首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
ABSTRACT

Objective: Animal models of chronic pain have demonstrated that glial cells are promising target for development of analgesic drugs. However, preclinical studies on glial response under chronic pain conditions vary depending on the cellular markers, the species used, the experimental design and model. Therefore, we investigate the expression profile of GFAP and Iba-1 during the behavioral manifestation of sensory disorder in inflammatory and neuropathic pain models.

Methods: the expression profile of fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule-1 (Iba-1) were quantitated in the spinal dorsal horn of Balb/C mice submitted to six models of chronic pain. Protein analysis was performed by western blot and the results colligated with pain-related behavior.

Results: Using the same method to quantitate proteins we observed that while GFAP is upregulated after axotomy, partial nerve injury and cutaneous inflammation, its expression is not changed during muscle inflammation, non-inflammatory muscle pain, and in a viral-associated pain. Differently, Iba-1 is downregulated after axotomy but upregulated after partial lesion of peripheral nerve as well as after virus inoculation and during non-inflammatory muscle pain. Cutaneous and muscle inflammation induced no change in Iba-1 expression in the dorsal horn.In spite of a marked time-dependent variation in protein expression, mechanical allodynia was present at any time of all the models investigated.

Discussion: Under distinct pain conditions, GFAP and Iba-1 expression is dependent on the origin of the stimulus, disease progression and tissue affected. Moreover, their expression and is not necessarily associated to the behavior manifestation of pain.  相似文献   

2.
The mechanism underlying the early invasion of the central nervous system by HIV-1 is unclear. Here, we summarize old and new findings supporting blood-brain barrier changes during HIV and experimental simian immunodeficiency virus (SIV) infection. The effect of inflammatory and toxic molecules secreted by monocytes and microglia on the functional integrity of tight junctions of brain endothelium is highlighted. Furthermore, recent findings on a possible direct role of the envelope and regulatory HIV-1 proteins (gp120, Tat, Nef) in causing the blood-brain barrier changes are reviewed. The possibility that these proteins, as circulating molecules, may bind to microvessel endothelial cells and cause blood-brain changes with no direct participation of the virus is raised. Several issues deserve further investigation and answers to these questions may provide keys for new therapeutic strategies in HIV-1 infection of the central nervous system.  相似文献   

3.
We attempted to characterize a spinal neuronal correlate of painful neuropathy induced by diabetes mellitus (DM). Pain behavior and response properties of spinal dorsal horn neurons were determined in rats with a streptozocin-induced DM. A catechol-O-methyltransferase inhibitor with potent antioxidant properties, nitecapone, was used in an attempt to attenuate neuropathic symptoms. Behaviorally DM induced mechanical hypersensitivity that was markedly attenuated by oral treatment with nitecapone. The antihyperalgesic effect of nitecapone was not reversed by naloxone, an opioid antagonist, or atipamezole, an alpha-2-adrenoceptor antagonist. Electrophysiological recordings performed in pentobarbitone-anesthetized animals revealed that the most distinct abnormality in response properties of spinal dorsal horn wide-dynamic range (WDR) neurons was the increase in their spontaneous activity observed in untreated but not in nitecapone-treated DM rats. Conditioning electrical stimulation and a lidocaine block of the rostroventromedial medulla (RVM) had a similar modulatory effect on evoked responses of spinal dorsal horn WDR neurons in all experimental groups. The response properties of spinal dorsal horn nociceptive-specific or low-threshold mechanoreceptive neurons were not markedly different between the experimental groups. The results indicate that increased spontaneous activity in spinal dorsal horn WDR neurons may be causally related to behaviorally observed mechanical hypersensitivity in DM. Attenuation of the increased spontaneous activity in WDR neurons may explain the antihyperalgesic effect by nitecapone, due to naloxone- and alpha-2-adrenoceptor-insensitive mechanisms. DM or nitecapone treatment did not produce significant changes in phasic or tonic descending pain regulation originating in the RVM.  相似文献   

4.
Human immunodeficiency virus (HIV)-1 infection of the central nervous system occurs in the vast majority of HIV-infected patients. HIV-associated dementia (HAD) represents the most severe form of HIV-related neuropsychiatric impairment and is associated with neuropathology involving HIV proteins and activation of proinflammatory cytokine circuits. Interferon-gamma (IFN-gamma) activates the JAK/STAT1 pathway, a key regulator of inflammatory and apoptotic signaling, and is elevated in HIV-1-infected brains progressing to HAD. Recent reports suggest green tea-derived (-)-epigallocatechin-3-gallate (EGCG) can attenuate neuronal damage mediated by this pathway in conditions such as brain ischemia. In order to investigate the therapeutic potential of EGCG to mitigate the neuronal damage characteristic of HAD, IFN-gamma was evaluated for its ability to enhance well-known neurotoxic properties of HIV-1 proteins gp120 and Tat in primary neurons and mice. Indeed, IFN-gamma enhanced the neurotoxicity of gp120 and Tat via increased JAK/STAT signaling. Additionally, primary neurons pretreated with a JAK1 inhibitor, or those derived from STAT1-deficient mice, were largely resistant to the IFN-gamma-enhanced neurotoxicity of gp120 and Tat. Moreover, EGCG treatment of primary neurons from normal mice reduced IFN-gamma-enhanced neurotoxicity of gp120 and Tat by inhibiting JAK/STAT1 pathway activation. EGCG was also found to mitigate the neurotoxic properties of HIV-1 proteins in the presence of IFN-gamma in vivo. Taken together, these data suggest EGCG attenuates the neurotoxicity of IFN-gamma augmented neuronal damage from HIV-1 proteins gp120 and Tat both in vitro and in vivo. Thus EGCG may represent a novel natural copound for the prevention and treatment of HAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号