首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BACKGROUND: The immature disc nucleus pulposus is composed of notochordal cells, but there is no notochordal cell in the mature human intervertebral disc, in which the notochordal cells are replaced by chondrocyte-like cells. It is very important to comprehend the disappearance of the notochordal cells; however, it is still unknown at present. OBJECTIVE: To elaborate the feasibility of notochordal cells to maintain the proliferation and phenotype of chondrocyte-like cells and to induce the cartilage-like differentiation of bone marrow mesenchymal stem cells. METHODS: The first author used the computer to retrieve PubMed and Wanfang databases using the key words of “notochord cells; nucleus pulposus cells; identify” in English and Chinese, respectively. Totally 9 896 relevant articles published from January 1999 to August 2015 were retrieved. Repetitive studies were excluded, and finally 36 articles were in accordance with the inclusion criteria. RESULTS AND CONCLUSION: Now, the main functions of notochordal cells are to promote synthesis of extracellular matrix in the nucleus pulposus, induce directional differentiation of mesenchymal cells into nucleus pulposus cells or act as “seed cells” to form the nucleus pulposus cells. The presence and disappearance of notochordal cells is related to intervertebral disc degeneration. Cell apoptosis is involved in static compression via death receptor signals, and then leads to intervertebral disc degeneration. fas ligand can mediate the reduction of notochordal cells, and hypoxia-inducible factor can induce spinal cord injury thereby triggering cell death and complete disappearance of nucleus pulposus. The measurement and verification of immune makers of notochordal cells, CK-8, CK-18 and galectin-3, can benefit to the identification and isolation of notochordal cells, and thereby help the studies on cell growth and differentiation, function and its mechanism of apoptosis.    相似文献   

2.
Immunofluorescence and immunohistochemical techniques were used to define the distribution of cytoskeletal (cytokeratin 8, vimentin) and extracellular matrix components (collagen type I, collagen type II, hyaluronic acid, and aggrecan) and bone morphogenetic proteins 4 and 7 (BMP4 and BMP7) in the notochord of the lesser spotted dogfish Scyliorhinus canicula L. Immunolocalization of hyaluronic acid was observed in the notochord, vertebral centrum, and neural and hemal arches, while positive labeling to aggrecan was observed in the ossified centrum, notochord, and the perichondrium of the hyaline cartilage. Type I collagen was observed in the mineralized cartilage of the vertebral bodies, the notochord, the fibrocartilage of intervertebral disc, and the perichondrium. A positive labeling to type II collagen was observed in the inner part of the cartilaginous vertebral centrum and the notochord, as well as in the neural arch and muscle tissue, but there was no appreciable labeling of the hyaline cartilage. The presence of both BMP4 and BMP7 was seen in the mineralized vertebral centrum, notochordal cells, and neural arch. The notochordal cells expressed both cytokeratin 8 and vimentin, but predominantly vimentin. Hyaluronic acid, collagen type I, and collagen type II expression confirmed the presence of a mixture of notochordal and fibrocartilaginous tissue in the intervertebral disc, while BMPs confirmed the presence of an ossification in the cartilaginous skeleton of the spotted dogfish. Anat Rec, 298:1700–1709, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
This study of thirteen cases of chordoma serves to emphasize the occurrence of three different histological patterns; classical, seven; chondroid, three; and intermediate or mesenchymal, three. The study also suggests that more adequate sampling of these tumours detects the chondroid variant more readily. These varying patterns of differentiation in tumours of notochordal origin suggest that the parent tissue may have the potential to develop along similar lines in the embryo. Thus mesenchymal and cartilaginous tissue formed from notochordal cells could contribute to the formation of the nucleus pulposus and inner portion of the intervertebral disc cartilages. This concept contrasts with the previously held view that the notochord atrophies at an early stage in embryonic development.  相似文献   

4.
目的:研究颈椎间盘自然老化及退变过程中髓核软骨样细胞的来源和脊索性髓核向纤维软骨性髓核转化的规律及其与颈椎间盘退变的关系。方法:4周龄SD大鼠76只,随机分成两组。实验组40只大鼠通过截除前肢制备双后肢大鼠颈椎间盘退变的动物模型,按术后3、6、9、12个月4个时间段分组,每组10只;对照组36只大鼠未予处置,按实验开始后4、8、12、16个月分4组,每组9只。制备C4-5,C5-6和C6-7椎间盘中矢状面组织学切片,行HE、番红-O染色,研究观察不同老化及退变程度颈椎间盘髓核中软骨样细胞的起源和脊索性髓核向纤维软骨性髓核转化的规律。结果:随着颈椎间盘的不断老化,终板的软骨细胞向髓核迁移,脊索性髓核向心性皱缩并最终完全被纤维软骨性髓核取代,在此过程中,软骨终板的厚度逐渐变薄,进而出现缺损或断裂;在颈椎间盘退变的过程中,这一转化完成的更快、更早。结论:髓核中的软骨样细胞由终板的软骨细胞迁移而来,通过向心性的产生和沉积胶原纤维,脊索性髓核逐渐被纤维软骨性髓核替代,这一过程既是颈椎间盘成熟和老化的自然环节也可能是颈椎间盘退变的启动环节。  相似文献   

5.
Intervertebral disc cell-mediated mesenchymal stem cell differentiation   总被引:18,自引:0,他引:18  
Low back pain is one of the largest health problems in the Western world today, and intervertebral disc degeneration has been identified as a main cause. Currently, treatments are symptomatic, but cell-based tissue engineering methods are realistic alternatives for tissue regeneration. However, the major problem for these strategies is the generation of a suitable population of cells. Adult bone marrow-derived mesenchymal stem cells (MSCs) are undifferentiated, multipotent cells that have the ability to differentiate into a number of cell types, including the chondrocyte-like cells found within the nucleus pulposus (NP) of the intervertebral disc; however, no method exists to differentiate these cells in an accessible monolayer environment. We have conducted coculture experiments to determine whether cells from the human NP can initiate the differentiation of human MSCs with or without cell-cell contact. Fluorescent labeling of the stem cell population and high-speed cell sorting after coculture with cell-cell contact allowed examination of individual cell populations. Real-time quantitative polymerase chain reaction showed significant increases in NP marker genes in stem cells when cells were cocultured with contact for 7 days, and this change was regulated by cell ratio. No significant change in NP marker gene expression in either NP cells or stem cells was observed when cells were cultured without contact, regardless of cell ratio. Thus, we have shown that human NP and MSC coculture with contact is a viable method for generating a large population of differentiated cells that could be used in cell-based tissue engineering therapies for regeneration of the degenerate intervertebral disc.  相似文献   

6.
An understanding of developmental biology can provide useful insights into how different tissue-engineered repairs might be designed. During embryogenesis of the intervertebral disk, the cells of the notochord play a critical role in initiating tissue formation, and may be responsible for development of the nucleus pulposus. In some species, including humans, these notochordal cells may eventually be lost, either through apoptosis or terminal differentiation, and are replaced by chondrocyte-like cells. However, there is some evidence that the notochordal cells may persist in at least some humans. This review discusses some of the potential applications of notochordal cells in tissue engineering of the nucleus pulposus.  相似文献   

7.
8.
The nuclei pulposi of the intervertebral discs (IVDs) contain a mixed population of cell types at various stages of maturation. This tissue is formed either by or with the help of cells from the embryonic notochord, which appear to be replaced during development by a population of chondrocyte-like cells of uncertain origin. However, this transition occurs at widely varying times, depending upon the species--or even breed--of the animal being examined. There is considerable debate among spine researchers as to whether the presence of these residual notochordal cells has a significant impact upon IVD degeneration models, and thus which models may best represent the human condition. The present study examines several different species commonly used in lumbar spine investigations to explore the variability of notochordal cells in the IVD.  相似文献   

9.
The intervertebral disc (IVD) is a moderately moving joint that is located between the bony vertebrae and provides flexibility and load transmission throughout the spinal column. The disc is composed of different but interrelated tissues, including the central highly hydrated nucleus pulposus (NP), the surrounding elastic and fibrous annulus fibrosus (AF), and the cartilaginous endplate (CEP), which provides the connection to the vertebral bodies. Each of these tissues has a different function and consists of a specific matrix structure that is maintained by a cell population with distinct phenotype. Although the healthy IVD is able to balance the slow matrix turnover of synthesis and degradation, this balance is often disturbed, leading to degenerative disorders. Successful therapeutic management of IVD degeneration requires a profound understanding of the cellular and molecular characteristics of the functional IVD. Hence, the phenotype of IVD cells has been of significant interest from multiple perspectives, including development, growth, remodelling, degeneration and repair. One major challenge that complicates our understanding of the disc cells is that both the cellular phenotype and the extracellular matrix strongly depend on disc maturity and health and as a consequence are continuously evolving. This review delineates the diversity of the cell types found in the intervertebral disc, with emphasis on human, but with reference to other species. The cells of the NP appear rounded and express a proteoglycan-rich matrix, whereas the more elongated AF cells are embedded in a collagen fibre matrix and the CEPs represent a layer of cartilage. Even though all disc cells have often been referred to as ‘intervertebral disc chondrocytes’, distinct phenotypical differences in comparison with articular chondrocytes exist and have been reported recently. The availability of more specific markers has also improved our understanding of progenitor cell differentiation towards an IVD cell phenotype. Ultimately, new cell- and tissue-engineering approaches to regenerative therapies will only be successful if the specific characteristics of the individual tissues and their context in the function of the whole organ, are taken into consideration.  相似文献   

10.
Type II collagen can be synthesized in two forms generated by alternative splicing of the precursor mRNA. Type IIA procollagen, which contains a cysteine-rich domain in the NH(2)-propeptide (exon 2), is produced by precartilage and noncartilage epithelial and mesenchymal cells, and type IIB procollagen, without the cysteine-rich domain, is characteristic of chondrocytes. Mice lacking type II collagen fail to develop intervertebral discs. We have previously shown that the human intervertebral disc and notochord synthesize primarily the type IIA form of procollagen. Therefore, we investigated the distribution of type IIA procollagen during early disc development in humans. By processes of radioactive in situ hybridization and fluorescence immunohistochemistry, we localized mRNA and protein of type IIA procollagen, type I collagen, and type III collagen in fetal intervertebral disc specimens ranging from day 42 (embryonic stage 17) to day 101 (week 14.5) of gestation. Antibodies to the three distinct domains of type IIA procollagen: the NH(2)-propeptide, the fibrillar domain, and the COOH-propeptide were used. The earliest stage of developing intervertebral disc (42 days, stage 17) was characterized by diffuse synthesis of types I and III collagens in the dense zone (intervertebral area) and synthesis of type IIA procollagen by the chondrocyte progenitor cells surrounding the disc. The notochord cells synthesized and deposited into the notochordal sheath all three fibrillar collagens. By 54 days (stage 22), the developing disc was clearly divided into three regions: 1.) the outer annulus, characterized by synthesis and deposition of types I and III collagens; 2.) the inner annulus, characterized by synthesis and deposition of type IIA collagen containing the NH(2)-propeptide but devoid of the COOH-propeptide (pN-procollagen); and 3.) the notochord, the cells of which synthesized and deposited of all three fibrillar collagens. In later stages of fetal development (72-101 days), a change in type IIA procollagen processing was observed in the cells of the inner annulus: even though these cells continued to synthesize type IIA procollagen, they deposited into the extracellular matrix (ECM) only the processed fibrillar domain, with the NH(2)-propeptide removed. This finding indicates that there is a developmentally regulated change in the processing of type IIA procollagen NH(2)-propeptide in the cells of the inner annulus. This mechanism is in contrast to previously shown developmental regulation of the cysteine-rich domain of the NH(2)-propeptide by alternative splicing of the precursor mRNA. Although the cells of the inner annulus have been identified as chondrocytes, based on their shape and synthesis of characteristic ECM components, they appear to represent a distinct developmental pathway characterized by their synthesis and differential processing of type IIA procollagen. This developmental pattern may prove important for disc regeneration.  相似文献   

11.
The degenerative pathologies of the intervertebral disc have a remarkable social impact in the industrialized countries and can provide serious disabilities in the population. The current treatment consists of conservative treatments (such as symptomatic pharmacological therapies and physiokinetic therapy) and surgical treatments (intervertebral fusion, total disc replacement, nucleus pulposus (NP) replacement, or surgical exeresis). Recent advances in cell therapy foresee the possibility of regenerating the damaged disc; the autologous disc tissue can be withdrawn, in vitro regenerated, and re-implanted. The aim of this work was to verify whether autologous adipose-derived adult stem cells can improve the quality of an in vitro reconstructed nucleus pulposus tissue. A three-dimensional (3D) co-culture of NP cells and adipose tissue non-adipocyte fraction cells (nAFs) was assessed in a previously developed alginate 3D culture system following the good manufacturing practice guidelines to ensure patient safety for clinical studies. Morphological investigation of cultured and co-cultured cells was performed using transmission electron microscopy and immunofluorescence for collagen type I, aggrecan, CD90, CD34, and vimentin. Results indicate that co-culture of NP and nAFs improves the quality of the in vitro reconstructed tissue in term of extracellular matrix production and 3D cell organization. Technological resources are available for NP cell encapsulation intended for regenerating the intervertebral disc.  相似文献   

12.
Lumbar disc herniation is a common disease characterized by the degeneration of intervertebral discs (IVDs), accompanied by imbalance of metabolic and inflammatory homeostasis. Current studies establish that IVD degeneration is induced by increased apoptosis of nucleus pulposus (NP) cells. However, the underlying mechanisms of NP cell survival/apoptosis are not well elucidated. Here, we reveal a novel mechanism by which mTORC1 signaling controls NP cell survival through regulating metabolic homeostasis. We demonstrated that hyperactivated mTORC1 activity induced by inflammatory cytokines engenders the apoptosis of NP cells, whereas pharmacological inhibition of mTORC1 activity promotes NP cell survival. Using an integrative approach spanning metabolomics and biochemical approaches, we showed that mTORC1 activation enhanced glucose metabolism and lactic acid production, and therefore caused NP cell apoptosis. Our study identified mTORC1 in NP cells as a novel target for IVD degeneration, and provided potential strategies for clinical intervention of lumbar disc herniation.  相似文献   

13.
Summary The cells of individual somites in 2-day-old chick embryos were marked by injecting a fluorescent dye into the somitocoele. This procedure permanently marked the cells and allowed their subsequent development and distribution to be followed. The cells were found to remain in close association with each other within limited boundaries and did not mix to any great extent with similar cells from adjacent somites. Fluorescent cells from single somites were found in the intervertebral disc, connective tissue surrounding two adjacent neural arches, all the tissues between the neural arches, the dermatome, and the associated myotome. No fluorescent cells were found in the notochord or in any nervous tissue apart from accompanying connective tissue. Surprisingly, the vertebral bodies and neural arches did not contain any fluorescent cells apart from those in the connective tissue surrounding them, but this absence of fluorescent cells was thought to be due to the dilution of the fluorescence following cell proliferation. These results provide further experimental support for the theory of resegmentation in vertebral formation, and also provide evidence of a compartmental method of development along the rostrocaudal axis in vertebrates, similar to that already discovered in insects. On the basis of cell lineage criteria, the sclerotome might be considered as a developmental compartment.  相似文献   

14.
The goal of this mini‐review is to address the long standing argument that the pathogenesis of disc disease is due to the loss and/or the replacement of the notochordal cells by other cell types. We contend that, although cells of different size and morphology exist, there is no strong evidence to support the view that the nucleus pulposus contains cells of distinct lineages. Based on lineage mapping studies and studies of other notochordal markers, we hypothesize that in all animals, including human, nucleus pulposus retains notochordal cells throughout life. Moreover, all cells including chondrocyte‐like cells are derived from notochordal precursors, and variations in morphology and size are representative of different stages of maturation, and or, function. Thus, the most critical choice for a suitable animal model should relate more to the anatomical and mechanical characteristics of the motion segment than concerns of cell loss and replacement by non‐notochordal cells. Developmental Dynamics 239:2141–2148, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Intervertebral disc (IVD) disorders are believed to be related to aging-related cell loss and phenotypic changes, as well as biochemical and structural changes in the extracellular matrix of the nucleus pulposus (NP) region. Previously, we found that the laminin γ1 chain was more highly expressed in immature NP porcine tissues, in parallel with the expression pattern for a laminin receptor, integrin α6 subunit, as compared to adjacent anulus fibrosus region. This result suggests that cell-matrix interactions may be unique to the immature NP. However, the identity of laminin isoforms specific to immature or mature NP tissues, their associated receptors, and functional significance are still poorly understood. In this study, we evaluated the zonal-specific expression of the laminin chains, receptors (i.e., integrins), and other binding proteins in immature tissue and isolated cells of rat, porcine and human intervertebral disc. Our goal was to reveal features of cellular environment and cell-matrix interactions in the immature NP. Results from both immunohistochemical staining and flow cytometry analysis found that NP cells expressed higher levels of the laminin α5 chain, laminin receptors (integrin α3, α6, β4 subunit, and CD239), and related binding proteins (CD151), as compared to cells from adjacent anulus fibrosus. These differences suggest that laminin interactions with NP cells are distinct from that of the anulus fibrosus and that laminins may be important contributors to region-specific IVD biology. The revealed laminin isoforms, their receptors, and related binding proteins may be used as distinguishing features of these immature NP cells in the intervertebral disc.  相似文献   

16.
Nucleus pulposus (NP) is responsible for maintaining function and structure of the disc. Scaffolds to culture disc cells three-dimensionally are emphasized in recent reports on development of a new method for treating disc degeneration using cell transplantation and tissue engineering. Among artificial scaffolds and cell carrying materials, Atelocollagen is a collagen gel that has an advantage in safety issues over others. However, to date there has been no study that investigated culture of human nucleus pulposus cells in Atelocollagen. To investigate whether Atelocollagen could be used as a culture scaffold and if it has any effect on cell proliferation and proteoglycan (PG) production, as well as to find the optimal commercially available Atelocollagen for NP cell transplantation and tissue engineering, we cultured human NP cell line HNPSV-1, in three different Atelocollagen and compared with alginate. Furthermore, NP-like tissues were generated using these cells and different Atellocollagen solutions. Results showed that both DNA synthesis and content is significantly greater when cultured in Atelocollagen than in alginate. On the other hand, proteoglycan synthesis and accumulation was significantly greater in alginate compared with the 0.3% Atelocollagen scaffolds; with 3% Atelocollagen, however, results were similar. NP-like tissue generated by Atelocollagen showed good water and proteoglycan preservation. The current study demonstrates that the use of Atelocollagen as an in vitro culture scaffold for three-dimensional culture of human NP cell lines is indeed feasible and moreover, Atelocollagen possesses the potential to become a candidate scaffold for cell transplantation or tissue engineering for the treatment of intervertebral disc degeneration.  相似文献   

17.
This study shows that segmental expression of alkaline phosphatase (ALP) activity by the notochord of the Atlantic salmon (Salmo salar L.) coincides with the initial mineralization of the vertebral body (chordacentrum), and precedes ALP expression by presumed somite-derived cells external to the notochordal sheath. The early expression of ALP indicates that the notochord plays an instructive role in the segmental patterning of the vertebral column. The chordacentra form segmentally as mineralized rings within the notochordal sheath, and ALP activity spreads within the chordoblast layer from ventral to dorsal, displaying the same progression and spatial distribution as the mineralization process. No ALP activity was observed in sclerotomal mesenchyme surrounding the notochordal sheath during initial formation of the chordacentra. Our results support previous findings indicating that the chordoblasts initiate a segmental differentiation of the notochordal sheath into chordacentra and intervertebral regions.  相似文献   

18.
19.
20.
背景:目前国内外对于椎间盘退变的造模方法较多,但存在定位不精准问题.目的:对比X射线引导下与非X射线引导下建立大鼠椎间盘退变模型的效果.方法:取9只成年SD大鼠,按照随机数字表法分3组,每组3只,空白组不进行任何操作;对照组手动定位尾椎Co6/7椎间盘,用注射器针头进行垂直穿刺,并均匀缓慢注入无水乙醇,建立椎间盘退变模...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号