首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Hepatoma-derived growth factor-related proteins (HRPs) make up a family of six members. Hepatoma-derived growth factor-related protein-3 (HRP-3) is the only family member whose expression is almost restricted to nervous tissue. Here we show that soluble HRP-3 acts as a novel neurotrophic factor for cultured primary cortical neurons. Antibody-mediated neutralization of HRP-3 function results in neuronal degeneration. In contrast, HRP-3 as the only addition to a culture medium not supporting neuronal survival rescues neurons to an extent comparable to the addition of FCS. Besides this neuroprotective capability, the protein exerts a neurite outgrowth-promoting effect when it is presented as a coated substrate but not as a soluble factor. This study points to an important role of HRP-3 during the development of the nervous system.  相似文献   

2.
Studies using transgenic mice that overexpress ciliary neurotrophic factor (CNTF), direct injection of CNTF into brain parenchyma, and ectopic expression of CNTF by an adenoviral vector have demonstrated that CNTF activates astrocytes. Paradoxically, studies to date have failed to show an effect of CNTF on the expression of GFAP by cultured astrocytes. Therefore, the goal of this study was to use nuclear hypertrophy and GFAP expression as indices of glial activation to compare the responsiveness of forebrain type 1 and type 2 astrocytes to CNTF. As reported by others, CNTF did not increase GFAP in type 1 astrocytes; however, it rapidly increased their nuclear size by 20%. Nuclear hypertrophy was apparent within 4 h after CNTF exposure and persisted for at least 48 h. In contrast, type 2 astrocyte GFAP increased 2-fold over the course of 48 h of CNTF treatment. During this same treatment period type 2 astroglial nuclei enlarged by 25%. We conclude that CNTF stimulates both type 1 and type 2 astrocytes directly. Together with our in vivo studies (Levison et al., 1996: Exp. Neurol. 141: 256), these data support the concept that CNTF is responsible for many of the progressive astroglial changes that appear after CNS injury and disease.  相似文献   

3.
《Neurological research》2013,35(2):172-180
Abstract

It has been demonstrated that bone mesenchymal stromal cells (BMSCs) stimulate neurite outgrowth from dorsal root ganglion (DRG) neurons. The present in vitro study tested the hypothesis that BMSCs stimulate the neurite outgrowth from spinal neurons by secreting neurotrophic factors. Spinal neurons were cocultured with BMSCs, fibroblasts and control medium in a non-contact system. Neurite outgrowth of spinal neurons cocultured with BMSCs was significantly greater than the neurite outgrowth observed in neurons cultured with control medium or with fibroblasts. In addition, BMSC-conditioned medium increased the length of neurites from spinal neurons compared to those of neurons cultured in the control medium or in the fibroblasts-conditioned medium. BMSCs expressed brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). The concentrations of BDNF and GDNF in BMSC-conditioned medium were 132±12 and 70±6 pg ml?1, respectively. The addition of anti-BDNF and anti-GDNF antibodies to BMSC-conditioned medium partially blocked the neurite-promoting effect of the BMSC-conditioned medium. In conclusion, our results demonstrate that BMSCs promote neurite outgrowth in spinal neurons by secreting soluble factors. The neurite-promoting effect of BMSCs is partially mediated by BDNF and GDNF.  相似文献   

4.
目的关于蛋白激酶C(PKC)在神经元突起生长和神经再生中的作用,目前仍存有争议。本研究主要观察PKC对离体培养的脊髓神经元生长的调节作用,旨在阐明PKC对突起生长的调节作用。方法分离纯化胎龄14天(E14)的SD胎鼠的脊髓前角神经元,进行原代培养,并检测不同时相点膜/浆PKC活性(m/c-PKCactivity)的比值。结果神经元培养3-11d期间,神经元内m/c-PKC比值以及PKC-βII在突起中的表达水平均与突起生长呈显著相关关系(r=0.95,P<0.01;r=0.73,P<0.01)。此外,PKC激动剂PMA能显著提高m/c-PKC比值,且与神经突起的生长一致(r=0.99,P<0.01)。而PKC抑制剂GF109203X则能显著抑制突起生长,且不被PMA作用所逆转。结论PKC的活性在脊髓神经元突起生长调节中具有重要作用,其中βII亚型可能扮演重要角色。  相似文献   

5.
Previously, embryonic tissues have been used to produce monolayer cultures containing mammalian spinal cord neurons (SCN) and motoneurons (MN) for studies of the pathophysiology of motoneuron diseases. We demonstrate here that viable SCN and MN were observed in dissociated cultures from neonatal rat and mouse. These SCN and MN produced neurites and expressed acetylcholinesterase, neuron-specific enolase and neurofilament protein. These results indicate that cultured postnatal SCN and MN are capable of survival, neurite extension, and phenotypic expression in culture.  相似文献   

6.
Abstract

We have studied neurotrophic effects of acidic fibroblast growth factor (aFCF) and basic fibroblast growth factor (bFGF) on explanted ventral and dorsal spinal cord cultures from 13- and 14-day-old rat embryos. Cultures treated with aFCF and bFGF significantly enhanced neurite outgrowth with cultures of ventral spinal cord, but not with cultures of dorsal spinal cord. Our data suggest that aFCF and bFGF are potent neurotrophic factors on rat ventral spinal cord neurons in vitro. [Neurol Res 1995; 17: 70-72]  相似文献   

7.
Ciliary neurotrophic factor is required for motoneuron sprouting   总被引:15,自引:0,他引:15  
We used mutant mice that lack the gene for ciliary neurotrophic factor (CNTF) to test the hypothesis that it is an endogenous sprouting factor. Fibers in the lateral gastrocnemius muscle were either partially denervated by transection of one of the branches of its nerve or paralyzed by intramuscular injection of botulinum toxin. This results in a significant sprouting response at the terminals of intact motoneurons in normal animals. We did not detect sprouting produced by either stimulus in mice lacking CNTF. When exogenous CNTF was administered to CNTF knockout mice following partial muscle denervation, they mounted a typical sprouting response. Thus CNTF is a critical factor in the process of sprout formation after both partial denervation injury and neuromuscular paralysis. It may function as part of a cellular compensatory mechanism after neuronal injury.  相似文献   

8.
《Neurological research》2013,35(8):851-854
Abstract

Vasoactive intestinal peptide (VIP) is a neuropeptide which has been shown to exhibit a wide range of neurotrophic effects both in vivo and in vitro . For the purpose of clarifying the effect of VIP on spinal cord neurons, we studied the effect of VIP on neurite outgrowth of fetal rat ventral and dorsal portions of spinal cord in cultures. VIP-treated ventral spinal cord cultures (VSCC), compared with control VSCC, had a significant neurite outgrowth at 10-8, 10-6, and 10-4 M. The effect was considered to be concentration dependent. Morphological changes of the dorsal spinal cord cultures (DSCC) remained unchanged by VIP treatment. Because of their close sequence homology with VIP, PHI-27 (peptide, histidylisoleucine amide) and secretin were also examined with the same experimental conditions as was VIP. Both PHI-27 and secretin had neurite promoting effects in VSCC at 10-8 and 10-6 M, respectively. However, there were no neurite promoting effects in DSCC in both of them at any concentrations. VIP had the most potent effect on neurite outgrowth in VSCC, followed by PHI-27, and secretin in their effectiveness concentrations. Our data showing VIP, PHI-27 and secretin have neurotrophic action on VSCC and suggest that a potential therapeutic use of VIP and its related peptides in treating diseases that involve degeneration and death of spinal motor neurons, such as motor neuropathy and amyotrophic lateral sclerosis. [Neurol Res 2001; 23: 851-854]  相似文献   

9.
Gu W  Zhang F  Xue Q  Ma Z  Lu P  Yu B 《Neurological research》2012,34(2):172-180
It has been demonstrated that bone mesenchymal stromal cells (BMSCs) stimulate neurite outgrowth from dorsal root ganglion (DRG) neurons. The present in vitro study tested the hypothesis that BMSCs stimulate the neurite outgrowth from spinal neurons by secreting neurotrophic factors. Spinal neurons were cocultured with BMSCs, fibroblasts and control medium in a non-contact system. Neurite outgrowth of spinal neurons cocultured with BMSCs was significantly greater than the neurite outgrowth observed in neurons cultured with control medium or with fibroblasts. In addition, BMSC-conditioned medium increased the length of neurites from spinal neurons compared to those of neurons cultured in the control medium or in the fibroblasts-conditioned medium. BMSCs expressed brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). The concentrations of BDNF and GDNF in BMSC-conditioned medium were 132±12 and 70±6 pg ml(-1), respectively. The addition of anti-BDNF and anti-GDNF antibodies to BMSC-conditioned medium partially blocked the neurite-promoting effect of the BMSC-conditioned medium. In conclusion, our results demonstrate that BMSCs promote neurite outgrowth in spinal neurons by secreting soluble factors. The neurite-promoting effect of BMSCs is partially mediated by BDNF and GDNF.  相似文献   

10.
Vasoactive intestinal peptide (VIP) is a neuropeptide which has been shown to exhibit a wide range of neurotrophic effects both in vivo and in vitro. For the purpose of clarifying the effect of VIP on spinal cord neurons, we studied the effect of VIP on neurite outgrowth of fetal rat ventral and dorsal portions of spinal cord in cultures. VIP-treated ventral spinal cord cultures (VSCC), compared with control VSCC, had a significant neurite outgrowth at 10(-8), 10(-6), and 10(-4) M. The effect was considered to be concentration dependent. Morphological changes of the dorsal spinal cord cultures (DSCC) remained unchanged by VIP treatment. Because of their close sequence homology with VIP, PHI-27 (peptide, histidylisoleucine amide) and secretin were also examined with the same experimental conditions as was VIP. Both PHI-27 and secretin had neurite promoting effects in VSCC at 10(-8) and 10(-6) M, respectively. However, there were no neurite promoting effects in DSCC in both of them at any concentrations. VIP had the most potent effect on neurite outgrowth in VSCC, followed by PHI-27, and secretin in their effectiveness concentrations. Our data showing VIP, PHI-27 and secretin have neurotrophic action on VSCC and suggest that a potential therapeutic use of VIP and its related peptides in treating diseases that involve degeneration and death of spinal motor neurons, such as motor neuropathy and amyotrophic lateral sclerosis.  相似文献   

11.
It has been previously found that neurite outgrowth on collagen substrates decreases with increasing gestational age of chick embryo spinal cord and retinal neurons in tissue culture. In the current study, laminin, polylysine and collagen were compared in their efficacy in promoting neurite extension from chick embryo spinal cord neurons aged 6-16 days or retinal neurons aged 8-16 days in ovo. The percentage of neurons with neurites and the length of the neurites were determined at 1 and 3 days in culture. There was a significant increase in neuritogenesis by laminin and polylysine compared to collagen for both spinal cord and retinal neurons. Further, in spinal cord cultures grown on a laminin substrate, there was no decline in neurite outgrowth with increasing developmental age of the neurons as was seen on collagen and polylysine. Neurite length measurements also demonstrated a significant stimulation of neuritogenesis for spinal cord, but not retinal, neurons by laminin compared to polylysine or collagen in 1-day cultures. The results demonstrate tissue-specific differences in the developmental patterns of neurite outgrowth. Retinal neurons appear to have intrinsic changes in their ability to respond to extracellular promoting factors or substrates, while spinal cord neurite outgrowth can be regulated by these extrinsic factors.  相似文献   

12.
Ciliary neurotrophic factor (CNTF) was originally identified as a potent survival factor for a variety of neuronal cell types in vitro and in vivo and in particular in spinal motor neurons of embryonic chick and rat. Using a monoclonal antibody against CNTF (clone 4–68) we analysed the expression of CNTF in paraffin sections of seven human brains and spinal cords immunocytochemically using the ABC method and compared these results with sections of the spinal cords of patients suffering from amyotrophic lateral sclerosis (ALS). In normal human tissue of the central nervous system CNTF immunoreactivity was found in most of the motor neurons of the motor cortex and ventral horn, neurons of the nucleus oculomotorius, intermediolateralis, thoracicus, ependymal cells as well as in smooth muscle cells and endothelial cells of small arteries. A reduced number of astrocytes showed a positive immunocytochemical reaction. In peripheral nerves and nerve roots of the spinal cord we also found a positive staining of Schwann cells and some axons. These immunoreactions could be confirmed by Western blot analyses. Next we analysed postmortem paraffin sections of the spinal cord of seven patients suffering from ALS (age range 30–76 years, median age 46 years, female/male = 4:3). We found CNTF immunoreactivity in most of the motor neurons of the ventral horn in 5 cases. In two cases the number of positively stained motor neurons was less. From these results we conclude that CNTF is expressed in a high number of upper and lower motor neurons in the human CNS and that its expression is maintained in ALS patients.  相似文献   

13.
The effect of Schwann cell-conditioned medium (SCM) on the development in vitro of spinal cord neurons was studied. Spinal cord neurons from 18-day-old rat embryos were cultured in serum-free conditioned medium obtained from confluent rat Schwann cells. In cultures fed SCM, the cells developed typical neuronal morphology and were identified by indirect immunofluorescence using a monoclonal antibody to neurofilament protein. SCM stimulated neurite outgrowth and supported survival of spinal cord neurons. Preliminary characterization suggests that the neurotrophic factor in SCM appears to be a protein with a molecular weight greater than 8000 daltons.  相似文献   

14.
Rohon-Beard neurons are primary sensory cells located in the spinal cord of embryonic lower vertebrates. The kinetics of their normal, gradual, but complete disappearance in Xenopus tadpoles has been followed. Levels of acid phosphatase activity, a common histochemical correlate of cell death, were assayed and found to increase at the time of onset of disappearance of Rohon-Beard cells. Ultrastructural examination revealed the presence of numerous secondary lysosomes, swelling of endoplasmic reticulum and mitochondria, and a decrease in nuclear density. The disappearance of Rohon-Beard neurons may be attributed to autophagic cell death involving lysosomal acid hydrolases. This process begins only a few days after the maturation of voltage- and neurotransmitter-dependent membrane conductances and the electrical uncoupling of these neurons. The loss of Rohon-Beard neurons in embryos whose development was arrested by crowding was appropriate for the developmental stage of the animals rather than their chronological age.  相似文献   

15.
At focal CNS injury sites, several cytokines accumulate, including ciliary neurotrophic factor (CNTF) and interleukin-1beta (IL-1beta). Additionally, the CNTF alpha receptor is induced on astrocytes, establishing an autocrine/paracrine loop. How astrocyte function is altered as a result of CNTF stimulation remains incompletely characterized. Here, we demonstrate that direct injection of CNTF into the spinal cord increases GFAP expression and astroglial size and that primary cultures of spinal cord astrocytes treated with CNTF, IL-1beta, or leukemia inhibitory factor exhibit nuclear hypertrophy comparable to that observed in vivo. Using a coculture bioassay, we further demonstrate that CNTF treatment of astrocytes increases their ability to support ChAT(+) ventral spinal cord neurons (presumably motor neurons) more than twofold compared with untreated astrocytes. Also, the complexity of neurites was significantly increased in neurons cultured with CNTF-treated astrocytes compared with untreated astrocytes. RT-PCR analysis demonstrated that CNTF increased levels of FGF-2 and nerve growth factor (NGF) mRNA and that IL-1beta increased NGF and hepatocyte growth factor mRNA levels. Furthermore, both CNTF and IL-1beta stimulated the release of FGF-2 from cultured spinal cord astrocytes. These findings demonstrate that cytokine-activated astrocytes better support CNS neuron survival via the production of neurotrophic molecules. We also show that CNTF synergizes with FGF-2, but not epidermal growth factor, to promote DNA synthesis in spinal cord astrocyte cultures. The significance of these findings is discussed by presenting a new model depicting the sequential activation of astrocytes by cytokines and growth factors in the context of CNS injury and repair.  相似文献   

16.
探讨BDNF对体外培养的大鼠脊髓前角神经元内突触素I与突触囊泡素(SYN)表达的影响。取孕14 d大鼠子宫内胎鼠的脊髓腹侧部分神经元,体外有血清培养。在培养7 d后.随机分成对照组、BDNF组和抗BDNF组。BDNF组培养液中加入BDNF(20 ng/ml),抗BDNF组培养液中加入BDNF抗体(20цg/ml),对照组加入等量Hanks液。3 d后在倒置显微镜下计数三组神经元成活数,并用NF-200、MAP-2、NSE的免疫组化反应对神经细胞进行鉴定。行突触素I与SYN免疫组化反应,对部分细胞行突触素I mRNA原位杂交反应,运用图像分析系统对突触素I与SYN免疫反应阳性产物以及突触素I原位杂交反应阳性产物作光密度分析。结果发现有血清培养时各组脊髓前角神经元的存活数差异无显著性 (P>0.05);BDNF组突触素I与SYN免疫反应阳性产物的平均光密度值高于其它两组,抗BDNF组最低(P<0.01)。BDNP组突触素I mRNA阳性产物的平均光密度值明显高于其它两组,抗BDNF组突触素I mRNA阳性产物的平均光密度值最低(P<0.01)。本研究结果提示BDNF对有血清培养时脊髓前角神经元的存活没有明显影响,但BDNF可明显上调培养的脊髓前角神经元内突触素I与SYN的表达  相似文献   

17.
18.
We have used a number of pharmacological manipulations of calcium influx to alter the nerve growth factor (NGF)-elicited neurite outgrowth response of SCG neurons. Our results indicate that influx of extracellular calcium is critical to sympathetic SCG neurite outgrowth. Effective blockade of this process was produced by the inorganic calcium channel blockers Cd2+ (with an IC50 of 48 microM), Co2+ (129 microM), and Ni2+ (180 microM). More specifically, there is a significant contribution from dihydropyridine-sensitive L-type calcium channels to NGF-activated neurite outgrowth, as evidenced by the significant inhibition of neurite outgrowth by diltiazem (IC50 of 17 microM) and nifedipine (3 microM). Further, increases in calcium influx can elicit an enhanced neurite outgrowth response, as shown by the calcium channel agonist Bay K 8644 which potentiated neurite outgrowth by up to 40%.  相似文献   

19.
Preparations derived from embryonic and neonatal chick muscle enhance neurite outgrowth when added to cultures of embryonic chick spinal neurons. In the presence of soluble extracts of biopsied muscle from 15 of 20 patients with spinal muscular atrophy (SMA), the in vitro neurite-promoting activity of neonatal chick muscle was inhibited. There was no comparable inhibition using extracts from 20 age-matched pathologic or morphologically normal controls. The neurite-promoting activity in media conditioned by embryonic myotubes was not inhibited by extracts of the SMA group.  相似文献   

20.
We have previously shown that not only motoneurons and dorsal root ganglion cells but also small neurons, presumably interneurons in the spinal cord, may undergo apoptotic cell death as a result of neonatal peripheral nerve transection in the rat. With the aid of electron microscopy, we have here demonstrated that apoptosis in the spinal cord is confined to neurons and does not involve glial cells at the survival time studied (24 hours). To define the relative importance of the loss of a potential target (motoneuron) and a potential afferent input (dorsal root ganglion cell) for the induction of apoptosis in interneurons in this situation, we have compared the distributions and time courses for TUNEL labeling, which detects apoptotic cell nuclei, in the L5 segment of the spinal cord and the L5 dorsal root ganglion after sciatic nerve transection in the neonatal (P2) rat. In additional experiments, we studied the effects on TUNEL labeling of interneurons after treatment of the cut sciatic nerve with either ciliary neurotrophic factor (CNTF) to rescue motoneurons or nerve growth factor (NGF) to rescue dorsal root ganglion cells. The time courses of the TUNEL labeling in motoneurons and interneurons induced by the lesion show great similarities (peak at 8-48 hours postoperatively), whereas the labeling in dorsal root ganglion cells occurs later (24-72 hours). Both CNTF and NGF decrease the number of TUNEL-labeled interneurons, but there is a regional difference, in that CNTF preferentially saves interneurons in deep dorsal and ventral parts of the spinal cord, whereas the rescuing effects of NGF are seen mainly in the superficial dorsal horn. The results are interpreted as signs of a trophic dependence on both the target and the afferent input for the survival of interneurons neonatally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号