首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The expression of neurotrophin (NGF, BDNF, and NT-3) mRNAs in 24 cell lines derived from human malignant gliomas was studied by Northern analysis. Widespread expression of neurotrophin genes was found with BDNF being the most abundantly expressed. Nearly all cell lines expressed BDNF, and about two-thirds of the cell lines expressed NGF and NT-3. Half of the cell lines analyzed expressed all three neurotrophins. Secretion of NGF into the medium of several cell lines could be detected by ELISA and a PC12 neurite outgrowth assay. Immuno- and bioactive NGF was isolated from conditioned medium of one cell line. No evidence of expression of the neurotrophin receptors trk and trkB by Northern analysis was found. Receptor crosslinking with radiolabeled cognate ligands failed to detect functional receptors in all but one cell line. In this cell line a receptor complex for BDNF was found that corresponded to truncated trkB receptors that lack the signal transducing tyrosine kinase domain. Neurotrophins did not stimulate mitosis of the glioma cultures. The findings suggest that production of neurotrophins by glioma cells is a general phenomenon, although neurotrophins made by gliomas lacking their receptors may not play an autocrine but rather a paracrine role. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Increasing evidence indicates that nerve growth factor (NGF) exerts effects on cells of the immune system, but the possible immunomodulatory effect of other neurotrophins (brain-derived neurotrophic factor, BDNF; neurotrophin-3, NT-3; and NT-4/5) has not been studied. Neurotrophins act on responsive cells by binding a low-affinity pan-neurotrophin receptor (p75), and more specific high-affinity receptors (gp140trkAA, gp145trkB and gp145trkC considered as preferred signaling transduction receptors for NGF, BDNF and NT-3, respectively). The expression of neurotrophin receptor proteins may be considered, therefore, as a potential indication of neurotrophin activity. In the present study we investigated the distribution of both types of neurotrophin receptors in the human palatine tonsils using immunohistochemical methods. In the follicular germinal centers both lymphocytes and follicular dendritic cells (FDC) displayed gp75 IR, but not IR for trk neurotrophin receptor proteins. gp140trkA-like IR and gp145trkC-like IR were encountered on paracortical interdigitating cells (PIC), and in the high endothelial venule cells. gp145trkB-like IR was found in a cell subpopulation which probably represented macrophages. Present results suggest that NGF, NT-3 and NT-4/5 may act in PIC and indirectly in lymphocytes, whereas BDNF and NT-4/5 could control macrophages. The role of p75 on lymphocytes and FDC and whether trk neurotrophin receptor proteins present in lymphoid tissues are functional receptors for neurotrophins remains to be elucidated.  相似文献   

4.
5.
Neurotrophins play a crucial role in the regulation of survival and maintenance of specific functions of various populations of neurons. Brain-derived neurotrophic factor (BDNF), newrotrophin-3 (NT-3) and neurotrophin 4/5 (NT-4) have been shown to support motoneuron survival during embryonic development and, after birth, to protect motoneurons from degeneration after nerve lesion. We have compared the levels of these neurotrophins in skeletal muscle by quantitative Northern blot analysis, both during embryonic development and postnatally. We localized the sites of expression of these neurotrophins by in situ hybridisation and analysed the expression of trkB in the spinal cord by in situ hybridisation and immunohistochemistry. NT-3 is most abundantly expressed both during embryonic development and in the postnatal phase, followed by NT-4. The levels of BDNF are very low, in particular after birth. After nerve lesion, NT-3 mRNA essentially remained unchanged, whereas NT-4 mRNA rapidly decreased. The slow increase in BDNF expression seems to be essentially due to the expression in Schwann cells rather than skeletal muscle, demonstrated by in situ hybridisation. Our data indicate that motoneurons can receive trophic support from several members of the neurotrophin gene family during the period of naturally occurring cell death. Postnatally, the predominant ligand acting via trkB on motoneurons is NT-4, whereas BDNF expression seems to play a role mainly after nerve lesion. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Neurotrophins are a group of structurally related polypeptides that support the survival, differentiation, and maintenance of neuronal populations that express the appropriate high-affinity neurotrophin receptors. Two members of the neurotrophin family, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), have been shown to increase the survival of dopaminergic neurons from the ventral midbrain in vitro. Evidence suggests that ventral midbrain neurons might be able to derive support from these trophic factors in vivo through paracrine or autocrine interactions. Both BDNF and NT-3 mRNAs and their receptor mRNAs, trkB and trkC mRNAs, respectively, have been localized to the ventral mesencephalon. However, the relative expression levels of the neurotrophins and their receptor mRNAs throughout ontogeny and in adulthood have not been elucidated. In the present study, the postnatal developmental expression of BDNF, NT-3, trkB, and trkC mRNAs was analyzed via in situ hybridization to gain insight into the possible role of these factors in vivo. We found that there was a developmental decline in the expression of BDNF and NT-3 mRNAs in the ventral mesencephalon. In contrast, no alterations in the expression of midbrain trkB or trkC mRNAs could be discerned. The present results suggest a role for BDNF and NT-3 in the earlier postnatal developmental events of responsive populations. The continued, albeit lower, expression of the neurotrophins in the ventral mesencephalon in adulthood also suggests a role for these factors in mature neuronal systems.  相似文献   

7.
8.
The documented trophic actions of the neurotrophins brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5) upon ventral mesencephalic dopamine neurons in vitro and in vivo are presumed to be mediated through interactions with their high-affinity receptors TrkB (for BDNF and NT-4/5) and TrkC (for NT-3). Although both neurotrophin receptor mRNAs have been detected within the rat ventral midbrain, their specific association with mesencephalic dopaminergic cell bodies remains to be elucidated. The present study was performed to determine the precise organization of trkB and trkC mRNAs within rat ventral midbrain and to discern whether the neurotrophin receptor mRNAs are expressed specifically by dopaminergic neurons. In situ hybridization with isotopically labeled cRNA probes showed that trkB and trkC mRNAs were expressed in all mesencephalic dopamine cell groups, including all subdivisions of the substantia nigra and ventral tegmental area, and in the retrorubral field, rostral and caudal linear raphe nuclei, interfascicular nucleus, and supramammillary region. Combined isotopic/nonisotopic double-labeling in situ hybridization demonstrated that virtually all of the tyrosine hydroxylase (the catecholamine biosynthetic enzyme) mRNA-containing neurons in the ventral midbrain also expressed trkB or trkC mRNAs. Additional perikarya within these regions expressed the neurotrophin receptor mRNAs but were not dopaminergic. The present results demonstrate that essentially all mesencephalic dopaminergic neurons synthesize the neurotrophin receptors TrkB and TrkC and thus exhibit the capacity to respond directly to BDNF and NT-3 in the adult midbrain in vivo. Moreover, because BDNF and NT-3 are produced locally by subpopulations of the dopaminergic cells, the present data support the notion that the neurotrophins can influence the dopaminergic neurons through autocrine or paracrine mechanisms. J. Comp. Neurol. 403:295–308, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

9.
Neurotrophic factors regulate the developmental survival and differentiation of specific neuronal populations. Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are members of the nerve growth factor (NGF) protein family, also known as the neurotrophins. Insights into the different roles of neurotrophins can be gained by studying the expression of their functional receptors. Here we report the development of procedures for their radiolabeling and efficient crosslinking to specific cell-surface receptors. BDNF and NT-3 receptors in cell lines and tissue preparations expressing receptors for the 2 neurotrophins have been identified using this affinity crosslinking procedure. Like NGF, BDNF and NT-3 crosslinking to the low affinity NGF receptor (p75NGFR) on PC12 cells. BDNF and NT-3 also crosslinked to cells expressing p145trkB protein, producing an approximately 160 kD neurotrophin-receptor complex. Crosslinking of the 2 neurotrophins in vivo to specific trk family members in many areas of the central nervous system also produced a 160 kD receptor complex. However, in all brain regions a complex of approx. 100 kD could also be identified, all or most of which represents crosslinking to a truncated from of trkB. The broad distribution of BDNF and NT-3 receptors throughout the CNS suggests that neurotrophins may have yet unrecognized functions on specific neuronal populations. BDNF and NT-3 receptors were also found in brain areas in which the neurotrophins themselves are also synthesized, suggesting that beyond long-range trophic effects, these proteins may also act as autocrine or short-range paracrine regulators. © 1993 Wiley-Liss, Inc.  相似文献   

10.
11.
Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), members of the neurotrophin family, bind to and activate TrkA, TrkB and TrkC, respectively, members of the Trk receptor tyrosine kinase family, to exert various effects including promotion of differentiation and survival, and regulation of synaptic plasticity in neuronal cells. Many reports have suggested that different neurotrophins show distinct biological functions, although molecular mechanisms by which neurotrophins exert their different functions remain unclear. In the present study, we found distinct usages of phospholipase Cgamma (PLCgamma) and Shc in intracellular signaling stimulated by neurotrophins. BDNF stimulated much stronger interactions of PLCgamma with Trk than NGF and NT-3 in PC12 cells stably expressing TrkB and cultured cerebral cortical neurons, respectively, although BDNF, NGF and NT-3 induced similar levels of tyrosine phosphorylation of Trk. Furthermore, the cultured cortical neurons showed large PLCgamma-dependent increases in intracellular Ca(2+) levels in response to BDNF compared with NT-3. In Shc signaling, NGF, but not BDNF, displayed interactions between Trk and Shc in a phenylarsine oxide (PAO; an inhibitor of tyrosine phosphatase)-dependent manner in TrkB-expressing PC12 cells. These results indicated that neurotrophins stimulate distinct kinds of interactions between Trk and PLCgamma and between Trk and Shc. These differences may lead to the distinct biological functions of neurotrophins.  相似文献   

12.
Basal forebrain cholinergic neurons respond in vitro and in vivo to nerve growth factor (NGF) and to brain-derived neurotrophic factor (BDNF). It is not clear to what extent the neurons that respond to these two factors, or to neurotrophin-3 or−45 (NT-3;NT-45) are identical or only partially overlapping populations. We have addressed this issue in cultures of basal forebrain neurons derived from 2-week-old postnatal rats, using choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) as cholinergic markers. Cholinergic neuron survival was enhanced in the presence of NGF, BDNF andNT-45.NT-45 was as effective as BDNF. NT-3 was without effect at this age, although in cultures derived from embryonic forebrain, cholinergic differentiation was induced by NT-3. Cotreatment with NGF and BDNF resulted in small, but consistent, increases in the number of ChAT-positive neurons, compared with either factor alone.NT-45 was also found to be additive with NGF, whereas cotreatment with BDNF andNT-45 showed no addivity. NT-3 had no additive effects with any other neurotrophin on any cholinergic parameters in postnatal cultures. Taken together, the results indicate the existence in postnatal rat brain of a large overlapping population of cholinergic neurons that are responsive to ligands for the neurotrophin receptors TrkA (NGF) and TrkB (BDNF andNT-45), but not TrkC (NT-3), and small distinct populations that show specificity for NGF or BDNF but not both. We hypothesize that cholinergic neurons projecting into different regions of the hippocampus may derive trophic support from distinct neurotrophins.  相似文献   

13.
Neurotrophins play very important roles in the development and maintenance of the vertebrate nervous system. In mammals, there are four members of the family: NGF, BDNF, NT-3, and NT-4/5. Members of the neurotrophin family activate different receptors that belong to a class of receptor tyrosine kinases known as “Trks.” For example, NGF is the specific ligand of TrkA, while BDNF activates TrkB. To elucidate which regions of the two neurotrophins determine the receptor specificities, chimeric neurotrophins were constructed using BDNF as the backbone, with various regions being substituted by the corresponding regions of NGF. The activity of the chimeras on the Trk receptors was assayed in transfected fibroblasts ectopically expressing the Trk receptors. Our findings revealed that, although BDNF is absolutely conserved in mammals, substitution of several small variable regions from NGF into the BDNF backbone did not lead to significant loss in TrkB activity or gain in TrkA activity. Moreover, important determinants of TrkB activation might be located in the carboxy-terminal half of BDNF. On the other hand, critical elements for TrkA activation might be located within the amino-terminal half of the mature NGF molecule. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Northern blot analysis was used to examine the effects of glucocorticoids on neurotrophin mRNA expression in the rat cerebral cortex and hippocampus. The results show that 3 days after adrenalectomy the mRNA levels for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) decreased significantly in both these regions. In adrenalectomized animals given dexamethasone replacement the mRNA levels for the three neurotrophins were restored to control levels. The effect of a single dose of dexamethasone (5 mg/kg) administered i p. to intact animals on the expression of neurotrophins was also examined. NGF and NT-3 mRNAs showed a 2.5-fold and a 1.4-fold increase, respectively, during the first 4 h after the injection. The increase was followed by a decrease, with levels -50% of control 24 and 48 h after the injection. In contrast, the level of BDNF mRNA did not change during the first 10 h after the injection, but decreased to 70% of control 48 h after the injection. These data indicate that glucocorticoids regulate neurotrophin mRNA expression both in the cortex and in the hippocampus, and suggest further that the known effects of glucocorticoids on neuronal survival in the brain could be due to changes in the levels of neurotrophins in the brain.  相似文献   

15.
Neurotrophins and neurotrophin receptors play an important role in survival and growth of injured peripheral nerves. To study the injury-mediated neurotrophic response in autonomic nerves, we investigated changes in mRNA expression of neurotrophins and their receptors in the transected vagus nerve and nodose ganglion. Studies using in situ hybridization histochemistry showed that axotomy of the cervical vagus nerve resulted in increased expression of mRNAs for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), and for TrkA, TrkB, and TrkC receptors in non-neuronal cells at both the proximal and distal segments of the transected cervical vagus nerve. Moreover, NGF protein was increased in the distal end, and NT-3 protein was increased in both the proximal and the distal ends of the transected nerve 3 days after axotomy. No change of p75(NTR) mRNA was detected in the transected vagus nerve. The induction of each neurotrophin and Trk receptor mRNA was apparent within 1 day after the axotomy and was sustained at least 14 days. By 45 days after the axotomy, a time when axonal reconnection with target tissue is made (integrity of the nerve-target connection was confirmed by the retrograde transport of FluoroGold from the stomach to vagal cell bodies), the levels of neurotrophin and Trk mRNAs in the vagus nerve declined to pre-axotomy levels. TrkA, TrkC, and p75(NTR) mRNA-containing vagal sensory neurons in the nodose ganglion were reduced in number after cervical vagotomy. Neurotrophin-mRNA-containing neurons were not found in the nodose ganglia from either intact or vagotomized rats. The axotomy-induced up-regulation of neurotrophins and Trk receptors mainly in the non-neuronal cells at or near the site of transection suggests that neurotrophins are involved in the survival and regeneration process of the vagus nerve after injury.  相似文献   

16.
17.
Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are members of a family of trophic factors designated the neurotrophins, each of which can bind to the low-affinity NGF receptor (LNGFR). To investigate the mechanisms that regulate the expression of the neurotrophins and the LNGFR in the developing brain, we grew cells from the embryonic mouse septum and hippocampus in reaggregating cell culture and compared neurotrophin and LNGFR expression in developing reaggregates with that seen in the developing septum and hippocampus in situ. NGF, BDNF, NT-3 and LNGFR were each expressed in septal and hippocampal reaggregates as well as the native septum and hippocampus. Additionally, the temporal expression profiles observed in reaggregates were generally similar to those seen in the respective brain regions in situ. In order to determine whether NGF can modulate neurotrophin or LNGFR expression, reaggregates were cultured in the continual presence of either exogenous NGF or anti-NGF antibodies. NGF-treated septal cultures expressed twice the level of LNGFR mRNA as was seen in untreated septal cultures; on the other hand, septal cultures grown in the presence of anti-NGF antibodies, to neutralize endogenously synthesized NGF, displayed a 3-fold decrease in LNGFR mRNA expression compared to untreated cultures. No effects of NGF or anti-NGF were observed on LNGFR expression in hippocampal reaggregates, or on neurotrophin mRNA expression in either reaggregate type. These results suggest that regulatory mechanisms intrinsic to the septal and hippocampal regions control neurotrophin and LNGFR expression. NGF is likely to be one of these regulatory cues since it acts locally in septal reaggregates to control the developmental expression of LNGFR mRNA. The possible roles of locally synthesized NGF and other neurotrophins in the development of septal neurons are discussed.  相似文献   

18.
Cloning and expression of a novel neurotrophin,NT-7, from carp   总被引:8,自引:0,他引:8  
Neurotrophins have been demonstrated to play important roles in the development and functioning of the nervous system. This family of proteins consists of four homologous members in mammals: NGF, BDNF, NT-3, and NT-4/5. A new member, called NT-6, was recently cloned from the platyfish Xiphophorus maculatus. This protein shares closer structural relationship to NGF than the other neurotrophins, but contains a characteristic insertion of 22 amino acids that constituted the heparin-binding domain. Here we report the cloning of a novel neurotrophin from the fish Cyprinus carpio (carp), which shared about 66% amino acid identity to Xiphophorus NGF and NT-6. The neurotrophin, designated NT-7, possesses structural characteristics common to all known neurotrophins, such as the presence of six conserved cysteine residues and the flanking conserved sequences. In addition, there is an insertion of 15 amino acids at the position corresponding to that observed for NT-6. The neurotrophic activity of NT-7 was demonstrated by its ability to promote neurite outgrowth and neuronal survival of chick dorsal root ganglia. Phosphorylation assay of various Trk receptors overexpressed in fibroblasts suggested that NT-7 could activate TrkA but not TrkB or TrkC. Northern blot analysis revealed that NT-7 was predominantly expressed in peripheral tissues, though weak expression was also detected in the brain. Like NT-6, this novel neurotrophin might represent yet another NGF-like neurotrophin in lower vertebrates.  相似文献   

19.
20.
Brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and neurotrophin-3 (NT-3) are structurally related survival and differentiation factors for distinct sets of peripheral and central neurons. We previously reported that BDNF and NGF gene expression are differentially regulated in mouse L929 fibroblasts. Here we examine expression of these three neurotrophins in human fibroblasts. Northern blots detected BDNF and NT-3 mRNAs in fibroblasts derived from lung (WI-38), calvarium and foreskin. WI-38 cells and foreskin fibroblasts expressed 1.6 kb as well as 4 kb BDNF mRNAs whereas only the smaller BDNF mRNA was detected in calvarium fibroblasts. NGF mRNA was present in foreskin and calvarium but not lung fibroblasts. In WI-38 cells serum treatment increased levels of BDNF mRNA within 2 hr. Cycloheximide did not inhibit the increase. Treatment with 12-O-tetradecanoyl phorbol-13-acetate (TPA) transiently suppressed BDNF mRNA. Treatment with both serum and TPA first stimulated and then transiently suppressed BDNF mRNA. TPA and/or serum did not significantly affect BDNF mRNA in calvarium fibroblasts. These results show that human fibroblasts derived from different tissues express and regulate neurotrophin genes differentially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号