首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The morphology of ganglion cell dendritic trees varies across the cat retina. Evidence is presented that the variation in two attributes of ganglion cell dendritic structure can be accounted for by specific aspects of the topography of the adult and developing retina. The first attribute considered was the displacement of the center of the dendritic field from the cell body in the plane of the retina. The results of this study provide evidence that most ganglion cell dendritic fields are displaced away from neighboring cells, i.e., down the retinal ganglion cell density gradient. Because of the systematic dendritic displacement locally, the centers of the dendritic fields are arranged in a more precise mosaic than are their cell bodies. The second attribute considered was the elongation and orientation of the dendritic fields. From approximately embryonic day 50 to postnatal day 10 the cat retina undergoes a process of maturation (reviewed by Rapaport and Stone: Neuroscience 11:289-301, '84) that begins at the area centralis and spreads over the retina in a horizontally elongated wave. We found that the elongation and orientation of retinal ganglion cell dendritic fields is significantly correlated with the shape of the wave of maturation. The orientation of a dendritic field is not predicted by the direction of its displacement nor is it directly related to the distribution of neighboring retinal ganglion cells. These results indicate that the displacement of a ganglion cell's dendritic field from its cell body results from mechanisms different from those responsible for the orientation of the dendritic field. Factors that may be responsible for these two attributes of ganglion cell dendritic morphology are discussed.  相似文献   

2.
The development of a neuronal dendritic tree is modulated both by signals from afferent fibers and by an intrinsic program. We have previously shown that chronic activation of either type 1 metabotropic glutamate receptors (mGluR1s) or protein kinase C (PKC) in organotypic cerebellar slice cultures of mice and rats severely inhibits the growth and development of the Purkinje cell dendritic tree. The signaling events linking receptor activation to the regulation of dendritic growth remain largely unknown. We have studied whether channels allowing the entry of Ca(2+) into Purkinje cells, in particular the type 3 transient receptor potential cation channels (TRPC3s), P/Q-type Ca(2+) channels, and T-type Ca(2+) channels, might be involved in signaling after mGluR1 or PKC stimulation. We show that the inhibition of dendritic growth seen after mGluR1 or PKC stimulation is partially rescued by pharmacological blockade of P/Q-type and T-type Ca(2+) channels, indicating that activation of these channels mediating Ca(2+) influx contributes to the inhibition of dendritic growth. In contrast, the absence of Ca(2+) -permeable TRPC3s in TRPC3-deficient mice or pharmacological blockade had no effect on mGluR1-mediated and PKC-mediated inhibition of Purkinje cell dendritic growth. Similarly, blockade of Ca(2+) influx through glutamate receptor δ2 or R-type Ca(2+) channels or inhibition of release from intracellular stores did not influence mGluR1-mediated and PKC-mediated inhibition of Purkinje cell dendritic growth. These findings suggest that both T-type and P/Q-type Ca(2+) channels, but not TRPC3 or other Ca(2+) -permeable channels, are involved in mGluR1 and PKC signaling leading to the inhibition of dendritic growth in cerebellar Purkinje cells.  相似文献   

3.
The posterodorsal medial amygdala (MePD) is a sexually dimorphic area and plays a central role in the social behavior network of rats. Dendritic spines modulate synaptic processing and plasticity. Here, we compared the number and structure of dendritic spines in the MePD of prepubertal males and females and postpubertal males with and without sexual experience. Spines were classified and measured after three‐dimensional image reconstruction using DiI fluorescent labeling and confocal microscopy. Significantly differences are as follows: (a) Prepubertal males have more proximal spines, stubby/wide spines with long length and large head diameter and thin and mushroom spines with wide neck and head diameters than prepubertal females, whereas (b) prepubertal females have more mushroom spines with long neck length than age‐matched males. (c) In males, the number of thin spines reduces after puberty and, compared to sexually experienced counterparts, (d) naive males have short stubby/wide spines as well as mushroom spines with reduced neck diameter. In addition, (e) sexually experienced males have an increase in the number of mushroom spines, the length of stubby/wide spines, the head diameter of thin and stubby/wide spines and the neck diameter of thin and mushroom spines. These data indicate that a sexual dimorphism in the MePD dendritic spines is evident before adulthood and a spine‐specific remodeling of number and shape can be brought about by both puberty and sexual experience. These fine‐tuned ontogenetic, hormonally and experience‐dependent changes in the MePD are relevant for plastic synaptic processing and the reproductive behavior of adult rats.  相似文献   

4.
Morphological studies of rabbit retina have identified ganglion cells resembling "alpha" cells but none resembling cat "beta" cells. Four distinct types of class I cell, similar to alpha cells, were identified, each narrowly stratified and differing from the other three principally in the level of dendritic branching. These four levels of dendritic branching flank the two starburst/cholinergic amacrine cell substrata that mark the middle of sublaminae a and b. Compared with the other three, class Ia2 cells are the largest in cell body and dendritic field size, are sometimes homotypically dye coupled, and have slightly broader dendritic stratification. Class Ia2 and the slightly smaller class Ib2 cells form a paramorphic pair. Compared with class I cells, class II cells have smaller dendritic fields; a greater tendency to "tufted" dendritic branching, as shown in the companion paper; branching at one of three levels of the IPL; and similarly narrow stratification. Class IIa and class Ia1 cells branch at the same level, as do class IIb1 and class Ib1 cells. Class IIb2 cells branch slightly nearer the ganglion cell layer than class Ib2 cells and costratify with "blue-ON" cone bipolar cells. The class IIa and IIb2 cells form a paramorphic pair, whereas class IIb1 cells appear to be unpaired. The four types of class I cell probably correspond to ON- and OFF-center brisk-transient, fast-movement and slow-movement cells, whereas the three types of class II cell probably correspond to ON- and OFF-center brisk-sustained and color-coded ON-center X cells.  相似文献   

5.
Retinal ganglion cells (RGCs) convey visual signals to 50 regions of the brain. For reasons of interest and convenience, they constitute an excellent system for the study of brain structure and function. There is general agreement that, absent a complete “parts list,” understanding how the nervous system processes information will remain an elusive goal. Recent studies indicate that there are 30–50 types of ganglion cell in mouse retina, whereas only a few years ago it was still written that mice and the more visually oriented lagomorphs had less than 20 types of RGC. More than 30 years ago, I estimated that rabbits have about 40 types of RGC. The present study indicates that this number is much too low. I have employed the old but powerful method of Golgi-impregnation to rabbit retina, studying the range of component neurons in this already well-studied retinal system. Close quantitative and qualitative analyses of 1,142 RGCs in 26 retinas take into account cell body and dendritic field size, level(s) of dendritic stratification in the retina's inner plexiform layer, and details of dendritic branching. Ninety-one morphologies are recognized. Of these, at least 32 can be correlated with physiologically studied RGCs, dye-injected for morphological analysis. It is unlikely that rabbits have 91 types of RGC, but is argued here that this number lies between 60 and 70. The present study provides a “yardstick” for measuring the output of future molecular studies that may be more definitive in fixing the number of RGC types in rabbit retina.  相似文献   

6.
7.
We have made a fine structural investigation of the synaptic patterns made by axon terminals of retinal ganglion cells in the dorsal lateral geniculate nucleus of the cat. We compared the retinal input to dendritic processes that bear clusters of large appendages with the retinal input to relatively smooth dendritic segments that have only a few isolated spines. The study was restricted to the portion of laminae A and A1 that receive central visual field input. We were able to completely reconstruct 33 individual terminal boutons from long series of consecutive thin sections. Retinal terminals that were presynaptic to dendritic appendages tended to occupy the central position in the complex synaptic zones of geniculate fine structure called glomeruli. These terminals were surrounded by significantly more profiles than retinal terminals that were presynaptic to dendritic stems and averaged twice as many synaptic contacts per terminal bouton. The retinal input to dentritic appendages was heavily involved in a specific synaptic pattern called the triadic arrangement while retinal input to dendritic stems was only lightly involved in triads. Dendritic appendages in triads received greater synaptic input from profiles with flattened vesicles than did the dendritic stems that were found in triads.  相似文献   

8.
Olfactory bulbectomy, neonatal clomipramine administration, and maternal deprivation have been employed as animal models of depression. Each model is unique with respect to the experimental manipulations required to produce "depressive" signs, expression and duration of these signs, and response to antidepressant treatments. Dendritic spines represent a possible anatomical substrate for the enduring changes seen with depression and we have previously shown that chronic antidepressant drug exposure alters the density of hippocampal dendritic spines in an enduring fashion. The purpose of the present study was to determine whether persistent alteration of hippocampal spine density is a common element in each of these different models of depression and whether such alterations could be reversed with chronic antidepressant treatment. The results show that olfactory bulbectomy reduced spine density in CA1, CA3, and dentate gyrus compared to sham-operated controls. Chronic treatment with amitriptyline, a tricyclic antidepressant, reversed the bulbectomy- induced reduction in dendritic spine density in CA1, CA3, and dentate gyrus, whereas treatment with mianserin, an atypical antidepressant, reversed this reduction only in dentate gyrus. On the other hand, neither neonatal clomipramine administration nor maternal deprivation affected hippocampal dendritic spine density. Repeated neonatal handling, however, as a control or as part of the maternal deprivation procedure, elevated spine density in dentate gyrus. These data suggest that long-lasting alterations in hippocampal dendritic spine density contribute to the neural mechanism underlying the olfactory bulbectomy model of depression, but not the neonatal clomipramine or maternal deprivation models.  相似文献   

9.
The synaptic input of six spiny stellate neurons in sublamina 4A of cat area 17 was assessed by electron microscopy. The neurons were physiologically characterized and filled with horseradish peroxidase in vivo. After processing the neurons were reconstructed at the light microscopic level using computer-assisted methods and analyzed quantitatively. The extensive branching of the dendritic tree about 50 μm from the soma meant that the distal branches constituted five times the length of proximal dendrite. Proximal and distal portions of a single dendrite from each neuron were examined in series of ultrathin sections (1,456 sections) in the electron microscope. The majority (79%) of the 263 synapses examined were asymmetric; the remainder (21%) were symmetric. Symmetric synapses formed 35% of synapses sampled on proximal dendrites and were usually located on the shaft. They formed only 4% of synapses sampled on distal dendrites. Spines accounted for less than half of the total asymmetric synapses (45%); the remainder were on shafts. Symmetric synapses formed with four of 92 spines. Nine spines formed no synapses. Spiny stellate neurons in cat visual cortex appear to differ considerably from pyramidal neurons in having a significant asymmetric (excitatory) synaptic input to the dendritic shaft.  相似文献   

10.
Previously developed morphometric analysis of motoneurons (Ulfhake and Kellerth, '81, J. Comp. Neurol. 202: 571-583) was applied to lateral rectus motoneurons (LRMs). Total dendrite size was approximated from a single stem dendrite measurement. Fifteen dendrites from nine LRMs of the principal abducens nucleus intracellularly stained with HRP were morphometrically analyzed. The diameters and lengths along the extent of the dendrite were measured to calculate the surface area, volume, and combined length of the process. Linear correlation of stem dendrite diameter to these size parameters produced r values of .80, .84, and .61, respectively. Although the regression lines could be used to estimate dendrite size from the stem dendrite diameter, two morphologically distinct types were found among the 83 dendrites of the nine cells. Six dendrites differed from the other 77. Therefore, these six and a representative sample of the more common dendrite (nine) were included in the measurements. The rare dendrites consistently branched at about 40 micron from the soma into a rostrally and a caudally directed secondary dendrite. The secondary dendrites branched less and reduced more in diameter by tapering. Also, these dendrites exhibited a higher than expected total dendrite size to stem diameter ratio compared to "regular" dendrites. Statistical correlations of the stem diameter to surface area or volume within each dendrite type showed clear increases in r values from those of all 15. Significant differences were found between the size parameters of the two types. These qualitative and quantitative differences should be considered in accurate motoneuron size determinations in the abducens nucleus.  相似文献   

11.
This study concerns the correlations between the various morphometric parameters obtained for the dendrites of neocortical pyramidal cells. The primary aims were to uncover underlying design principles in dendritic morphology, to see if these differed between different types of dendrite, and to see if estimates of parameters such as total dendritic shaft membrane area could be obtained from a limited number of measurements, avoiding the need to measure every dendritic segment. The data were from a sample of 39 pyramidal neurones, from layers 2/3 and 5 of the visual cortex of the rat, that had been injected with horseradish peroxidase, reconstructed, and measured with the light microscope as part of an earlier study (Larkman and Mason, '90: J. Neurosci. 10:1407-1414). Correlations between the somal area or the combined diameters of the stem segments and measures of the overall size of the dendrites were generally weak. For basal dendrites, the size of a tree was correlated with both its number of tips and the diameter of its stem segment, but these correlations were weaker for apical dendrites. Within individual cells, the diameter of any basal segment was closely related to the size of the tree arising from it, and quantitatively similar relations applied to apical oblique trees from the same cell. Terminal arbor trees showed relations that were similar in pattern but differed quantitatively, whereas apical trunk segment diameter correlations were often weak. In all cases, the number of tips in a tree was closely related to its size. Segment lengths, however, were not closely related to the size of the trees arising from them. It appears that at least some aspects of pyramidal dendritic morphology obey simple design rules. There was heterogeneity between trees of different types, although basal and oblique trees were very similar in most respects. It should prove possible to make use of correlations to estimate the sizes of basal, oblique, and terminal arbor trees from a limited number of measurements, but this does not seem to be possible for apical trunks.  相似文献   

12.
All the dendrites (N = 37) generated by four phrenic motoneurons were analyzed following intracellular injection of horseradish peroxidase. The dendritic arbors produced from each of these stem dendrites were studied in detail. The mean number of stem dendrites produced by a phrenic motoneuron was 9.7, their mean diameter was 6.0 micron, and their mean combined diameter was 58.3 micron. The length at which a phrenic motoneuronal dendrite terminated was 1,236 micron, with several end terminals extending more than 2 mm from the cell body. The mean value for the combined lengths of all segments originating from a single stem dendrite was 5.3 mm. A full spectrum of dendritic branching patterns was observed from simple (five unbranched) to complex, the latter producing up to ninth-order branches. Most terminal and nonterminal dendritic segments tapered, producing a mean diameter reduction of 34%, or approximately 9% per 100-micron length. All phrenic motoneurons exhibited a steady decrease in the combined dendritic parameter (sigma d3/2) with distance from the soma as a result of tapering and end-branch termination. The mean surface area and volume of a phrenic motoneuronal dendrite were 35.3 X 10(3) micron 2 and 25.9 X 10(3) micron 3, respectively. The dendrites constituted greater than 97% of the total phrenic motoneuronal surface area, with 75% of this area lying outside of a 300-micron radius from the cell body. The diameter of a stem dendrite was positively correlated with its combined dendritic length, number of terminal branches, dendritic surface area, and volume. Despite this strong correlation, the value of total dendritic surface area calculated using the power equation derived from the dendritic surface area versus stem dendritic diameter plot was not a consistent estimator of the total dendritic surface area directly measured for these four phrenic motoneurons. It is suggested that this inconsistency may be the result of a heterogeneity in the phrenic motoneuronal population and/or in the dendrites projecting to the different terminal fields.  相似文献   

13.
Dendritic arbors of retinal ganglion cells (RGCs) collect information over a certain area of the visual scene. The coverage territory and the arbor density of dendrites determine what fraction of the visual field is sampled by a single cell and at what resolution. However, it is not clear whether visual stimulation is required for the establishment of branching patterns of RGCs, and whether a general principle directs the dendritic patterning of diverse RGCs. By analyzing the geometric structures of RGC dendrites, we found that dendritic arbors of RGCs underwent a substantial spatial rearrangement after eye‐opening. Light deprivation blocked both the dendritic growth and the branch patterning, suggesting that visual stimulation is required for the acquisition of specific branching patterns of RGCs. We further showed that vision‐dependent dendritic growth and arbor refinement occurred mainly in the middle portion of the dendritic tree. This nonproportional growth and selective refinement suggest that the late‐stage dendritic development of RGCs is not a passive stretching with the growth of eyes, but rather an active process of selective growth/elimination of dendritic arbors of RGCs driven by visual activity. Finally, our data showed that there was a power law relationship between the coverage territory and dendritic arbor density of RGCs on a cell‐by‐cell basis. RGCs were systematically less dense when they cover larger territories regardless of their cell type, retinal location, or developmental stage. These results suggest that a general structural design principle directs the vision‐dependent patterning of RGC dendrites. J. Comp. Neurol. 522:3403–3422, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
The morphologic characteristics of neck motoneurons with intact axons were compared with those of neck motoneurons that had been permanently axotomized for 11 to 17 weeks. Motoneurons were identified antidromically, intracellularly stained with horseradish peroxidase (HRP) and examined after reconstructions of their entire dendritic tree. Axotomized motoneurons differed qualitatively and quantitatively from motoneurons with intact axons. The distal branches of axotomized motoneurons exhibited two novel features: some gave rise to tangled appendages that exhibited growth cone-like specializations resembling lamellipodia and filopodia; others followed a meandering path and had unusually large diameters. These branches showed a discontinuous pattern of staining that was similar to the appearance of myelinated axons stained intra-axonally with HRP. A quantitative analysis of the dendritic trees of 13 completely reconstructed dendritic trees (five axotomized motoneurons and eight motoneurons with intact axons) showed that total dendritic surface area, total dendritic length, and total number of branches increased 38, 34, and 215%, respectively, after axotomy. These measurements were confirmed by comparing the sizes of a larger number of motoneurons (16 axotomized and 21 intact), calculated on the basis of correlations between dendritic tree size and proximal dendritic diameter. We conclude, therefore, that neck motoneurons, in contrast to other types of motoneurons, expand their dendritic trees after axotomy. It is suggested that this expansion is a consequence of two mechanisms: one involves dendritic growth, possibly leading to new synaptic connections; the other causes a conversion of some dendrites into axons. J. Comp. Neurol. 390:392–411, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
We studied conditional self‐discrimination (CSD) in rats and compared the neuronal cytoarchitecture of untrained animals and rats that were trained in self‐discrimination. For this purpose, we used thirty 10‐week‐old male rats were randomized into three groups: one control group and two conditioning groups: a comparison group (associative learning) and an experimental group (self‐discrimination). At the end of the conditioning process, the experimental group managed to discriminate their own state of thirst. After the conditioning process, dendritic morphological changes in the pyramidal neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus were evaluated using Golgi‐Cox stain method and then analyzed by the Sholl method. Differences were found in total dendritic length and spine density. Animals trained in self‐discrimination showed an increase in the dendritic length and the number of dendritic spines of neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus. Our data suggest that conditional self‐discrimination improves the connectivity of the prefrontal cortex and dorsal CA1, which has implications for memory and learning processes. Synapse 69:543–552, 2015 . © 2015 Wiley Periodicals, Inc.  相似文献   

16.
目的 研究不同脑血管狭窄程度及脑血管支架术对患者外周血中树突状细胞(DCs)比例的影响. 方法 选择自2009年11月至2010年2月、自2010年8月至2010年12月在南方医科大学珠江医院神经内科住院患者63例,依据脑血管造影(DSA)检查结果,分为DSA未见异常组即对照组(CG)、轻中度狭窄组(MsG)、重度狭窄组(SsG)、支架术后组(SiG).流式细胞四色分析法检测各组患者外周血中DCs各亚型的比例. 结果 各组患者外周血中骨髓样树突状细胞(mDCs)的比例比较差异有统计学意义(P=0.000),其中CG与SsG差异有统计学意义(P<0.05),MsG与SsG差异有统计学意义(P<0.05).类浆样树突状细胞(pDCs)的比例在各组间比较差异没有统计学意义(P=0.065). 结论 脑血管狭窄程度对mDCs亚型的比例存在影响,狭窄程度越重mDCs比例越低;支架置入对患者外周血中DCs各亚型比例不造成影响.  相似文献   

17.
We have previously shown that hypothyroidism produces a decrease in the number of spines counted along the apical shafts of pyramidal neurons of the cortex. Nevertheless, other authors have found that when an animal is subjected to some adverse living conditions the size of the spines decreases, making them invisible to the light microscope. The question arises then of whether the decrease in the number of spines reported by us in hypothyroid animals is real or is due to a shrinking effect. In order to elucidate this question the cross-surface area of dendritic spines of apical shafts belonging to 20- and 60-day-old rats, thyroidectomized at 10 days of age, as well as those of their corresponding controls were measured in different layers of their cortex, studied using conventional electron microscopic techniques. The application of the three-way analysis of variance model to these data has shown us that while the age of the animal produces a definite increase in the size of the spines, hypothyroidism does not produce any change in their size, leading us to the conclusion that the decrease in the number of spines previously reported is due to an actual loss of these elements.  相似文献   

18.
树突状细胞因其良好的抗原提呈功能及促T细胞增殖功能,成为肿瘤抗原的良好载体。获得大量的树突状细胞,对于肿瘤疫苗的研制具有重要作用。 目的:对小鼠骨髓树突状细胞进行诱导、培养、扩增及冻存,并对比冻存后复苏细胞与未冻存细胞的细胞特性,寻找一种能够大量获得树突状细胞及有效储存的方法。 方法:取小鼠骨髓细胞,在含重组小鼠粒-巨噬细胞集落刺激因子(10 μg/L)和重组小鼠白细胞介素4(5 μg/L)的完全培养基中对其进行诱导、培养及扩增。培养第6天,对培养获得的树突状细胞在加有冷冻保护剂DMSO的完全培养液中冻存。复苏后,在培养基中加入脂多糖、对细胞诱导,获得大量的成熟树突状细胞,最终获得的树突状细胞与未进行冻存的细胞在细胞活力、形态学、细胞表型、混合淋巴细胞反应等方面对比。 结果与结论:复苏后,(82.2±4.73)%细胞存活,存活的细胞经脂多糖诱导后发育为成熟树突状细胞,在形态学、细胞表型及混合淋巴细胞反应等方面与未经冻存的树突状细胞差异无显著性意义。提示小鼠骨髓源性树突状细胞冻存复苏后,细胞生物学特性与未冻存的细胞无明显差别,用冻存的方法储存树突状细胞,能够避免在不同时期应用细胞时反复进行培养,可以获得大量的同质细胞。  相似文献   

19.
Estrogen inhibition of EAE involves effects on dendritic cell function   总被引:10,自引:0,他引:10  
Estrogen has been found to have suppressive effects on the induction of experimental autoimmune encephalomyelitis (EAE), an animal model for the human disease multiple sclerosis. We have investigated the effects of 17beta-estradiol (E2) treatment on dendritic cells (DCs) in two different mouse models of EAE. The frequency of CD11b(+)/CD11c(+) DCs was significantly decreased in the brain of mice protected from EAE induction by E2 treatment. In addition, the frequency of CD11c(+)/CD8alpha(+) DCs producing tumor necrosis factor (TNF)alpha and interferon (IFN)gamma in the spleen of E2-treated mice was dramatically decreased compared to that in control mice with EAE, demonstrating an effect of E2 on DC function. In order to examine E2 effects on DCs in more detail, splenic DCs were cultured in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4 to promote maturation. E2 pretreatment was found to suppress the ability of cultured DCs bearing a mature phenotype to present Ag to myelin basic protein (MBP)-specific T cells. Analysis of cytokine production demonstrated that E2 decreased TNFalpha, IFNgamma and IL-12 production in mature DCs. In addition, MBP-specific T cells cocultured with E2-pretreated mature DCs in the presence of antigen demonstrated a shift towards production of Th2 cytokines IL-4 and IL-10 and a concomitant decrease in the production of Th1 cytokines TNFalpha and IFNgamma. Thus, E2 treatment appears to have multiple effects on the DC population, which may contribute to a down-regulation or block in the activation of Th1 cells involved in the induction of EAE.  相似文献   

20.
The morphology and dendritic branching patterns of retinal ganglion cells have been studied in Golgi-impregnated, whole-mount preparations of rabbit retina. Among a large number of morphological types identified, two have been found that correspond to the morphology of ON and ON-OFF directionally selective (DS) ganglion cells identified in other studies. These two kinds of DS ganglion cell are compared with each other, as well as with examples of class I, class II, and class III cells, defined here with reference to our previous studies. Cell body, dendritic field size and branching pattern are analyzed in this paper and levels of dendritic stratification are examined in the following paper. ON DS ganglion cells are about 10% larger in soma size and about 5 times the dendritic field area of ON-OFF DS ganglion cells, when compared at the same retinal location. These two morphological types of ganglion cell can be said to define the upper and lower bounds of an intermediate range of cell body and dendritic field sizes within the whole population of ganglion cells. Nevertheless, in previous physiological studies receptive field sizes of the two types were shown to be similar. This discrepancy between morphological and physiological evidence is considered in the Discussion in terms of a model of the excitatory receptive field of ON-OFF DS ganglion cells incorporating starburst amacrine cells. A new set of metrics is introduced here for the quantitative analysis and characterization of the branching pattern of neuronal arborizations. This method compares the lengths of terminal and preterminal dendritic branches (treated separately), as a function of the distances of their origins from the soma, viewed graphically in a two-dimensional scatter plot. These values are derived from computer-aided 3D logging of the dendritic trees, and distance from the soma is measured as the shortest distance tracked along the dendritic branches. From these metrics of the "branch length distributions," scale-independent branching statistics are derived. These make use of mean branch lengths and distances, slopes of lines fitted to the distributions, and elliptical indices of scatter in the distributions. By these measures, ON and ON-OFF DS ganglion cells have similar branching patterns, which they share to varying degrees with functionally unrelated class III.1 ganglion cells. The scale of the branching patterns of ON and ON-OFF DS cells and their degree of uniformity are different, however.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号