(t/+)) were constructed as murine FHC models using homologous recombination in embryonic stem cells. We have compared cardiac structure and function of these mouse strains by several methods to further define mechanisms that determine the severity of FHC. Both strains demonstrated progressive left ventricular (LV) hypertrophy; however, by age 30 weeks, alphaMHC(403/+) mice demonstrated considerably more LV hypertrophy than MyBP-C(t/+) mice. In older heterozygous mice, hypertrophy continued to be more severe in the alphaMHC(403/+) mice than in the MyBP-C(t/+) mice. Consistent with this finding, hearts from 50-week-old alphaMHC(403/+) mice demonstrated increased expression of molecular markers of cardiac hypertrophy, but MyBP-C(t/+) hearts did not demonstrate expression of these molecular markers until the mice were >125 weeks old. Electrophysiological evaluation indicated that MyBP-C(t/+) mice are not as likely to have inducible ventricular tachycardia as alphaMHC(403/+) mice. In addition, cardiac function of alphaMHC(403/+) mice is significantly impaired before the development of LV hypertrophy, whereas cardiac function of MyBP-C(t/+) mice is not impaired even after the development of cardiac hypertrophy. Because these murine FHC models mimic their human counterparts, we propose that similar murine models will be useful for predicting the clinical consequences of other FHC-causing mutations. These data suggest that both electrophysiological and cardiac function studies may enable more definitive risk stratification in FHC patients.  相似文献   

7.
Previous studies have suggested the prognostic significance of left ventricular (LV) geometric patterns in essential hypertension. However, the relation between cardiomyocyte functional changes and LV geometric patterns has not been clarified. This study was designed to assess the morphological and functional changes in isolated myocytes derived from different LV geometric patterns in hypertension. After 2-3 weeks of a high-salt (8%) diet from the age of 6 weeks, 20 Dahl salt-sensitive (DS) rats were classified into the following three groups on the basis of an echocardiographically determined LV mass index and the relative wall thickness: concentric hypertrophy (11), eccentric hypertrophy (4), and concentric remodeling (5). Ten Dahl salt-resistant (DR) rats served as controls. In vivo LV functions were assessed based on echocardiographic measurements. We examined ventricular myocytes isolated from all groups. To evaluate the force-frequency relation, cardiomyocytes isolated from all groups were paced at stimulation rates of 0.3, 0.5, 1.0, 2.0, and 3.0 Hz. Concentric hypertrophy and eccentric hypertrophy groups exhibited an increase in myocyte width but no changes in the length. Concentric hypertrophy and concentric remodeling groups demonstrated in vivo LV dysfunction. In addition, DS rats, especially these with concentric hypertrophy, demonstrated impaired frequency responses in terms of both myocyte contraction and relaxation compared with DR rats. This impaired force-frequency relationship was especially remarkable at high frequencies. These findings suggest that the structural and functional changes in cardiomyocytes are closely related to the LV geometric pattern and may contribute to a different prognosis according to different geometric patterns.  相似文献   

8.
There is an association between obesity and heart failure associated with LV dysfunction. Adiponectin is an adipocyte-derived hormone that is downregulated in obesity. Here, we examined the role of adiponectin in cardiac remodeling after myocardial infarction with loss- and gain-of-function genetic manipulations in an experimental model. Myocardial infarction was created in adiponectin-deficient (APN-KO) and wild-type (WT) mice by the permanent ligation of the left anterior descending (LAD) artery. For some experiments, adenoviral vectors expressing adiponectin or beta-galactosidase were delivered systemically. Cardiac structure and function were assessed by echocardiographic and Millar catheter measurements. Myocardial capillary density was assessed by staining with anti-CD31 antibody. Myocyte apoptotic activity was determined by TUNEL-staining. Myocardial interstitial fibrosis was evaluated by Masson's trichrome staining. APN-KO mice showed exacerbated left ventricular (LV) dilation, myocyte hypertrophy and contractile dysfunction compared with WT mice at 4 weeks after LAD ligation. Impaired LV function in APN-KO mice was coupled to myocyte hypertrophy, increased apoptotic activity and interstitial fibrosis in the remote zone, and reduced capillary density in the infarct border zone. No difference in infarct size was observed between WT and APN-KO mice. Administration of adenovirus-mediated adiponectin in WT mice resulted in decreased LV dilatation and improved LV function that was associated with increased capillary density in the infarct border zone and decreased myocyte hypertrophy, diminished myocardial apoptosis and decreased interstitial fibrosis in the remote zone. These data suggest that adiponectin protects against the development of systolic dysfunction after myocardial infarction through its abilities to suppress cardiac hypertrophy and interstitial fibrosis, and protect against myocyte and capillary loss.  相似文献   

9.
Nitric oxide (NO) is an important modulator of cardiac performance and left ventricular (LV) remodeling after myocardial infarction (MI). We tested the effect of cardiomyocyte-restricted overexpression of one NO synthase isoform, NOS3, on LV remodeling after MI in mice. LV structure and function before and after permanent LAD coronary artery ligation were compared in transgenic mice with cardiomyocyte-restricted NOS3 overexpression (NOS3-TG) and their wild-type littermates (WT). Before MI, systemic hemodynamic measurements, echocardiographic assessment of LV fractional shortening (FS), heart weight, and myocyte width (as assessed histologically) did not differ in NOS3-TG and WT mice. The inotropic response to graded doses of isoproterenol was significantly reduced in NOS3-TG mice. One week after LAD ligation, the infarcted fraction of the LV did not differ in WT and NOS3-TG mice (34+/-4% versus 36+/-12%, respectively). Four weeks after MI, however, end-systolic LVID was greater, and fractional shortening and maximum and minimum rates of LV pressure development were less in WT than in NOS3-TG mice. LV weight/body weight ratio was greater in WT than in NOS3-TG mice (5.3+/-0.2 versus 4.6+/-0.5 mg/g; P<0.01). Myocyte width in noninfarcted myocardium was greater in WT than in NOS3-TG mice (18.8+/-2.0 versus 16.6+/-1.6 microm; P<0.05), whereas fibrosis in noninfarcted myocardium was similar in both genotypes. Cardiomyocyte-restricted overexpression of NOS3 limits LV dysfunction and remodeling after MI, in part by decreasing myocyte hypertrophy in noninfarcted myocardium.  相似文献   

10.
Taking advantage of the unique model of slowly developing dilated cardiomyopathy in mice with cardiomyocyte-specific transgenic overexpression of activated Gαq protein (Tgαq*44 mice) we analyzed the contribution of the cardiomyocyte malfunction, fibrosis and cytoskeleton remodeling to the development of heart failure in this model. Left ventricular (LV) in vivo function, myocardial fibrosis, cytoskeletal proteins expression and distribution, Ca(2+) handling and contractile function of isolated cardiomyocytes were evaluated at the stages of the early, compensated, and late, decompensated heart failure in 4-, 12- and 14-month-old Tgαq*44 mice, respectively, and compared to age-matched wild-type FVB mice. In the 4-month-old Tgαq*44 mice significant myocardial fibrosis, moderate myocyte hypertrophy and increased expression of regularly arranged and homogenously distributed desmin accompanied by increased phosphorylation of desmin chaperone protein, αB-crystallin, were found. Cardiomyocyte shortening, Ca(2+) handling and LV function were not altered. At 12 and 14 months of age, Tgαq*44 mice displayed progressive deterioration of the LV function. The contractile performance of isolated myocytes was still preserved, and the amplitude of Ca(2+) transients was even increased probably due to impairment of Na(+)/Ca(2+) exchanger function, while fibrosis was more extensive than in younger mice. Moreover, substantial disarrangement of desmin distribution accompanied by decreasing phosphorylation of αB-crystallin appeared. In Tgαq*44 mice disarrangement of desmin, at least partly related to inadequate phosphorylation of αB-crystallin seems to be importantly involved in the progressive deterioration of contractile heart function.  相似文献   

11.
目的 观察热休克蛋白27(Hsp27)心肌特异性高表达对doxorubicin(Dox)诱导的慢性心力衰竭(心衰)小鼠的影响。方法 (1)建立心肌特异性高表达Hsp27的转基因鼠模型;(2)经Dox诱导小鼠的慢性心衰,并观察Hsp27对小鼠生存率、左心室血流动力学的影响。结果 (1)成功建立心肌特异性过表达Hsp27的转基因鼠模型;(2)Hsp27心肌特异性过表达显著改善了Dox诱导的小鼠死亡率(P〈0.01)和左心室血流动力学参数变化(P〈0.05或P〈0.01);(3)Hsp27表达显著抑制了Dox诱导的心肌氧化应激。结论 Hsp27心肌特异性过表达对Dox诱导的小鼠心衰具有显著的抑制作用。  相似文献   

12.
BACKGROUND: Beta-adrenergic signaling is downregulated in the failing heart, and the significance of such change remains unclear. METHODS AND RESULTS: To address the role of beta-adrenergic dysfunction in heart failure (HF), aortic stenosis (AS) was induced in wild-type (WT) and transgenic (TG) mice with cardiac targeted overexpression of beta(2)-adrenergic receptors (ARs), and animals were studied 9 weeks later. The extents of increase in systolic arterial pressure (P<0.01 versus controls), left ventricular (LV) hypertrophy (TG, 94+/-6 to 175+/-7 mg; WT, 110+/-6 to 168+/-10 mg; both P<0.01), and expression of ANP mRNA were similar between TG and WT mice with AS. TG mice had higher incidences of premature death and critical illness due to heart failure (75% versus 23%), pleural effusion (81% versus 45%), and left atrial thrombosis (81% versus 36%, all P<0.05). A more extensive focal fibrosis was found in the hypertrophied LV of TG mice (P<0.05). These findings indicate a more severe LV dysfunction in TG mice. In sham-operated mice, LV dP/dt(max) and heart rate were markedly higher in TG than WT mice (both P<0.01). dP/dt(max) was lower in both AS groups than in sham-operated controls, and this tended to be more pronounced in TG than WT mice (-32+/-5% versus -16+/-6%, P=0.059), although dP/dt(max) remained higher in TG than WT groups (P<0.05). CONCLUSIONS: Elevated cardiac beta-adrenergic activity by beta(2)-AR overexpression leads to functional deterioration after pressure overload.  相似文献   

13.
OBJECTIVE: Familial hypertrophic cardiomyopathy (FHC) due to mutations of cardiac troponin T (cTnT) is associated with a high frequency of sudden death even in the absence of cardiac hypertrophy. To investigate the causal relationship of cTnT mutations and this particular phenotype, we sought to establish a transgenic rat model for the disease. METHODS: Transgenic rats were generated expressing human wild-type cTnT or two truncated cTnT molecules (del ex16, del ex15/16), resulting from an intron 15 splice donor site mutation previously observed in FHC patients. Transgenic rat hearts were characterized by histology, immunohistochemistry and in the 'working heart'. RESULTS: Human wild-type and del ex16 cTnT were stably expressed and incorporated into the sarcomere of transgenic cardiomyocytes. Del ex16 transgenic rats revealed a lower level of expression (4-5%) than human wt cTnT animals (25-40%). In the 'working heart' model del ex16 hearts exhibited significant systolic and diastolic dysfunction without cardiac hypertrophy. In contrast, human wt cTnT hearts showed improved contractile performance and moderate myocardial hypertrophy. After 6 months of daily physical exercise one del ex16 rat died suddenly and three out of five del ex16 hearts revealed ventricular tachycardia/fibrillation. No arrhythmia was observed in human wt cTnT expressors. Myofibrillar disarray was present in del ex16 hearts after training but not in human wild-type cTnT rats or non-transgenic controls. CONCLUSION: A human cTnT deletion overexpressed in transgenic rats exerts a dominant-negative effect and mimics the phenotype of FHC with diastolic dysfunction and arrhythmias. By contrast, human cTnT wild-type animals reveal a gain of function and cardiac hypertrophy without arrhythmias.  相似文献   

14.
Background- To investigate the role of endothelial nitric oxide synthase (NOS3) in left ventricular (LV) remodeling after myocardial infarction (MI), the impact of left anterior descending coronary artery ligation on LV size and function was compared in 2- to 4-month-old wild-type (WT) and NOS3-deficient mice (NOS3(-/-)). Methods and Results- Two days after MI, both strains of mice had a similar LV size, fractional shortening, and ejection fraction by echocardiography. Twenty-eight days after MI, both strains had dilated LVs with decreased fractional shortening and lower ejection fractions. Although the infarcted fraction of the LV was similar in both strains, LV end-diastolic internal diameter, end-diastolic volume, and mass were greater, but fractional shortening, ejection fraction, and the maximum rate of developed LV pressure (dP/dt(max)) were lower in NOS3(-/-) than in WT mice. Impairment of diastolic function, as measured by the time constant of isovolumic relaxation (tau) and the maximum rate of LV pressure decay (dP/dt(min)), was more marked in NOS3(-/-) than in WT mice. Mortality after MI was greater in NOS3(-/-) than in WT mice. Long-term administration of hydralazine normalized blood pressure in NOS3(-/-) mice, but it did not prevent the LV dilatation, impaired systolic and diastolic function, and increased LV mass that followed MI. In WT mice, capillary density and myocyte width in the nonischemic portion of the LV did not differ before and 28 days after MI, whereas in NOS3(-/-) mice, capillary density decreased and myocyte width increased after MI, whether or not hydralazine was administered. Conclusions- These results suggest that the presence of NOS3 limits LV dysfunction and remodeling in a murine model of MI by an afterload-independent mechanism, in part by decreasing myocyte hypertrophy in the remote myocardium.  相似文献   

15.
Cultured neonatal rat cardiac myocytes have been used extensively to study cellular and molecular mechanisms of cardiac hypertrophy. However, there are only a few studies in cultured mouse myocytes despite the increasing use of genetically engineered mouse models of cardiac hypertrophy. Therefore, we characterized hypertrophic responses in low-density, serum-free cultures of neonatal mouse cardiac myocytes and compared them with rat myocytes. In mouse myocyte cultures, triiodothyronine (T3), norepinephrine (NE) through a beta-adrenergic receptor, and leukemia inhibitory factor induced hypertrophy by a 20% to 30% increase in [(3)H]phenylalanine-labeled protein content. T3 and NE also increased alpha-myosin heavy chain (MyHC) mRNA and reduced beta-MyHC. In contrast, hypertrophic stimuli in rat myocytes, including alpha(1)-adrenergic agonists, endothelin-1, prostaglandin F(2alpha), interleukin 1beta, and phorbol 12-myristate 13-acetate (PMA), had no effect on mouse myocyte protein content. In further contrast with the rat, none of these agents increased atrial natriuretic factor or beta-MyHC mRNAs. Acute PMA signaling was intact by extracellular signal-regulated kinase (ERK1/2) and immediate-early gene (fos/jun) activation. Remarkably, mouse but not rat myocytes had hypertrophy in the absence of added growth factors, with increases in cell area, protein content, and the mRNAs for atrial natriuretic factor and beta-MyHC. We conclude that mouse myocytes have a unique autonomous hypertrophy. On this background, T3, NE, and leukemia inhibitory factor activate hypertrophy with different mRNA phenotypes, but certain Gq- and protein kinase C-coupled agonists do not.  相似文献   

16.
Unknown molecular responses to sarcomere protein gene mutations account for pathologic remodeling in hypertrophic cardiomyopathy (HCM), producing myocyte growth and increased cardiac fibrosis. To determine if hypertrophic signals activated myocyte enhancer factor-2 (Mef2), we studied mice carrying the HCM mutation, myosin heavy-chain Arg403Gln, (MHC(403/+)) and an Mef2-dependent β-galactosidase reporter transgene. In young, prehypertrophic MHC(403/+) mice the reporter was not activated. In hypertrophic hearts, activation of the Mef2-dependent reporter was remarkably heterogeneous and was observed consistently in myocytes that bordered fibrotic foci with necrotic cells, MHC(403/+) myocytes with Mef2-dependent reporter activation reexpressed the fetal myosin isoform (βMHC), a molecular marker of hypertrophy, although MHC(403/+) myocytes with or without βMHC expression were comparably enlarged over WT myocytes. To consider Mef2 roles in severe HCM, we studied homozygous MHC(403/403) mice, which have accelerated remodeling, widespread myocyte necrosis, and neonatal lethality. Levels of phosphorylated class II histone deacetylases that activate Mef2 were substantially increased in MHC(403/403) hearts, but Mef2-dependent reporter activation was patchy. Sequential analyses showed myocytes increased Mef2-dependent reporter activity before death. Our data dissociate myocyte hypertrophy, a consistent response in HCM, from heterogeneous Mef2 activation and reexpression of a fetal gene program. The temporal and spatial relationship of Mef2-dependent gene activation with myocyte necrosis and fibrosis in MHC(403/+) and MHC(403/403) hearts defines Mef2 activation as a molecular signature of stressed HCM myocytes that are poised to die.  相似文献   

17.
We examined pressure overload left ventricular (LV) hypertrophy (H) induced by aortic banding in transgenic mice with cardiac-specific expression of a dominant negative (DN) p38alpha (TG) and wild type controls (WT). In response to chronic pressure overload, induced by aortic constriction, LV/BW increased more, p<0.05, in female TG (6.4+/-0.2, n=7) than in WT female (5.1+/-0.2, n=10), or male TG or WT (5.0+/-0.2, n=10 vs. 5.5+/-0.2, n=8). Lung/BW, an index of LV decompensation, was significantly higher, p<0.05, in banded female TG (14+/-1.2 mg/g) than in WT females (9.0+/-0.8), or male TG or WT (8.2+/-0.7 vs. 9.3+/-1.3). This was associated with higher premature mortality, p<0.05, in banded female TG mice (42%) compared with banded WT females (10%), TG males (13%), or WT males (17%). In male, but not female, TG mice, the number of TUNEL-positive cells was smaller, p<0.05, compared with WT. Phospho-Akt kinase activity increased (p<0.05) in female TG after banding, but not in males. After ovariectomy, chronic pressure overload no longer induced greater mortality, greater LVH, or p-Akt levels in female TG mice, and like male TG mice, apoptosis was protected. DN-p38alpha enhanced estrogen-induced activation of Akt in cultured cardiac myocytes. Thus, inhibition of p38alpha MAPK paradoxically augments LVH resulting in cardiac decompensation and increased mortality in response to pressure overload more in female mice than male mice, which could be due to increased Akt activation and/or through cross-talk between p38alpha MAPK and Akt.  相似文献   

18.
Perindopril reverses myocyte remodeling in the hypertensive heart.   总被引:4,自引:0,他引:4  
Studies have shown that the renin-angiotensin system (RAS) plays an important role in cardiac remodeling induced by hypertension. However, the role of this system on myocyte remodeling remains unclear. In the present study, we have assessed the effect of perindopril, an angiotensin converting enzyme (ACE) inhibitor, in spontaneously hypertensive rats (SHRs) as a means to evaluate the role of RAS in myocyte remodeling. We also investigated the effect of beta blockade on myocyte remodeling. We used female SHRs at 12 weeks of age. They were divided into four experimental groups: a control group, group C; low dose perindopril group (0.3 mg/kg/day, p.o.), group PL; high dose perindopril group (3 mg/kg/day, p.o.), group PH; and bisoprolol group (60 mg/kg/day, p.o.), group B. We isolated myocytes from these rats after 4 weeks. LV myocyte volume and cross-sectional area decreased in groups PL and PH compared to group C. LV myocyte length decreased in group PH compared to group C. However, there was no morphological change in LV myocytes in group B compared to group C. In summary, ACE inhibitors reversed cardiac hypertrophy mainly by a reduction in LV myocyte volume; however, beta blockade did not reverse myocyte remodeling. These results suggest that RAS plays an important role in myocyte remodeling in the hypertensive heart.  相似文献   

19.
Sex differences in cardiomyopathic phenotype and the role of gonadal status were studied in mice with cardiac overexpression of beta(2)-adrenergic receptors (ARs) over 6-15 months (mo) of age. Survival to 15 mo was 96% in wild-type mice but was poorer in transgenic (TG) mice and lower for males than females (13% vs. 56%, P < 0.001). Echocardiography demonstrated progressive left ventricular (LV) dilatation and reduction in LV fractional shortening in male but much less marked changes in female TG mice. Incidences of atrial thrombosis, pleural effusion and lung congestion were higher and myocyte size and fibrosis in the LV were greater in TG males than females. Deprivation of testicular hormones by castration during 3-15 mo of age improved survival and significantly ameliorated LV dysfunction, remodeling, and hypertrophy compared with intact TG males. No significant effect, except for a trend of a better survival, was detected by ovariectomy in TG females. In conclusion, cardiac beta(2)-AR overexpression at a high level leads to cardiomyopathy and heart failure with aging. Female mice had less cardiac remodeling, dysfunction, and pathology and a marked survival advantage over male mice, and this was independent of prevailing levels of ovarian hormones. TG males showed benefit from orchiectomy, suggesting a contribution by testicular hormones to the progression of the cardiomyopathic phenotype.  相似文献   

20.
Background Inhibition of proteolytic MMP activity could be a therapeutic approach to prevent ventricular dilatation by diminishing collagen matrix turnover and interstitial fibrosis. We investigated the time-course of MMP/TIMP activity during transition from hypertrophy to ventricular dilatation in transgenic mice with myocyte overexpression of the human β1-adrenergic receptor (β1TG). These β1TG mice were studied at 3 (normal function), 5 (hypertrophy) and 12 (ventricular dilatation) months of age compared to age-matched controls (WT). Methods Picro Sirius red staining and real-time PCR were performed for total collagen and for collagen type I and III quantification, respectively. MMP-activity assays (zymography), immunoblotting and real-time PCR experiments were done for gelatinase- (MMP-2, -9), collagenase- (MMP-1, -13), membrane-type MMP- (MT1- MMP; MMP-14) and TIMP expression measurements. To investigate β1-integrin activity, integrin-linked kinase (ILK) expression was measured by immunoblotting. Results Compared to WT with normal cardiac function, interstitial collagen type I and III mRNA and protein expression increased 3.6-fold in β1TG at 5 months of age with moderate fibrosis and cardiomyocyte hypertrophy and 17-fold in β1TG at 12 months of age with severe fibrosis and ventricular dilatation. Protein expression of the collagenases MMP-1 and -13 as well as the gelatinase proMMP-2 increased in the β1TG group with cardiac hypertrophy. Maximal activity of the gelatinase MMP-2 (3.5-fold vs.WT) was measured in β1TG at 12 months of age with severe fibrosis and ventricular dilatation, accompanied by coexpression of MT1- MMP (3.8-fold vs.WT) colocalized to the cell membranes. Conclusion These data provide evidence that sympathetic overactivation can trigger interstitial matrix remodeling and fibrosis by induction of MMP/TIMP activity. In particular gelatinolytic MMP-2 activity accompanies ventricular dilatation and the development of heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号