首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When rat hearts were perfused with a medium containing 10 microM fura-2/AM for 1 hr at 37 degrees C a significant amount of the derived fura-2 could be detected in subsequently isolated mitochondria. This procedure allowed the measurement of matrix free Ca2+ concentration ([Ca2+]m) of mitochondria rapidly isolated from whole hearts by a method which avoids artefactual redistribution of Ca2+. [Ca2+]m in mitochondria prepared from control hearts and incubated with respiratory substrates and EGTA was found to be 172 +/- 23 nM (mean +/- S.E.M.). When hearts were subjected to either increased mechanical work or treatment with 1 microM L-epinephrine (for 2 mins) [Ca2+]m increased to 916 +/- 138 nM and 727 +/- 65 nM respectively. The presence of ruthenium red (2.5 microM) in the perfusion medium prior to and during inotropic intervention diminished these increases in [Ca2+]m(to 316 +/- 28 nM and 218 +/- 18 nM respectively) but did not affect control values. Addition of Na+ ions to incubated mitochondria to enhance mitochondrial Ca2+ egress diminished these increases in [Ca2+]m due to pre-treatment with positive inotropes (compared to controls). These changes in [Ca2+]m were broadly parallelled by changes in the active non-phosphorylated form of pyruvate dehydrogenase (PDH) under all circumstances. These results provide further evidence that the activation of PDH by positive inotropes is accomplished by, and at least in part due to, raised mitochondrial matrix free [Ca2+] and that such increases can be maintained in isolated and suitably incubated mitochondria.  相似文献   

2.
Mitochondrial Ca2+ ([Ca2+]m) regulates oxidative phosphorylation and thus contributes to energy supply and demand matching in cardiac myocytes. Mitochondria take up Ca2+ via the Ca2+ uniporter (MCU) and extrude it through the mitochondrial Na+/Ca2+ exchanger (mNCE). It is controversial whether mitochondria take up Ca2+ rapidly, on a beat-to-beat basis, or slowly, by temporally integrating cytosolic Ca2+ ([Ca2+]c) transients. Furthermore, although mitochondrial Ca2+ efflux is governed by mNCE, it is unknown whether elevated intracellular Na+ ([Na+]i) affects mitochondrial Ca2+ uptake and bioenergetics. To monitor [Ca2+]m, mitochondria of guinea pig cardiac myocytes were loaded with rhod-2-acetoxymethyl ester (rhod-2 AM), and [Ca2+]c was monitored with indo-1 after dialyzing rhod-2 out of the cytoplasm. [Ca2+]c transients, elicited by voltage-clamp depolarizations, were accompanied by fast [Ca2+]m transients, whose amplitude (delta) correlated linearly with delta[Ca2+]c. Under beta-adrenergic stimulation, [Ca2+]m decay was approximately 2.5-fold slower than that of [Ca2+]c, leading to diastolic accumulation of [Ca2+]m when amplitude or frequency of delta[Ca2+]c increased. The MCU blocker Ru360 reduced delta[Ca2+]m and increased delta[Ca2+]c, whereas the mNCE inhibitor CGP-37157 potentiated diastolic [Ca2+]m accumulation. Elevating [Na+]i from 5 to 15 mmol/L accelerated mitochondrial Ca2+ decay, thus decreasing systolic and diastolic [Ca2+]m. In response to gradual or abrupt changes of workload, reduced nicotinamide-adenine dinucleotide (NADH) levels were maintained at 5 mmol/L [Na+]i, but at 15 mmol/L, the NADH pool was partially oxidized. The results indicate that (1) mitochondria take up Ca2+ rapidly and contribute to fast buffering during a [Ca2+]c transient; and (2) elevated [Na+]i impairs mitochondrial Ca2+ uptake, with consequent effects on energy supply and demand matching. The latter effect may have implications for cardiac diseases with elevated [Na+]i.  相似文献   

3.
Muscarinic stimulation of fluid secretion by mammalian salivary acinar cells is associated with a rise in the level of intracellular free calcium ([Ca2+]i) and activation of a calcium-sensitive potassium (K+) conductance in the basolateral membrane. To test in the intact cell whether the rise of [Ca2+]i precedes activation of the K+ conductance (as expected if Ca2+ is the intracellular messenger mediating this response), [Ca2+]i and membrane voltage were measured simultaneously in carbachol-stimulated rat parotid acinar cells by using fura-2 and an intracellular microelectrode. Unexpectedly, the cells hyperpolarize (indicating activation of the K+ conductance) before fura-2 detectable [Ca2+]i begins to rise. This occurs even in Ca2+-depleted medium where intracellular stores are the only source of mobilized Ca2+. Nevertheless, when the increase in [Ca2+]i was eliminated by loading cells with the Ca2+ chelator bis(2-amino-5-methylphenoxy)ethane-N,N,N',N'-tetraacetate (Me2BAPTA) and stimulating in Ca2+-depleted medium, membrane hyperpolarization was also eliminated, indicating that a rise of [Ca2+] is required for the agonist-induced voltage response. Stimulation of Me2BAPTA-loaded cells in Ca2+-containing medium dramatically accentuates the temporal dissociation between the activation of the K+ conductance and the rise of [Ca2+]i. The data are consistent with the hypothesis that muscarinic stimulation results in a rapid localized increase in [Ca2+]i at the acinar basolateral membrane followed by a somewhat delayed increase in total [Ca2+]i. The localized increase cannot be detected by fura-2 but is sufficient to open the Ca2+-sensitive K+ channels located in the basolateral membrane. We concluded that a receptor-mobilized intracellular store of Ca2+ is localized at or near the basolateral membrane.  相似文献   

4.
Kohlhaas M  Maack C 《Circulation》2010,122(22):2273-2280
BACKGROUND: In heart failure, the Na+-Ca2+ exchanger (NCX) is upregulated and mediates Ca2+ influx (instead of efflux) during the cardiac action potential. Although this partly compensates for impaired sarcoplasmic reticulum Ca2+ release and supports inotropy, the energetic consequences have never been considered. Because NCX-mediated Ca2+ influx is rather slow and mitochondrial Ca2+ uptake (which stimulates NADH production by the Krebs cycle) is thought to be facilitated by high Ca2+ gradients in a "mitochondrial Ca2+ microdomain," we speculated that NCX-mediated Ca2+ influx negatively affects the bioenergetic feedback response. Methods and Results- With the use of a patch-clamp-based approach in guinea-pig myocytes, cytosolic and mitochondrial Ca2+ ([Ca2+](c) and [Ca2+](m), respectively) was determined within the same cell after varying Ca2+ influx via L-type Ca2+ channels (I(Ca,L)) or the NCX. The efficiency of mitochondrial Ca2+ uptake, indexed by the slope of plotting [Ca2+](m) against [Ca2+](c) during each Ca2+ transient, was maximal during I(Ca,L)-triggered sarcoplasmic reticulum Ca2+ release. Depletion of sarcoplasmic reticulum Ca2+ load and increased contribution of the NCX to cytosolic Ca2+ influx independently reduced the efficiency of mitochondrial Ca2+ uptake. The upstroke velocity of cytosolic Ca2+ transients closely correlated with the efficiency of mitochondrial Ca2+ uptake. Despite comparable [Ca2+](c), sarcoplasmic reticulum Ca2+ release, but not NCX-mediated Ca2+ influx, led to stimulation of Ca2+-sensitive dehydrogenases of the Krebs cycle. Conclusions- Increased contribution of the NCX to cytosolic Ca2+ transients, which occurs in cardiac myocytes from failing hearts, impairs mitochondrial Ca2+ uptake and the bioenergetic feedback response. This mechanism could contribute to energy starvation of failing hearts.  相似文献   

5.
Mitochondrial ATP production is continually adjusted to energy demand through coordinated increases in oxidative phosphorylation and NADH production mediated by mitochondrial Ca2+([Ca2+]m). Elevated cytosolic Na+ impairs [Ca2+]m accumulation during rapid pacing of myocytes, resulting in a decrease in NADH/NAD+ redox potential. Here, we determined 1) if accentuating [Ca2+]m accumulation prevents the impaired NADH response at high [Na+]i; 2) if [Ca2+]m handling and NADH/NAD+ balance during stimulation is impaired with heart failure (induced by aortic constriction); and 3) if inhibiting [Ca2+]m efflux improves NADH/NAD+ balance in heart failure. [Ca2+]m and NADH were recorded in cells at rest and during voltage clamp stimulation (4Hz) with either 5 or 15 mmol/L [Na+]i. Fast [Ca2+]m transients and a rise in diastolic [Ca2+]m were observed during electric stimulation. [Ca2+]m accumulation was [Na+]i-dependent; less [Ca2+]m accumulated in cells with 15 Na+ versus 5 mmol/L Na+ and NADH oxidation was evident at 15 mmol/L Na+, but not at 5 mmol/L Na+. Treatment with either the mitochondrial Na+/Ca2+ exchange inhibitor CGP-37157 (1 micromol/L) or raising cytosolic Pi (2 mmol/L) enhanced [Ca2+]m accumulation and prevented the NADH oxidation at 15 mmol/L [Na+]i. In heart failure myocytes, resting [Na+]i increased from 5.2+/-1.4 to 16.8+/-3.1mmol/L and net NADH oxidation was observed during pacing, whereas NADH was well matched in controls. Treatment with CGP-37157 or lowering [Na+]i prevented the impaired NADH response in heart failure. We conclude that high [Na+]i (at levels observed in heart failure) has detrimental effects on mitochondrial bioenergetics, and this impairment can be prevented by inhibiting the mitochondrial Na+/Ca2+ exchanger.  相似文献   

6.
OBJECTIVES: Depressed levels of cardiac Mg have been found in patients with ischaemic heart disease or heart failure, but it is not known whether low intracellular free [Mg2+] ([Mg2+]i) is a causal factor in such myocardial dysfunction. The aims for the present study were to develop a method of lowering [Mg2+]i in myocytes isolated from normal rat hearts, and so to determine whether a low [Mg2+]i itself would cause abnormalities of intracellular Ca2+ ([Ca2+]i) homeostasis or myocyte contractile function in absence of any cardiac disease. METHODS: Rat ventricular myocytes were loaded with mag-indo-1/AM or indo-1/AM for determination of total [Mg2+]i and [Ca2+]i, respectively. Mitochondrial [Ca2+] was determined by selective loading of indo-1/AM into the mitochondria. Cell contraction was measured using an edge-tracking device. Myocytes were depleted of [Mg2+]i by incubation in absence of external Mg2+. This resulted in a decrease in [Mg2+]i from about 1.3 to 0.3 mM. In subsequent experiments, 1.2 mM MgCl2 was again present in the superfusate. RESULTS: Under basal conditions (low rate of stimulation, 0.2 Hz, and 1 mM external [Ca2+]), the Mg-depleted cells showed very similar changes in [Ca2+] to control cells, despite an increase in the amplitude of cell contraction. But in presence of high external [Ca2+] (4 mM) and 5 Hz stimulation rate, the Mg-depleted cells showed defects in systolic Ca2+ handling and in cell contraction; in particular, they were unable to increase systolic [Ca2+] in response to the stimulus, unlike control cells. Despite these alterations in total [Ca2+]i, mitochondrial Ca2+ uptake was unchanged in the Mg-depleted cells. CONCLUSIONS: A low [Mg2+]i can itself cause significant cardiomyocyte dysfunction in absence of any contributing disease state.  相似文献   

7.
beta-Agonists cause an inhibition of contractility and a transient stimulation of Na+/K+ pumping in smooth muscle cells of the stomach from the toad Bufo marinus. To determine if the stimulation of Na+/K+ pumping causes changes in intracellular [Na+] ([Na+]i) that might link Na+ pump stimulation to decrease Ca2+ availability for contraction, [Na+]i was measured in these cells with SBFI, a Na(+)-sensitive fluorescent indicator. Basal [Na+]i was 12.8 +/- 4.2 mM (n = 32) and was uniform throughout the cell. In response to isoproterenol, [Na+]i decreased an average of 7.1 +/- 1.1 mM in 3 sec. Since this decrease in [Na+]i could be completely blocked by inhibition of the Na+ pump, or by blockade of the beta-receptor, [Na+]i reduction is the result of occupation of the beta-receptor by isoproterenol and subsequent stimulation of the Na+ pump. 8-Bromoadenosine 3',5'-cyclic monophosphate and forskolin mimicked the effect of isoproterenol, indicating that the sequence of events linking beta-receptor occupation to Na+ pump stimulation most likely includes activation of adenylate cyclase, production of cAMP, and stimulation of cAMP-dependent protein kinase. The decrease in [Na+]i is sufficiently large and fast that it is expected to stimulate turnover of the Na+/Ca2+ exchanger in the Ca2+ extrusion mode, thereby accounting for the observed linkage between stimulation of the Na+/K+ pump and inhibition of contractility in response to beta-adrenergic agonists.  相似文献   

8.
Double knockout (DKO) of the small heat shock proteins CRYAB and HSPB2 increases necrosis and apoptosis induced by ischemia/reperfusion (I/R) in vitro, but the mechanisms involved are unknown. We examined [Ca2+]i during metabolic inhibition (MI) changes in [Ca2+]m induced by exposure to elevated [Ca2+]i, and whether mitochondria in isolated DKO ventricular myocytes (VM) are more susceptible than wild type (WT) to induction of the mitochondrial permeability transition (MPT). The rise in [Ca2+]i in DKO myocytes during metabolic inhibition (MI) was less than in WT, and ouabain caused a greater increase in [Ca2+]m in DKO than in WT. These findings suggested that Ca2+ uptake was increased in mitochondria in DKO myocytes. Measurements of Rhod 2 fluorescence during exposure of permeabilized VM to 1000 nM [Ca2+] for 5 min confirmed that DKO myocytes have enhanced mitochondrial Ca2+ uptake, and this difference between DKO and WT myocyte mitochondria was eliminated by inhibition of NO synthesis. MPT was induced more readily by ouabain, PAO, or TMRM in DKO myocytes than in WT. Thus, Ca2+ uptake by mitochondria is increased in DKO VM by a NO-dependent mechanism. This can predispose to the development of MPT, and increased VM injury during I/R. These findings indicate an important role of CRYAB and/or HSPB2 in mitochondrial function.  相似文献   

9.
Mitochondrial calcium overload has been suggested as a marker for irreversible injury in the ischemic heart. A new technique is used to measure dynamic changes in mitochondrial free calcium concentration ([Ca2+]m) in electrically stimulated (0.2 Hz) adult rat cardiac myocytes during exposure to anoxia and reoxygenation. Cells were incubated with indo-1 AM, which distributes in both the cytosol and mitochondria. After Mn2+ quenching of the cytosolic signal, cells were exposed to anoxia, and the residual fluorescence was monitored. [Ca2+]m averaged 94 +/- 3 nM (n = 16) at baseline, less than the baseline diastolic cytosolic free calcium concentration ([Ca2+]c, 124 +/- 4 nM, n = 12), which was measured in cells loaded with the pentapotassium salt of indo-1. [Ca2+]m and [Ca2+]c rose steadily only after the onset of ATP-depletion rigor contracture. At reoxygenation 35 minutes later, [Ca2+]c fell rapidly to preanoxic levels and then often showed a transient further rise. In contrast, [Ca2+]m showed only a slight transient fall and a secondary rise at reoxygenation. At reoxygenation, cells immediately either recovered, demonstrating partial relengthening and retaining their rectangular shape and response to stimulation, or they hypercontracted to rounded dysfunctional forms. Recovery occurred only in cells in which [Ca2+]m or [Ca2+]c remained below 250 nM before reoxygenation. Early during reoxygenation, [Ca2+]m remained higher in cells that hypercontracted (305 +/- 36 nM) than in cells that recovered (138 +/- 9 nM, p less than 0.05), whereas [Ca2+]c did not differ between the two groups (156 +/- 10 versus 128 +/- 10 nM, respectively; p = NS).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
(Ca2+)-sensitive processes at cell membranes involved in contraction, secretion, and neurotransmitter release are activated in situ or in vitro by Ca2+ concentrations ([Ca2+]) 10-100 times higher than [Ca2+] measured during stimulation in intact cells. This paradox might be explained if the local [Ca2+] at the cell membrane is very different from that in the rest of the cell. Soluble Ca2+ indicators, which indicate spatially averaged cytoplasmic [Ca2+], cannot resolve these localized, near-membrane [Ca2+] signals. FFP18, the newest Ca2+ indicator designed to selectively monitor near-membrane [Ca2+], has a lower Ca2+ affinity and is more water soluble than previously used membrane-associating Ca2+ indicators. Images of the intracellular distribution of FFP18 show that >65% is located on or near the plasma membrane. [Ca2+] transients recorded using FFP18 during membrane depolarization-induced Ca2+ influx show that near-membrane [Ca2+] rises faster and reaches micromolar levels at early times when the cytoplasmic [Ca2+], recorded using fura-2, has risen to only a few hundred nanomolar. High-speed series of digital images of [Ca2+] show that near-membrane [Ca2+], reported by FFP18, rises within 20 msec, peaks at 50-100 msec, and then declines. [Ca2+] reported by fura-2 rose slowly and continuously throughout the time images were acquired. The existence of these large, rapid increases in [Ca2+] directly beneath the surface membrane may explain how numerous (Ca2+)-sensitive membrane processes are activated at times when bulk cytoplasmic [Ca2+] changes are too small to activate them.  相似文献   

11.
The relationship between changes in intracellular Ca2+ transients and isometric contractions has been assessed in intact cardiac muscle preparations, superficial cells of which have been microinjected with the Ca(2+)-sensitive bioluminescent protein aequorin. Regulation of myocardial contractility by physiological and pathophysiological intervention is achieved by either (1) modulation of intracellular Ca2+ mobilization, or (2) modulation of Ca2+ sensitivity of myofibrils, or both. Regulation of contractility by changes in heart rate a well established frequency-force relationship that plays an important role in the cardiac pumping function in situ is mainly achieved by mechanism (1), other mechanisms becoming involved depending on the range of frequency of stimulation. The length-dependent regulation of contractility (length-tension relationship in vitro or Frank-Starling's law, or ventricular function curve in situ) is achieved essentially by mechanism (2). Catecholamines promote mechanism (1) through activation of beta- and/or alpha-adrenoceptors, alpha-adrenoceptor stimulation being much less effective than beta-stimulation in this respect. beta-Adrenoceptor stimulation decreases, while alpha-stimulation may increase the Ca(2+)-sensitivity of contractile proteins. Subsequent to exposure of muscle preparations to Ca2+ free solution, a prominent and reversible dissociation of force of contraction from Ca2+ transients was produced when the [Ca2+]0 was gradually returned to the level of the normal Krebs-Henseleit solution [( Ca2+]0 = 2.5 mM). The aequorin-injected multicellular intact myocardial cell preparation provides an excellent experimental paradigm through which to address the physiological, pharmacological and pathophysiological modulation of E-C coupling in mammalian cardiac muscle. The subcellular mechanism involved, especially in the pathophysiological modulation of Ca2+ signaling process in myocardial cells, awaits further study.  相似文献   

12.
Increased diastolic SR Ca2+ leak (J(leak)) could depress contractility in heart failure, but there are conflicting reports regarding the J(leak) magnitude even in normal, intact myocytes. We have developed a novel approach to measure SR Ca2+ leak in intact, isolated ventricular myocytes. After stimulation, myocytes were exposed to 0 Na+, 0 Ca2+ solution +/-1 mmol/L tetracaine (to block resting leak). Total cell [Ca2+] does not change under these conditions with Na+-Ca2+ exchange inhibited. Resting [Ca2+]i declined 25% after tetracaine addition (126+/-6 versus 94+/-6 nmol/L; P<0.05). At the same time, SR [Ca2+] ([Ca2+](SRT)) increased 20% (93+/-8 versus 108+/-6 micromol/L). From this Ca2+ shift, we calculate J(leak) to be 12 micromol/L per second or 30% of the SR diastolic efflux. The remaining 70% is SR pump unidirectional reverse flux (backflux). The sum of these Ca2+ effluxes is counterbalanced by unidirectional forward Ca2+ pump flux. J(leak) also increased nonlinearly with [Ca2+](SRT) with a steeper increase at higher load. We conclude that J(leak) is 4 to 15 micromol/L cytosol per second at physiological [Ca2+](SRT). The data suggest that the leak is steeply [Ca2+](SRT)-dependent, perhaps because of increased [Ca2+]i sensitivity of the ryanodine receptor at higher [Ca2+](SRT). Key factors that determine [Ca2+](SRT) in intact ventricular myocytes include (1) the thermodynamically limited Ca2+ gradient that the SR can develop (which depends on forward flux and backflux through the SR Ca2+ ATPase) and (2) diastolic SR Ca2+ leak (ryanodine receptor mediated).  相似文献   

13.
Yi FX  Bird IM 《Endocrinology》2005,146(11):4844-4850
Vascular endothelial cells respond to extracellular ATP by inositol 1,4,5-trisphosphate-mediated Ca2+ release from the endoplasmic reticulum followed by Ca2+ influx and subsequent synthesis of vasodilators. In this study, the contribution of mitochondria in shaping the ATP-induced Ca2+ increase was examined in ovine uterine artery endothelial cells from nonpregnant and pregnant (late gestation) ewes (NP- and P-UAEC, passage 4). The mitochondrial protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) induced a rapid mitochondrial depolarization. CCCP also slowly increased cytosolic [Ca2+] ([Ca2+]c), which then gradually declined to 10-20 nM above resting level. Pretreatment with CCCP for 30 min significantly inhibited both ATP and thapsigargin-induced [Ca2+]c, with inhibition in NP-UAEC more effective than in P-UAEC. Pretreatment of mitochondrial permeability transition pore inhibitor cyclosporine A did not affect CCCP-induced mitochondrial depolarization, but delayed CCCP-induced [Ca2+]c for about 12-15 min (we termed this the "window of time"). During the cyclosporine A-delayed window of time of CCCP-induced [Ca2+]c, ATP induced a normal Ca2+ response, but after this window of time, ATP-induced [Ca2+]c was significantly inhibited. Pretreatment of oligomycin B to prevent intracellular ATP depletion by F0F1-ATPase did not reduce the inhibition of ATP-induced [Ca2+]c by CCCP. Ruthenium red, a mitochondrial Ca2+ uptake blocker, did not mimic the inhibition of Ca2+ signaling by CCCP. In conclusion, our data show that mitochondrial Ca2+ depletion after dissipation of mitochondrial membrane potential with CCCP inhibits ATP-induced [Ca2+]c, mediated at the level of Ca2+ release from the endoplasmic reticulum. Moreover, our data revealed that P-UAEC is more resistant to the inhibitory effect of CCCP on [Ca2+]c than NP-UAEC.  相似文献   

14.
When human polymorphonuclear leukocytes (PMN) are placed on various surfaces, they attach and spread rapidly, increasing their diameter severalfold. The spreading is associated with extensive changes in the cytoskeleton. Since many cytoskeletal events are regulated by Ca2+, we measured the cytosolic free calcium concentration ([Ca2+]i) in individual human PMN as they spread. [Ca2+]i was measured in single cells by microspectrofluorometry using the fluorescent Ca2+-sensitive dye fura-2. Immediately before spreading, PMN exhibit a rapid increase in [Ca2+]i, from 69 +/- 51 nM to 547 +/- 190 nM (mean +/- SD, n = 12). [Ca2+]i returns to near resting levels during the next minute, as the cells spread. Neither the spreading nor the [Ca2+]i spike is blocked by removal of extracellular calcium, by verapamil, by calmodulin antagonists, or by mitochondrial or microtubule poisons. Spreading, but not the [Ca2+]i increase, is blocked by the microfilament inhibitor cytochalasin B. Both spreading and the [Ca2+]i spike are blocked by ATP depletion and reversibly blocked by placing the cells in medium containing hypertonic sucrose or sodium chloride. These data strongly suggest that an increase in [Ca2+]i, derived from nonmitochondrial intracellular pools, plays an important role in the microfilament-mediated process of PMN spreading.  相似文献   

15.
OBJECTIVE: The influence of agents that inhibit the movement of Ca2+ across the mitochondrial membrane or Ca2+ dependent changes to this membrane upon the response of isolated ventricular myocytes to a Ca2+ overload has been investigated. METHODS: The changes of intracellular Ca2+ and Mg2+ ([Ca2+]i, [Mg2+]i) (as reflected by cellular ATP), mitochondrial membrane potential (psi m) and NADH was measured upon the response of isolated ventricular myocytes to a Ca2+ overload. RESULTS: A slow depolarization of psi m during Ca2+ depletion and its prompt recovery on Ca2+ repletion were unaffected by ruthenium red, clonazepam, CGP-37157 which is a high potent inhibitor of the mitochondrial Na+/Ca2+ antiport or cyclosporin A but a large delayed sustained depolarization was inhibited. The slow small fall in [Mg2+]i on Ca2+ depletion and a rapid recovery on Ca2+ repletion were unaffected by ruthenium red, clonazepam, CGP-37157 or cyclosporin A. A delayed sustained larger rise in [Mg2+]i was inhibited. The marked sustained fall in NADH autofluorescence that occurs on Ca2+ overload was attenuated and transient in the presence of ruthenium red, CGP-37157 and cyclosporin A. CONCLUSION: These results are consistent with an increase in Ca2+ cycling across the mitochondrial membrane provoked by the combined Na+ and Ca2+ overload of cardiac myocytes, causing a depolarization sufficient to uncouple respiration and lead to the depletion of cellular ATP.  相似文献   

16.
OBJECTIVE: Peripheral blood (PB) T cells from rheumatoid arthritis (RA) patients proliferate poorly to mitogen, a change that is related to decreased intracellular Ca2+ ([Ca2+]i) signaling after T cell receptor (TCR) stimulation. We hypothesized that this was, in part, due to the effect of mediators of inflammation and predicted that greater changes in [Ca2+]i signaling would be seen in synovial fluid (SF) T cells. We also examined the mechanisms underlying the altered [Ca2+]i signals. METHODS: Paired PB and SF T cells from patients with chronic inflammatory arthritis were stimulated with mitogen to assess the magnitude of the [Ca2+]i signal in cell populations by fluorometry, the pattern of the [Ca2+]i signal in individual cells in a single-cell ion-imaging system, and the spatial distribution of Ca2+ within intracellular organelles. RESULTS: There was a significantly smaller [Ca2+]i signal after phytohemagglutinin protein stimulation of SF T cells (peak rise in [Ca2+]i signal PB versus SF 200 nM versus 180 nM; P < 0.05). In single SF T cells, a change in the pattern of the [Ca2+]i signal and a reduction in the number of responding cells was seen. These changes were a magnification of those seen in RA PB compared with control PB T cells. The contribution of Ca2+ release from intracellular stores to the final [Ca2+]i signal in PB and SF T cells was equal, but there was a significant increase in the Ca2+ remaining in the endoplasmic reticulum (ER) in SF T cells after TCR activation (PB versus SF 6 nM versus 19 nM; P < 0.05). Non-ER Ca2+ stores were not similarly affected. CONCLUSION: We found abnormalities in the magnitude, pattern, and spatial distribution of [Ca2+]i signaling in T cells from SF of patients with chronic inflammatory arthritis. A reduction in the number of responding SF T cells may partly explain some of our observations. However, we propose that the observed redistribution of SF Ca2+ stores may underlie the altered [Ca2+]i signaling, thus making these cells hyporesponsive to mitogen. The inflammatory environment of the joint and the late stage of differentiation of SF T cells are both likely to contribute to these changes in [Ca2+]i signaling, resulting in aberrant T cell function and promotion of disease chronicity.  相似文献   

17.
D M Shoback  J M McGhee 《Endocrinology》1988,122(6):2833-2839
The stimulation of polyphosphoinositide (PPI) turnover is associated with cellular activation and hormone secretion in numerous systems. GTP-binding proteins appear to couple receptors to phospholipase-C-mediated PPI breakdown. We assessed the effects of fluoride, an activator of GTP-binding proteins, on inositol phosphate accumulation, intracellular free Ca2+ [(Ca2+)i], cAMP content, and PTH release in dispersed bovine parathyroid cells. Sodium fluoride (5-30 mM) produced marked dose-dependent increases in inositol phosphates. With anion exchange HPLC, we confirmed that 30 mM fluoride stimulated a rapid increase in 1,4,5-inositol trisphosphate, a potent Ca2+-mobilizing compound. Using the Ca2+-sensitive probe fura-2, we determined that 30 mM fluoride increased [Ca2+]i from 339 +/- 9 to 650 +/- 39 nM (n = 8) within 30-60 sec at 1 mM extracellular Ca2+. After the depletion of extracellular Ca2+ by the addition of 1 mM EGTA, 30 mM fluoride increased [Ca2+]i 45 +/- 9% (n = 4), indicating that fluoride can mobilize intracellular Ca2+ stores. Fluoride (1-30 mM) also inhibited PTH release in dose-dependent fashion. Fluoride (30 mM) produced 72.8 +/- 4.2% suppression of maximal low Ca2+-stimulated PTH release comparable to the 83.7 +/- 3.7% inhibition by 2.0 mM extracellular Ca2+. Since changes in both [Ca2+]i and cAMP regulate PTH release, we measured the effect of fluoride on intracellular cAMP. Fluoride did not detectably change basal cAMP content, but it reduced forskolin-stimulated increases in cAMP. We conclude that fluoride may activate at least two GTP-dependent processes in parathyroid cells, resulting in PPI breakdown and cAMP accumulation. While both may contribute to the fluoride-induced suppression of PTH release, our findings suggest that the stimulation of PPI turnover leads to inhibition of PTH secretion.  相似文献   

18.
The relationships between the activation status of voltage-sensitive Ca2+ channels and secretory responses were analyzed in perfused rat gonadotrophs during stimulation by high extracellular K+ concentration ([K+]e) or the physiological agonist, gonadotropin-releasing hormone (GnRH). Increase of [K+]e to 50 mM evokes an on-off secretory response, with a rapid rise in luteinizing hormone (LH) secretion to a peak at 35 sec (on response) followed by an exponential decrease to the steady-state level. Cessation of K+ stimulation elicits a transient (off) response followed by an exponential decrease to the basal level. The LH response to high [K+]e is nifedipine-sensitive and its amplitude depends on membrane potential. There is a close relationship between the LH secretory response to high [K+]e and the amplitude of the inward Ca2+ current measured at 100 msec in whole-cell patch clamp experiments. In addition, the profile of the LH secretory response is similar to that of the response of intracellular Ca2+ concentration ([Ca2+]i) in K(+)-stimulated cells. In Ca2(+)-deficient medium, the effect of high [K+]e is abolished; subsequent elevation of [Ca2+]e during the K+ pulse is followed by restoration of the on response, but with reduced magnitude. Agonist stimulation during the steady-state phase of the [K+]e pulse or after repetitive stimulation by high [K+]e elicited biphasic [Ca2+]i and secretory responses with a significantly reduced plateau phase; conversely, K(+)-induced LH release was reduced in cells treated with desensitizing doses of GnRH. These findings indicate that depolarization-induced changes in the status of voltage-sensitive Ca2+ channels determine the profiles of [Ca2+]i and LH responses to stimulation by high [K+]e; the initial activation of dihydropyridine-sensitive Ca2+ channels is clearly dependent on membrane potential, whereas their subsequent inactivation depends on increased [Ca2+]i. Such inactivation of voltage-sensitive Ca2+ channels also occurs during GnRH action and may represent an additional regulatory mechanism to limit the entry of extracellular Ca2+ during prolonged or frequent agonist stimulation.  相似文献   

19.
Kaneishi K  Sakuma Y  Kobayashi H  Kato M 《Endocrinology》2002,143(11):4210-4217
In GT1-7 cells, cAMP increases the intracellular Ca2+ concentration ([Ca2+](i)) through activation of the voltage-gated Ca2+ channels, thereby facilitating GnRH release. To activate these channels, the membrane potential must be depolarized. In the present study we hypothesize that cAMP depolarizes the cells by increasing the membrane Na+ permeability, as in the case of somatotrophs and pancreatic beta-cells. To examine this, we analyzed [Ca2+](i) and [Na+](i) in GT1-7 cells by an intracellular ion-imaging technique along with cAMP assay by RIA. Forskolin, a direct activator of adenylyl cyclase, increased [Ca2+](i) and [Na+](i) via cAMP formation. The forskolin-induced increase in [Ca2+](i) depended on the presence of Ca2+ and Na+ in the extracellular solution. This response was blocked by the voltage-gated Ca2+ channel blocker, nifedipine; the nonselective cation channel blocker, gadolinium (Gd3+); and the cyclic nucleotide-gated channel blocker, l-cis-diltiazem. In contrast, the forskolin-induced increase in [Na+](i) depended only on extracellular Na+, not on Ca2+. Gd3+ and l-cis-diltiazem also blocked the increase in [Na+](i). Furthermore, the forskolin-induced increase in GnRH release was blunted in both low Ca2+ and low Na+ media. The results indicate that cAMP increases the membrane Na+ permeability, probably through nonselective cation channels on GT1-7 cells, thereby promoting GnRH release.  相似文献   

20.
We have used flash photolysis of caged Ca2+ and membrane capacitance measurements to probe exocytosis in chromaffin cells at low concentrations of intracellular Ca2+ ([Ca2+]i) (<10 microM). We observed a small pool of granules that is more sensitive to [Ca2+]i than the previously described "readily releasable pool." Upon activation of PKC, this "highly Ca2+-sensitive pool" is enhanced in size to a greater extent than the readily releasable pool but is eliminated upon expression of a C-terminal deletion mutant (Delta9) of synaptosome-associated protein of 25 kDa (SNAP-25). Thus, in chromaffin cells, PKC enhances exocytosis both by increasing the number of readily releasable vesicles and by shifting vesicles to a highly Ca2+-sensitive state, enabling exocytosis at sites relatively distant from Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号