首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photodynamic therapy (PDT) involves the interaction of light with an administered photosensitising agent to produce cellular destruction. It has promising potential for the local and endoscopic treatment of gastrointestinal cancer. There is however little data on the response of normal intestine to PDT. We have investigated the use of a new photosensitiser chloro aluminum sulphonated phthalocyanine (AlSPc) for colonic PDT. The peak concentration of AlSPc in the colon measured by alkali extraction occurred 1 h after i.v. injection. The cellular uptake demonstrated by laser fluorescence microscopy was greater in the mucosa than in the muscle. AlSPc was activated in the tissues by light from an argon ion pumped dye laser at 675 nm. The laser power was set at 100 mW and the fibre placed touching the mucosa. In control animals no macroscopic damage was seen. Temperature measurement using a microthermocouple array showed no temperature rise during light exposure. The energy (fluence), dose of sensitiser and time from sensitisation to phototherapy were altered and the area of necrosis measured. The geometry of the colon made theoretical analysis of the correlation between laser energy and size of lesion difficult. However, following direct measurement of the relative light intensity (fluence rate) in the colon we were able to confirm that there was a threshold fluence for colonic necrosis. The area of photodynamic damage seen 72 h after phototherapy fell with the fall in tissue concentration of AlSPc from 1 h to 1 month after i.v. injection. However, maximum tissue necrosis occurred when treatment was performed immediately after i.v. injection. In this situation, intense vascular spasm was seen and any light transmitted through the colon which fell on the small bowel mesentery caused a lethal ischaemic necrosis. The initial histological changes after PDT were vascular, followed by full thickness necrosis at 72 h. Healing by regeneration was complete by 2-3 weeks. Despite full thickness necrosis there was no reduction in the colonic bursting pressure at any time. Colon treated by hyperthermia had a reduced bursting pressure. Specific collagen stains showed that PDT did not alter the submucosal collagen architecture whereas hyperthermia did.  相似文献   

2.
Photodynamic therapy (PDT) is attracting increasing interest for the safe destruction of localised tumours in a range of organs. However, most photosensitising drugs require a delay of hours to days between drug administration and light activation with skin photosensitivity that may last for weeks. WST09 (Tookad) is a new faster acting photosensitiser that clears within a few hours. In normal rat colon, after sensitisation with an intravenous bolus of WST09, light was delivered to a single point on the mucosa and the extent of PDT necrosis measured 3 days later. The lesion diameter was greatest with the highest dose of drug and light and the shortest drug light interval (DLI), falling rapidly with a DLI more than 5 min. In tumours transplanted subcutaneously or into the colon, the extent of necrosis only started falling with a DLI greater than 15 min, suggesting a possible window for tumour selectivity. Histological changes 3 days after PDT were essentially the same as those seen with longer acting photosensitisers. The lesion dimensions were comparable to the largest ones seen with other photosensitisers under similar experimental conditions. We conclude that WST09 is a powerful photosensitiser that produces PDT effects similar to those seen with longer acting drugs, but with the major advantages of a short DLI and rapid clearance.  相似文献   

3.
Photodynamic therapy (PDT) is a promising approach to the local destruction of malignant tumours, but little work has been done to determine which factors control the extent of tissue necrosis produced. Using a new photosensitiser, a sulphonated aluminium phthalocyanine (AlSPc) and light from an argon ion pumped dye laser at 675 nm, we quantified the effects of interstitial PDT in a transplantable fibrosarcoma in rats. At 100mW laser power, thermal effects were comparable to those of PDT, so subsequent studies were carried out at 50 mW, where thermal effects were minimal. The depth of PDT necrosis increased with the logarithm of the applied energy. Tissue concentration of AlSPc was measured by alkali extraction and at all times after sensitisation, correlated well with the necrosis produced with a given light dose. Peak tumour concentration of AlSPc occurred 24-48 h after sensitisation compared with a peak at 3 h in muscle. The peak ratio tumour:muscle was 2:1 at 24 h. Apart from a different time interval to reach the peak sensitiser concentration, the extent of tumour damage varied with the light and sensitiser parameters in a similar way to that found in normal liver, although the optical penetration depth was greater in the tumour (2.5 mm vs. 1.8 mm). At doses of AlSPc below 1 mg kg-1 the diameter of necrosis increased with the logarithm of the dose of sensitiser, and doubling the dose from 0.25 to 0.5 mg kg-1 increased the depth of necrosis by 50%. However, at higher doses, the changes were smaller and increasing the dose from 2.5 to 5 mg kg-1 only increased the necrosis by 10% for the same light dose. In all dose ranges, a given percentage increase in the tissue concentration of AlSPc gave a much smaller percentage increase in the extent of necrosis for the same light dose, suggesting that selectivity of necrosis between tumour and normal tissue is likely to be much less than the selectivity of retention of the photosensitiser. From these results, the extent of PDT necrosis in this fibrosarcoma is as predictable as it is in normal liver if the light dose, tissue concentration of AlSPc and optical penetration depth of the tissue are known. Further studies are now required on different tumour models to establish how tumours respond compared with adjacent normal tissue when the tumour is growing in its organ of origin rather than the non-physiological situation using a transplantable tumour as in this study.  相似文献   

4.
Photodynamic therapy (PDT) is a promising technique for the treatment of small tumours in organs where it is essential to minimise damage to immediately adjacent normal tissue as PDT damage to many tissues heals by regeneration rather than scarring. As preservation of function is one of the main aims of treating laryngeal tumours, this project studied the effects of PDT on the normal rabbit larynx with two photosensitisers, endogenous protoporphyrin IX (PPIX) induced by the administration of 5-aminolaevulinic acid (ALA) and disulphonated aluminium phthalocyanine (AIS2Pc). The main aims of the study were to examine the distribution of protoporphyrin IX and AIS2Pc by fluorescence microscopy in the different regions of the larnyx and to assess the nature and subsequent healing of PDT damage. Peak levels of PPIX were found 0.5-4 h after administration of ALA (depending on dose) with highest levels in the epithelium of the mucosa. With 100 mg kg-1, PDT necrosis was limited to the mucosa, whereas with 200 mg kg-1 necrosis extended to the muscle. With 1 mg kg-1 AIS2Pc, 1 h after administration, the drug was mainly in the submucosa and muscle, whereas after 24 h, it was predominantly in the mucosa. PDT at 1 h caused deep necrosis whereas at 24 h it was limited to the mucosa. All mucosal necrosis healed by regeneration whereas deeper effects left some fibrosis. No damage to cartilage was seen in any of the animals studied. The results of this study have shown that both photosensitisers are suitable for treating mucosal lesions of the larynx, but that for both it is important to optimise the drug dose and time interval between drug and light to avoid unacceptable changes in normal areas.  相似文献   

5.
Selective sensitisation of malignant tumours to monochromatic light (photodynamic therapy, PDT) is a promising approach to cancer treatment, but current sensitisers are unsatisfactory and the parameters controlling effects produced in normal and neoplastic tissue are poorly understood. To quantify the effects in a relatively homogeneous organ, we carried out experiments in the livers of normal rats following systemic sensitisation with haematoporphyrin derivative (HpD) and a new sensitiser, a sulphonated aluminium phthalocyanine (AlSPc) using light from an Argon pumped tunable dye laser. Damage from PDT (dominant at 100 mW laser power) could be distinguished from that due to local hyperthermia (dominant at 400 mW). For both sensitisers, the extent of PDT necrosis increased with the applied light energy and was abolished by occluding the hepatic blood flow during therapy. With HpD, the extent of PDT necrosis was maximum with only a few hours between sensitisation and therapy, and was not detectable when this interval was increased to a week. With AlSPc, the extent of necrosis in liver changed little with sensitisation times from 1 h to 1000 h (6 weeks), and declined slowly thereafter, matching the amount of AlSPc measurable by alkali extraction, although prolonged photosensitisation was not seen with AlSPc in muscle. Less cutaneous photosensitivity was seen with AlSPc than with HpD. AlSPc is easier to produce and handle than HpD, has a more appropriate strong absorption peak (at 675 nm) and from these results, warrants further study as a photosensitiser for PDT.  相似文献   

6.
Photodynamic therapy of cancer exposes adjacent arteries to the risk of injury and the possibility of haemorrhage and thrombosis. The nature of photodynamic injury to normal arteries has not been satisfactorily defined, and the ability of arteries to recover with time is unclear. To clarify these issues, we have investigated the effects of PDT on rat femoral arteries, using a second-generation photosensitiser, disulphonated aluminium phthalocyanine, and a new method of photosensitisation, using endogenous synthesis of protoporphyrin IX following systemic administration of 5-aminolaevulinic acid (ALA). Pharmacokinetic studies of sensitiser fluorescence were carried out to determine peak levels of sensitiser. Subsequently photodynamic therapy at times corresponding to maximal fluorescence was performed using two light doses, 100 and 250 J cm-2. The nature of injury sustained and recovery over a 6 month period was investigated. Three days following PDT, all vessels treated showed complete loss of endothelium, with death of all medial smooth muscle cells, leaving an acellular flaccid artery wall. No vascular occlusion, haemorrhage or thrombosis was found. A striking feature was the lack of inflammatory response in the vessel wall at any time studied. Re-endothelialisation occurred in all vessels by 2 weeks. The phthalocyanine group showed repopulation of the media with smooth muscle cells to be almost complete by 3 months. However, the ALA group failed to redevelop a muscular wall and remained dilated at 6 months. Luminal cross-sectional area of the ALA-treated group was significantly greater than both control and phthalocyanine groups at 6 months. All vessels remained patent. This study indicates that arteries exposed to PDT are not at risk of catastrophic haemorrhage or occlusion, a finding that is of significance for both the local treatment of tumours and the use of PDT as an intraoperative adjunct to surgery for the ablation of microscopic residual malignant disease.  相似文献   

7.
The photodynamic properties and biodistribution pattern of zinc dodecafluoro-4-sulphophthalocyanine (ZnPcF12S1), zinc hexadecafluorophthalocyanine (ZnPcF16) and zinc phthalocyanine (ZnPc) were evaluated in the murine EMT-6 tumour model. All 3 dyes were formulated as a Cremophor oil–water emulsion after initial solubilization in methanol, acetone and pyridine, respectively. Comparison of their phototoxicity after in vitro incubation with EMT-6 cells and exposure to various fluences of red light showed that ZnPcF12S1 is about 50 times more active than ZnPcF16, reflecting better cell-penetrating properties. Solubilisation of ZnPc in 1-methyl-2-pyrrolidinone prior to formulation resulted in loss of photo-activity upon dilution in serum due to precipitation of the dye in the aqueous environment. In contrast, initial solubilisation in pyridine likely forms a ZnPc-pyridinium salt, and this preparation was 6 times more phototoxic than ZnPcF12S1. In vivo comparison of monosulphonated ZnPcF12S1 with perfluorinated ZnPcF16 showed improved pharmacokinetics in mice, including lower liver and spleen retentions and higher tumour-to-non-target tissue ratios. However, photodynamic therapy (PDT) of the EMT-6 tumour in BALB/c mice with red light, 24 or 48 hr post-injection of 1 μmol · kg−1 of ZnPcF12S1 induced mortality. Lowering the drug and/or light dose or extending the time interval between drug administration and irradiation to 72 hr avoided adverse effects but also resulted in poor tumour response. The best tumour control (25% of animals) was obtained at 0.1 μmol · kg−1 and a fluence of 400 J · cm−2 at 24 hr post-injection. In contrast, ZnPcF16 required a 20-fold higher drug dose to induce a similar tumour response. The systemic shock following PDT with the amphiphilic ZnPcF12S1 likely results from extensive cellular effects. Int. J. Cancer 72:289–294, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
This is the first report on the photodynamic treatment with a second-generation sensitizer, chloro-aluminum sulfonated phthalocyanine (CASPc) of spontaneously arising tumors and on the photodynamic therapy (PDT) of snake neoplasms. Each of 10 cats, 2 dogs, and 3 snakes presenting with a variety of tumor types (squamous cell carcinoma, mast cell malignant tumor, and mixed carcinoma/sarcoma) was given an intravenous injection of 1 mg of CASPc per kilogram body weight 48 hours prior to irradiation with 675-nm light. Some larger tumors (greater than 1.5 cm deep) were surgically debulked prior to PDT. No significant systemic toxicity or skin photosensitization was observed in any animal. The tumor responses were comparable to those seen with conventional cryotherapy, hyperthermia, or surgery. PDT with CASPc of these cases led to 67% (12 of 18) complete response, 22% (4 of 18) partial response, and 11% (2 of 18) no response (less than 50% reduction in tumor size). Four cases could not be evaluated. Since the overall tumor response to CASPc is very good, and the problem of skin photosensitivity is nonexistent, it is expected that using CASPc-PDT to eradicate human tumors would also yield comparable results. Further studies with long-term follow-up are necessary to optimize the use of CASPc-PDT in veterinary and human medicine.  相似文献   

9.
Dysplasia in the upper gastrointestinal tract carries a risk of invasive malignant change. Surgical excision of the affected organ is the only treatment available. Photodynamic therapy has been shown to be promising in the treatment of early and superficial tumours and may be useful for the ablation of dysplastic mucosa. Because of the diffuse nature of the disease, such treatment would necessarily involve destruction of large areas of mucosa and it is desirable to confine its effect to the mucosa in order that safe healing can take place. By means of photometric fluorescence microscopy, we have studied the pattern of photosensitisation in the normal rat stomach using di-sulphonated aluminium phthalocyanine (AlS2Pc) and 5-aminolaevulinic acid (ALA) as photosensitisizers. AlS2Pc resulted in a panmural photosensitisation of the gastric wall with the highest level encountered in the submucosa. The mucosa and muscularis propria were sensitised to equal extent. Following light exposure, a full thickness damage resulted. ALA is a natural porphyrin precursor and exogenous administration gave rise to accumulation of protoporphyrin IX (PPIX) in the cells. The resultant pattern of photosensitisation was predominantly mucosal and its photodynamic effect was essentially confined to the mucosa. ALA produced a selective photosensitisation of the gastric mucosa for its photodynamic ablation with sparing the underlying tissue layers.  相似文献   

10.
Subcutaneous and intracranial VMDk tumours were treated with photodynamic therapy (PDT) using a new sensitiser, m-THPP. Subcutaneous tumours were highly sensitive to PDT but intracranial tumours were much more resistant, requiring a 30-fold increase in sensitiser dose to produce equivalent levels of necrosis. Resistance of intracerebral tumours was not due to failure of the sensitiser to enter tumours. Necrosis of intracranial tumours was increased when mice breathed 100% oxygen during PDT while subcutaneous tumour necrosis was unaffected.  相似文献   

11.
Photodynamic therapy (PDT) using the silicon phthalocyanine photosensitizer Pc 4 [HOSiPcOSi(CH3)2(CH2)3N-(CH3)2] is an oxidative stress associated with induction of apoptosis in various cell types. We assessed the effectiveness of Pc 4-PDT on SW480 colon cancer xenografts grown in athymic nude mice. Animals bearing xenografts were treated with 1 mg/kg body weight Pc 4 and 48 h later were irradiated with 150 J/cm2 672-nm light from a diode laser delivered at 150 mW/cm2. Biochemical studies were performed in xenografts resected at various time points up to 26 h after Pc 4-PDT treatment, whereas tumor size was evaluated over a 4-week period in parallel experiments. In the tumors resected for biochemical studies, apoptosis was visualized by activation of caspase-9 and caspase-3 and a gradual increase in the cleavage of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) to a maximum of approximately 60% of the total PARP present at approximately 26 h. At that time all Pc 4-PDT-treated tumors had regressed significantly. Two signaling responses that have previously been shown to be associated with Pc 4-PDT-induced apoptosis in cultured cells, p38 mitogen-activated protein kinase and p21/WAF1/Cip1, were examined. A marked increase in phosphorylation of p38 was observed within 1 h after Pc 4-PDT without changes in levels of the p38 protein. Levels of p21 were not altered in the xenografts in correspondence with the presence of mutant p53 in SW480 cells. Evaluation of tumor size showed that tumor growth resumed after a delay of 9-15 days. Our results suggest that: (a) Pc 4-PDT is effective in the treatment of SW480 human colon cancer xenografts independent of p53 status; (b) PARP cleavage may be mediated by caspase-9 and caspase-3 activation in the Pc 4-PDT-treated tumors; and (c) p38 phosphorylation may be a trigger of apoptosis in response to PDT in vivo in this tumor model.  相似文献   

12.
Photodynamic therapy (PDT) of tumors and other diseases is based on the uptake of a photosensitizing dye in target cells, which are damaged by reactive oxygen intermediates generated on irradiation with light in which the wavelengths match the dye absorption spectrum. PDT can induce cell death by necrosis and apoptosis both in vivo and in vitro, but the factors determining the contribution of either mechanism to the overall process are not completely defined. Our studies on the photosensitization of 4R transformed fibroblasts with the second-generation photosensitizer zinc (II) phthalocyanine (ZnPc) aim at determining the effect of important experimental parameters such as time of cell incubation (2 or 24 h) with ZnPc before irradiation and ZnPc concentration in the incubation medium on cell death. Furthermore, we propose possible correlations between the cell death mechanism and primary photo-damage sites; these are mainly determined by the intracellular localization of the photosensitizer. The mechanism of cell death was determined by both electron microscopy analysis of the morphological alterations induced by photosensitization and measurement of caspase 3 activation. The initial photodamage sites were determined by measuring the activities of several functions typical of mitochondria, lysosomes, Golgi apparatus, cytosol, and plasma membrane. The intracellular localization of ZnPc after 2- or 24-h incubation was determined by fluorescence microscopy. Necrosis, associated with early loss of plasma membrane integrity and complete depletion of intracellular ATP, represents the prevailing mode of death for 4R cells dark-incubated for 2 h with ZnPc and irradiated with light doses reducing viability by 99.9%. In contrast, irradiation performed 24 h after ZnPc incubation causes only partial inhibition of plasma membrane activities, and cell death occurs largely by apoptosis. ZnPc is mainly localized in the Golgi apparatus after 2- and 24-h incubation, and in all of the cases this compartment represents a primary target of photodamage. Only after prolonged incubation is mitochondrial localization of ZnPc clearly detected by fluorescence microscopy; this could be a determining factor for promotion of apoptosis. Our data demonstrate that it is possible to modulate the mechanism of cell death by appropriate protocols; this may be relevant for enhancing the therapeutic efficacy of PDT.  相似文献   

13.
m-Tetra(hydroxyphenyl)chlorin (m-THPC, Foscan, Temoporfin) has an unusually high photodynamic efficacy which cannot be explained by its photochemical properties alone. In vivo interactions are therefore of critical importance in determining this high potency. The pharmacokinetics of m-THPC in a rat tumour model was determined using (14)C m-THPC in an LSBD(1) fibrosarcoma implanted into BDIX rats. The photodynamic therapy (PDT) efficacy was determined at different drug administrations to light intervals and correlated with the tumour and plasma pharmacokinetic data. The plasma pharmacokinetics of m-THPC can be interpreted by compartmental analysis as having three half-lives of 0.46, 6.91 and 82.5 h, with a small initial volume of distribution, suggesting retention in the vascular compartment. Tissues of the reticuloendothelial system showed high accumulation of m-THPC, particularly the liver. PDT efficacy of m-THPC over the same time course seemed to exhibit two peaks of activity (2 and 24 h), in terms of tumour growth delay with the peak at 24 h postinjection correlating to the maximum tumour concentration. Investigation on tumour cells isolated from m-THPC-treated tumours suggested that the peak PDT activity at 2 h represents an effect on the vasculature while the peak at 24 h shows a more direct response. These results indicate that the in vivo PDT effect of m-THPC occurs via several mechanisms.  相似文献   

14.
PDT of rat bladder cancer, induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) was studied. All animals were divided at random into three groups. Group 2 and 3 were treated by hematoporphyrin derivative (HPD)-laser PDT while group 1, without treatment, served as control. The results showed that the malignant lesions could be selectively and obviously destroyed, if the whole tumor area were sufficiently exposed to the laser irradiation. However, the normal bladder epithelium and muscle layer showed no histologic change. Similar reactions were found in papilloma of bladder which was considered as precancerous lesion. Thus, PDT may be beneficial to cancer prevention. Its role in prevention and treatment of bladder cancer should be further studied experimentally and clinically.  相似文献   

15.
Neuroendocrine tumours (NET) of the digestive tract comprise a broad range of malignancies. The therapeutic approach to these tumours has not evolved as it did in other tumour types in the last two decades. The deeper knowledge of the underlying molecular biology behind the growth of neuroendocrine cells has brought much information to light. We now know that somatostatin analogues may not only be considered as symptomatic treatment but also as antitumour agents. Sunitinib, a tyrosine kinase (TK) inhibitor with antiangiogenic and antitumoural properties, has been shown to induce significant improvement in progression-free survival in a randomised trial conducted in well-differentiated pancreatic islet-cell NETs. The relevance of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway seems to be crucial in gastroenteropancreatic (GEP)-NETs. In fact, mTOR inhibitors have shown activity in uncontrolled trials, and large, randomised trial results will be available shortly. In this article, we summarise the most recent available data on medical therapy for GEPNETs.  相似文献   

16.
Photodynamic therapy utilizes a tumour-localizing photosensitive substance which, when activated by light of an appropriate wavelength, releases cytotoxic substances causing destruction of the malignant tumour with preservation of surrounding normal tissues. In this technique the only drug/light combination which has been regularly used to date is that of haematoporphyrin derivative and red light at a wavelength of 630 nm usually produced by a dye or gold vapour laser. A pilot/feasibility study was set up in Southampton in 1983, with ethical permission, to treat tumours of the skin and head and neck which had failed all other treatment modalities or for which there was no practical alternative therapy. Thirty-eight patients were treated in this study and all tumours showed a response; significant palliation was achieved in a number of patients. Basal cell carcinomas and the multiple lesions of Bowen's disease were found to be particularly suitable for this form of therapy and prolonged local control was achieved in a number of patients.  相似文献   

17.
Photodynamic therapy (PDT) is a novel treatment modality that produces local tissue necrosis with laser light after prior administration of a photosensitizing agent. We performed a study of topically applied 5-aminolevulinic acid (5-ALA) in the photodynamic treatment of women with high-grade cervical intraepithelial neoplasia (CIN) using fixed 5-ALA doses and application protocols derived from previous in vitro and in vivo results. Three to 5 hr prior to PDT, 10 ml of a 20% solution of 5-ALA was topically applied using a cervical cap. PDT was performed with irradiation of 100 J/cm2 at an irradiance of 100-150 mW/cm2 with an argon-ion-pumped dye laser at 635 nm. For the endocervix, a specifically designed cylindrical applicator was used. Ten treatment cycles of PDT using 5-ALA were performed in 7 patients with high-grade CIN. Non-thermal laser treatment with 100-150 mW/cm2 was well tolerated. Local toxicity was minor as several patients reported burning sensations and vaginal discharge, but no necrosis, sloughing or scarring occurred. After 3 months, a significant reduction in the size of the ectocervical CIN lesions was noted in only 3 patients, who underwent a second PDT cycle. However, no significant improvement in CIN lesions was noted since cold knife conization revealed persistent CIN in all 7 cases. Therefore, PDT after topical application of 5-ALA using an irradiation of 100 J/cm2 produces only minimal side effects. However, it does not appear to be effective in treating CIN.  相似文献   

18.
Photodynamic (PDT) therapy is a relatively new technique with unique properties that make it attractive for the local treatment of superficial epithelial disorders. The objective of this study was to investigate the clinical response of PDT with the photosensitizing agent 5-aminolevulinic acid (5-ALA) in patients with vulvar intraepithelial neoplasia (VIN) grades 1 to 3. Twenty-five patients with 111 lesions of VIN 1-3 were topically sensitized with 10 ml of a 20% solution of 5-ALA and treated with 57 cycles of laser light at 635 nm (100 J/cm(2)). Seventy (64%) of the 111 VIN lesions regressed after various PDT cycles. A complete response was achieved in 13 patients (52%) with 27 lesions. All patients with VIN 1 and mono- and bifocal VIN 2-3 showed complete clearance. However, a complete response could be achieved in only 4 (27%) of 15 women with multifocal VIN 2-3, whereas a partial response was noted in 9 of these patients with a total of 70 lesions, out of which 44 (63%) lesions disappeared. No response was seen in 2 patients with multifocal VIN 3. Histological assessment of the fluorescence-directed biopsies revealed that increased pigmentation and hyperkeratosis of the lesions were associated with low response rates. PDT using 5-ALA represents an alternative treatment modality for VIN which is easy to perform and has the advantage of minimal tissue destruction, low side effects and excellent cosmetic results. However, multifocal VIN disease with pigmented and hyperkeratinic lesions remains difficult to treat.  相似文献   

19.

Background:

Therapies targeted towards the tumour vasculature can be exploited for the purpose of improving the systemic delivery of oncolytic viruses to tumours. Photodynamic therapy (PDT) is a clinically approved treatment for cancer that is known to induce potent effects on tumour vasculature. In this study, we examined the activity of PDT in combination with oncolytic vaccinia virus (OVV) against primary and metastatic tumours in mice.

Methods:

The effect of 2-[1-hexyloxyethyl-]-2-devinyl pyropheophorbide-a (HPPH)-sensitised-PDT on the efficacy of oncolytic virotherapy was investigated against subcutaneously implanted syngeneic murine NXS2 neuroblastoma and human FaDu head and neck squamous cell carcinoma xenografts in nude mice. Treatment efficacy was evaluated by monitoring tumour growth and survival. The effects of combination treatment on vascular function were examined using magnetic resonance imaging (MRI) and immunohistochemistry, whereas viral replication in tumour cells was analysed by a standard plaque assay. Normal tissue phototoxicity following PDT-OV treatment was studied using the mouse foot response assay.

Results:

Combination of PDT with OVV resulted in inhibition of primary and metastatic tumour growth compared with either monotherapy. PDT-induced vascular disruption resulted in higher intratumoural viral titres compared with the untreated tumours. Five days after delivery of OVV, there was a loss of blood flow to the interior of tumour that was associated with infiltration of neutrophils. Administration of OVV did not result in any additional photodynamic damage to normal mouse foot tissue.

Conclusion:

These results provide evidence into the usefulness of PDT as a means of enhancing intratumoural replication and therapeutic efficacy of OV.  相似文献   

20.
Photodynamic therapy (PDT) is a noninvasive optical treatment method in which the topical or systemic delivery of photosensitizing drugs is followed by irradiation with broadband red light. Coupling photosensitizers with a specific antibody may allow this approach to target specific cancers. This study determines the antitumor efficacy of coupling verteporfin (Visudyne(?)), a hydrophobic polyporphryin oligomer, with an antiepidermal growth factor receptor (anti-EGFR) antibody. Poly[2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate-co-p-nitrophenylcarbonyloxyethyl methacrylate] (PMBN) was conjugated with an anti-EGFR antibody and mixed with verteporfin (verteporfin-PMBN-antibody complex). Tumor-bearing mice were intravenously injected with the verteporfin-PMBN-antibody complex or verteporfin plus PMBN without the antibody. Irradiation was conducted at 640?nm with a dose of 75?J/cm(2). The fluorescence intensity in A431 cells in vitro was threefold higher after exposure to verteporfin-PMBN-antibody complex than after exposure to verteporfin-PMBN. In A431 tumor-bearing mice, the intratumor concentration of verteporfin was 9.4 times higher than that of the skin, following administration of the verteporfin-PMBN-antibody complex. Tumor size significantly decreased within 8 days in mice treated with verteporfin-PMBN-antibody complex compared with those treated with verteporfin-PMBN. PDT using a PMBN-verteporfin-antibody complex offers a promising anticancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号