首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The type II collagenopathies represent a group of chondrodysplasias sharing clinical and radiological manifestations which are expressed as a continuous spectrum of phenotypes, ranging from perinatally lethal to very mild conditions. Their common molecular bases are mutations in the type II collagen gene (COL2A1). We describe one case of lethal platyspondylic dysplasia, Torrance type, and a variant of lethal Kniest dysplasia, neither of which has been reported as a type II collagenopathy. Biochemical studies of cartilage collagens and morphological analysis of cartilage sections suggest that abnormalities of type II collagen structure and biosynthesis are the main pathogenetic factors in both cases. Thus, the phenotypic spectrum of type II collagenopathies might be greater than hitherto suspected. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Achondrogenesis II-hypochondrogenesis and severe spondyloepiphyseal dysplasia congenita (SEDC) are lethal forms of dwarfism caused by dominant mutations in the type II collagen gene (COL2A1). To identify the underlying defect in seven cases with this group of conditions, we used the combined strategy of cartilage protein analysis and COL2A1 mutation analysis. Overmodified type II collagen and the presence of type I collagen was found in the cartilage matrix of all seven cases. Five patients were heterozygous for a nucleotide change that predicted a glycine substitution in the triple helical domain (G313S, G517V, G571A, G910C, G943S). In all five cases, analysis of cartilage type II collagen suggested incorporation of the abnormal alpha1(II) chain in the extracellular collagen trimers. The G943S mutation has been reported previously in another unrelated patient with a strikingly similar phenotype, illustrating the possible specific effect of the mutation. The radiographically less severely affected patient was heterozygous for a 4 bp deletion in the splice donor site of intron 35, likely to result in aberrant splicing. One case was shown to be heterozygous for a single nucleotide change predicted to result in a T1191N substitution in the carboxy-propeptide of the proalpha1(II) collagen chain. Study of the clinical, radiographic, and morphological features of the seven cases supports evidence for a phenotypic continuum between achondrogenesis II-hypochondrogenesis and lethal SEDC and suggests a relationship between the amount of type I collagen in the cartilage and the severity of the phenotype.  相似文献   

3.
Kniest dysplasia is a moderately severe type II collagenopathy, characterized by short trunk and limbs, kyphoscoliosis, midface hypoplasia, severe myopia, and hearing loss. Mutations in the gene that encodes type II collagen (COL2A1), the predominant protein of cartilage, have been identified in a number of individuals with Kniest dysplasia. All but two of these previously described mutations cause in-frame deletions in type II collagen, either by small deletions in the gene or splice site alterations. Furthermore, all but one of these mutations is located between exons 12 and 24 in the COL2A1 gene. We used heteroduplex analysis to identify sequence anomalies in five individuals with Kniest dysplasia. Sequencing of the index patients' genomic DNA identified four new dominant mutations in COL2A1 that result in Kniest dysplasia: a 21-bp deletion in exon 16, an 18-bp deletion in exon 19, and 4-bp deletions in the splice donor sites of introns 14 and 20. A previously described 28-bp deletion at the COL2A1 exon 12–intron 12 junction, deleting the splice donor site, was identified in the fifth case. The latter three mutations are predicted to result in exon skipping in the mRNA encoded from the mutant allele. These data suggest that Kniest dysplasia results from shorter type II collagen monomers, and support the hypothesis that alteration of a specific COL2A1 domain, which may span from exons 12 to 24, leads to the Kniest dysplasia phenotype. Am. J Med. Genet. 85:105–112, 1999. Published 1999 Wiley-Liss, Inc.  相似文献   

4.
The involvement of the cartilage specific type II collagen gene (COL2A1) was studied in nine patients with diastrophic dysplasia in the Finnish population, where the prevalence of this chondrodystrophy clearly exceeds that reported for other populations. COL2A1 was chosen as the candidate gene based on previous morphological and chemical studies which suggested abnormal structure of type II collagen in diastrophic dysplasia. Southern analysis of the patients' DNA showed no disease related differences in any of the restriction fragments covering the 30 kb COL2A1 gene. As a second approach, the nine patients and their 74 relatives were studied for the inheritance of the type II collagen gene. Three of the patients with diastrophic dysplasia were not homozygous for the intragenic RFLP markers, which suggests that the disease is not linked to the type II collagen gene. Multipoint linkage analysis gave a lod score of -2.95, which conclusively excluded the COL2A1 gene as the mutation site in diastrophic dysplasia in these families.  相似文献   

5.
The type II collagenopathies include a wide spectrum of phenotypes ranging from mild spondylo epiphyseal dysplasia (SED) to severe achondrogenesis/ hypochondrogenesis. Several attempts have been made at providing phenotype-genotype correlations in this group of disorders. In this report we discuss a South African family in which four members have a phenotype resembling Stickler syndrome type 1. Ocular problems and conductive deafness predominate, while skeletal changes resemble those of a mild form of multiple epiphyseal dysplasia (MED). In distinction to the classical form of Stickler syndrome, the affected persons have stubby digits. DNA analysis of the exons of the COL2A1 gene documented a C-T transversion in exon 39, resulting in an Arg704Cys substitution in the triple helical domain of the type II collagen peptide; this nontermination mutation may be indicative of further heterogeneity in the Stickler group of disorders or of a new syndrome amongst the type II collagenopathies. Am. J. Med. Genet. 80:6–11, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
7.
COL2A1-related skeletal dysplasias with predominant metaphyseal involvement   总被引:1,自引:0,他引:1  
Skeletal dysplasias induced by mutations in the collagen 2 gene (the so-called "type 2 collagenopathies") form a wide spectrum in severity and are distinguished by subtle clinical and radiographic differential signs. The unifying features are predominant involvement of the vertebral bodies and the epiphyses of the long bones ("spondylo-epiphyseal" pattern). A mild degree of metaphyseal dysplasia can be seen in the so-called Strudwick variant of spondyloepimetaphyseal dysplasia and is generally mild or absent in other forms.We report here on four individuals with COL2A1 mutations associated with marked metaphyseal involvement with only mild epiphyseal and spondylar changes. One patient who carried a Gly283Arg substitution had a pattern of metaphyseal dysplasia that corresponded precisely to what was termed "Murdoch type metaphyseal dysplasia" in 1960s and was renamed Strudwick type SEMD in 1980s; the second patient carried a Gly181Arg substitution and had severe metaphyseal dysplasia with fractures at the metaphyses reminiscent of the "corner fractures" or Sutcliffe type spondylometaphyseal dysplasia. The third patient also had major metaphyseal involvement but more epiphyseal changes than the others in this study and had a Gly922Arg mutation in COL2A1. The final patient had a small in-frame deletion and unusually ballooned and distorted metaphyses.While it remains true that most individuals with COL2A1 mutations have chondrodysplasia with a spondylo-epiphyseal pattern, metaphyseal involvement is not incompatible with a COL2A1 dysplasia and mutation analysis can be indicated. The observation of these individuals with metaphyseal dysplasia indicates that the phenotypic spectrum associated with mutations in type 2 collagen, the main cartilage protein, is even wider than hitherto assumed.  相似文献   

8.
Czech dysplasia metatarsal type is an autosomal-dominant disorder characterized by an early-onset, progressive spondyloarthropathy with normal stature. Shortness of third and/or fourth toes is a frequently observed clinical feature. Similarities between individuals with this dysplasia and patients with an R275C mutation in the COL2A1 gene, prompted us to analyze the COL2A1 gene in the original families reported with Czech dysplasia. Targeted sequencing of exon 13 of the COL2A1 gene was performed, followed by sequencing of the remaining exons in case the R275C mutation was not identified. We identified the R275C substitution in two of the original patients reported with Czech dysplasia and three additional patients. All affected individuals had a similar phenotype characterized by normal height, spondyloarthropathy, short postaxial toes and absence of ocular and orofacial anomalies. The R275C mutation was excluded in a third patient reported with Czech dysplasia. However, the identification of the Y1391C mutation in this patient with disproportionate short stature made the diagnosis of spondyloperipheral dysplasia (SPD) more probable. The Y1391C mutation is located in the C-propeptide of the procollagen chain and has been reported before in a patient with the Torrance type of lethal platyspondylic skeletal dysplasia (PLSD-T). Our observation of the same Y1391C mutation in an additional unrelated patient with SPD further supports the evidence that PLSD-T and SPD represent a phenotypic continuum. The R275C mutation in the COL2A1 gene causes a specific type II collagen disorder that was recently delineated as Czech dysplasia.  相似文献   

9.
Platyspondylic lethal skeletal dysplasia (PLSD) Torrance type (PLSD-T) is a rare skeletal dysplasia characterized by platyspondyly, brachydactyly, and metaphyseal changes. Generally a perinatally lethal disease, a few long-term survivors have been reported. Recently, mutations in the carboxy-propeptide of type II collagen have been identified in two patients with PLSD-T, indicating that PLSD-T is a type 2 collagen-associated disorder. We studied eight additional cases of PLSD-T and found that all had mutations in the C-propeptide domain of COL2A1. The mutational spectrum includes missense, stop codon and frameshift mutations. All non-sense mutations were located in the last exon, where they would escape non-sense-mediated RNA-decay. We conclude that PLSD-T is caused by mutations in the C-propeptide domain of COL2A1, which lead to biosynthesis of an altered collagen chain (as opposed to a null allele). Similar mutations have recently been found to be the cause of spondyloperipheral dysplasia, a non-lethal dominant disorder whose clinical and radiographical features overlap those of the rare long-term survivors with PLSD-T. Thus, spondyloperipheral dysplasia and PLSD-T constitute a novel subfamily within the type II collagenopathies, associated with specific mutations in the C-propeptide domain and characterized by distinctive radiological features including metaphyseal changes and brachydactyly that set them apart from other type 2 collagenopathies associated with mutations in the triple-helical domain of COL2A1. The specific phenotype of C-propeptide mutations could result from a combination of diminished collagen fibril formation, toxic effects through the accumulation of unfolded collagen chains inside the chondrocytes, and alteration of a putative signaling function of the carboxy-propeptide of type 2 collagen.  相似文献   

10.
11.
The features of a child with spondyloepiphyseal dysplasia congenita resulting from a mutation in one COL2A1 allele were studied. The child was heterozygous for a G to A transition in exon 48 that resulted in the substitution of glycine 997 by serine in the triple helical domain of alpha 1(II) chains of type II collagen. Her longitudinal growth was close to the mean growth curve for children with this chondrodysplasia. Expression of the mutation by chondrocytes would account for the abnormal growth and development of the bones of the limbs and spine. Early expression of the mutation by epithelial cells and later expression by chondrocytes of the developing craniofacial structures would also account for her complex pattern of craniofacial anomalies. The findings in this study confirm that mutations of exon 48 of the COL2A1 gene, that alter the normal Gly-X-Y triplet structure of the corresponding region of alpha 1(II) chains of type II collagen, produce the spondyloepiphyseal dysplasia congenita phenotype.  相似文献   

12.
The COL2A1 gene encodes the alpha-1 chain of type II procollagen. Type II collagen, comprised of three identical alpha-1 chains, is the major component of cartilage. COL2A1 gene variants are the etiologies of genetic diseases, termed type II collagenopathies, with a wide spectrum of clinical presentations. To date, at least 460 distinct COL2A1 mutations, identified in 663 independent probands, and 21 definite disorders have been reported. Nevertheless, a well-defined genotype-phenotype correlation has not been established, and few hot spots of mutation have been reported. In this study, we analyzed data of COL2A1 variants and clinical information of patients obtained from the Leiden Open Variation Database 3.0, as well as the currently available relevant literature. We determined the characteristics of the COL2A1 variants and distributions of the clinical manifestations in patients, and identified four likely genotype-phenotype correlations. Moreover, we classified 21 COL2A1-related disorders into five categories, which may assist clinicians in understanding the essence of these complex phenotypes and prompt genetic screening in clinical practice.  相似文献   

13.
An unusual combination of syndactylies, macrocephaly, and severe skeletal dysplasia was observed in a newborn infant. A history of digital anomalies in the father and grandfather lead to the diagnosis of dominantly inherited Greig cephalopolysyndactyly syndrome (GCPS, MIM #175700). Having explained the digital findings and macrocephaly, the skeletal changes were thought to fit best congenital spondyloepiphyseal dysplasia (SEDC MIM #183900), a type II collagen disorder. Molecular analysis confirmed the presence of two dominant mutations in the propositus: a GLI3 mutation (E543X), which was present also in the father and grandfather, and a de novo COL2A1 mutation leading to a G973R substitution. Thus, this boy combined the syndactyly-macrocephaly phenotype of Greig cephalosyndactyly syndrome with a severe form of spondyloepiphyseal dysplasia caused by the structural defect in type II collagen. The diagnostic difficulties posed by the combination of two genetic disorders and the contribution of molecular diagnostics are well illustrated by this case.  相似文献   

14.
We have studied a family with an autosomal dominant form of multiple epiphyseal dysplasia (MED) inherited through at least 5 generations. Bilateral deformity of the hips with subsequent degenerative arthritis was the most common and most severe change observed in the affected relatives. Abnormalities of the knees, ankles, and shoulders were also noted in some affected individuals. Radiological examination showed changes in affected joints consistent with epiphyseal dysplasia. In early stages, the articular surfaces appeared flattened or irregular in shape. In advanced stages, epiphyseal fragmentation, joint surface erosion, and extensive remodeling were observed. The abnormalities of the epiphyses suggested that the primary defect might be in a structural component of the epiphyseal cartilage matrix. The gene encoding type II collagen (COL2A1) was tested for genetic linkage to MED in this family by restriction fragment length polymorphism (RFLP) analysis. Recombination between COL2A1 and MED was observed, ruling out COL2A1 as the site of the mutation. The genes encoding the 3 chains of type VI collagen were also excluded on the basis of discordant inheritance. The disease in this family is therefore not the result of mutations in the genes encoding type II or type VI collagen. © 1993 Wiley-Liss, Inc.  相似文献   

15.
A large family with dominantly inherited rhegmatogenous retinal detachment, premature arthropathy, and development of phalangeal epiphyseal dysplasia, resulting in brachydactyly was linked to COL2A1, the gene encoding proalpha1(II) collagen. Mutational analysis of the gene by exon sequencing identified a novel mutation in the C-propeptide region of the molecule. The glycine to aspartic acid change occurred in a region that is highly conserved in all fibrillar collagen molecules. The resulting phenotype does not fit easily into pre-existing subgroups of the type II collagenopathies, which includes spondyloepiphyseal dysplasia, and the Kniest, Strudwick, and Stickler dysplasias.  相似文献   

16.
Kniest dysplasia is a moderately severe type II collagenopathy, characterized by short trunk and limbs, kyphoscoliosis, midface hypoplasia, severe myopia, and hearing loss. Mutations in the gene that encodes type II collagen (COL2A1), the predominant protein of cartilage, have been identified in a number of individuals with Kniest dysplasia. All but two of these previously described mutations cause in-frame deletions in type II collagen, either by small deletions in the gene or splice site alterations. Furthermore, all but one of these mutations is located between exons 12 and 24 in the COL2A1 gene. We used heteroduplex analysis to identify sequence anomalies in five individuals with Kniest dysplasia. Sequencing of the index patients' genomic DNA identified four new dominant mutations in COL2A1 that result in Kniest dysplasia: a 21-bp deletion in exon 16, an 18-bp deletion in exon 19, and 4-bp deletions in the splice donor sites of introns 14 and 20. A previously described 28-bp deletion at the COL2A1 exon 12-intron 12 junction, deleting the splice donor site, was identified in the fifth case. The latter three mutations are predicted to result in exon skipping in the mRNA encoded from the mutant allele. These data suggest that Kniest dysplasia results from shorter type II collagen monomers, and support the hypothesis that alteration of a specific COL2A1 domain, which may span from exons 12 to 24, leads to the Kniest dysplasia phenotype.  相似文献   

17.
CRTAP and LEPRE1 mutations in recessive osteogenesis imperfecta   总被引:1,自引:0,他引:1  
Autosomal dominant osteogenesis imperfecta (OI) is caused by mutations in the genes (COL1A1 or COL1A2) encoding the chains of type I collagen. Recently, dysregulation of hydroxylation of a single proline residue at position 986 of both the triple-helical domains of type I collagen alpha1(I) and type II collagen alpha1(II) chains has been implicated in the pathogenesis of recessive forms of OI. Two proteins, cartilage-associated protein (CRTAP) and prolyl-3-hydroxylase-1 (P3H1, encoded by the LEPRE1 gene) form a complex that performs the hydroxylation and brings the prolyl cis-trans isomerase cyclophilin-B (CYPB) to the unfolded collagen. In our screen of 78 subjects diagnosed with OI type II or III, we identified three probands with mutations in CRTAP and 16 with mutations in LEPRE1. The latter group includes a mutation in patients from the Irish Traveller population, a genetically isolated community with increased incidence of OI. The clinical features resulting from CRTAP or LEPRE1 loss of function mutations were difficult to distinguish at birth. Infants in both groups had multiple fractures, decreased bone modeling (affecting especially the femurs), and extremely low bone mineral density. Interestingly, "popcorn" epiphyses may reflect underlying cartilaginous and bone dysplasia in this form of OI. These results expand the range of CRTAP/LEPRE1 mutations that result in recessive OI and emphasize the importance of distinguishing recurrence of severe OI of recessive inheritance from those that result from parental germline mosaicism for COL1A1 or COL1A2 mutations.  相似文献   

18.
Heterozygous mutations of COL2A1 create several clinical entities collectively termed type II collagenopathies. These disorders not only impair skeletal growth but also cause ocular and otolaryngological abnormalities. The classical phenotypes include the spondyloepiphyseal dysplasia (SED) spectrum with variable severity, Stickler dysplasia type I (STD-I), and Kniest dysplasia (KND). Most COL2A1 mutations occur in the triple helical region of alpha 1(II) chains: the SED spectrum is mostly attributed to missense mutations that substitute bulky amino acids for glycine residues, STD-I to haploinsufficiency of truncation mutations, and KND to exon skipping due to splice-site mutations. To further elucidate the genotype-phenotype relationship of type II collagenopathies, we examined COL2A1 mutations in 56 families that were suspected of having type II collagenopathies, and found 38 mutations in 41 families. Phenotypes for all 22 missense mutations and one in-frame deletion in the triple helical region fell along the SED spectrum. Glycine to serine substitutions resulted in alternating zones that produce severer and milder skeletal phenotypes. Glycine to nonserine residue substitutions exclusively created more severe phenotypes. The gradient of the SED spectrum did not necessarily correlate with the occurrence of extraskeletal manifestations. All nine truncation or splice-site mutations in the triple helical or N-propeptide region caused STD-I or KND, and extraskeletal changes were inevitable in both phenotypes. All six C-propeptide mutations produced a range of atypical skeletal phenotypes and created ocular, but not otolaryngological, changes.  相似文献   

19.

Background

The majority of COL2A1 missense mutations are substitutions of obligatory glycine residues in the triple helical domain. Only a few non‐glycine missense mutations have been reported and among these, the arginine to cysteine substitutions predominate.

Objective

To investigate in more detail the phenotype resulting from arginine to cysteine mutations in the COL2A1 gene.

Methods

The clinical and radiographic phenotype of all patients in whom an arginine to cysteine mutation in the COL2A1 gene was identified in our laboratory, was studied and correlated with the abnormal genotype. The COL2A1 genotyping involved DHPLC analysis with subsequent sequencing of the abnormal fragments.

Results

Six different mutations (R75C, R365C, R519C, R704C, R789C, R1076C) were found in 11 unrelated probands. Each mutation resulted in a rather constant and site‐specific phenotype, but a perinatally lethal disorder was never observed. Spondyloarthropathy with normal stature and no ocular involvement were features of patients with the R75C, R519C, or R1076C mutation. Short third and/or fourth toes was a distinguishing feature of the R75C mutation and brachydactyly with enlarged finger joints a key feature of the R1076C substitution. Stickler dysplasia with brachydactyly was observed in patients with the R704C mutation. The R365C and R789C mutations resulted in classic Stickler dysplasia and spondyloepiphyseal dysplasia congenita (SEDC), respectively.

Conclusions

Arginine to cysteine mutations are rather infrequent COL2A1 mutations which cause a spectrum of phenotypes including classic SEDC and Stickler dysplasia, but also some unusual entities that have not yet been recognised and described as type II collagenopathies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号