首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Thyrotropin-releasing hormone-immunoreactive nerve terminals heavily innervate the dorsal motor nucleus and nucleus of the solitary tract, whereas cell bodies containing thyrotropin-releasing hormone residue most densely in the hypothalamus and raphe nuclei. By using double-labeling techniques accomplished by retrograde transport of Fluoro-Gold following microinjection into the dorsal motor nucleus/nucleus of the solitary tract combined with immunohistochemistry for thyrotropin-releasing hormone, it was demonstrated that thyrotropin-releasing hormone-immunoreactive neurons projecting to the dorsal motor nucleus/nucleus of the solitary tract reside in the nucleus raphe pallidus, nucleus raphe obscurus, and the parapyramidal region of the ventral medulla, but not in the paraventricular nucleus of the hypothalamus. The parapyramidal region includes an area along the ventral surface of the caudal medulla, lateral to the pyramidal tract and inferior olivary nucleus and ventromedial to the lateral reticular nucleus. Varying the position of the Fluoro-Gold injection site revealed a rostral to caudal topographic organization of these raphe and parapyramidal projections.  相似文献   

2.
Electrical stimulation of the solitary nucleus and dorsal motor nucleus of the vagus elicited a pressor response in vagotomized rat with the spinal cord cut at C1. The response was entirely accounted for by an increased release of vasopressin upon stimulation as evidenced by absence of response in rats pretreated with a vasopressin antagonist and in Brattleboro rats.  相似文献   

3.
Bombesin (gastrin-releasing peptide 14–27) inhibits gastric function and feeding when microinjected into the nucleus of the solitary tract (NTS) / dorsal motor nucleus of the vagus (DMV) complex. We performed a preembedding immunoelectron microscopic study in rats to describe the bombesin containing nerve terminals and to characterize their postsynaptic structures. 228 bombesin-LI nerve terminals which made synaptic contacts in the NTS/DMV complex were studied. Labeling was heaviest over dense core vesicles and lighter over small clear vesicles. The dense core vesicles were typically located along the plasmalemma away from the synaptic face, a finding that is typical of neuropeptide containing nerve terminals. The postsynaptic structures were most often medium sized dendrites (56%) and small sized dendrites (27%), with similar percentages in the NTS and DMV. In the DMV, synapses on cell bodies (8%) were more frequent than in the NTS (1%). In the NTS, synapses on dendritic spines (10%) were more frequent than in the DMV (4%). Only a single axo-axonal contact was identified. These findings add to the increasing body of evidence that bombesin is a neurotransmitter/neuromodulator in the NTS/DMV complex. Bombesin rarely makes presynaptic (axo-axonal) contacts that might inhibit the release of excitatory neurotransmitters, but rather makes postsynaptic contacts potentially effecting vagal motoneurons.  相似文献   

4.
The nucleus of the solitary tract and the dorsal vagal nucleus are richly innervated by thyrotropin-releasing hormone (TRH)-containing fibers arising from the caudal raphe nuclei. After transection of vertically oriented fibers by a horizontal knife-cut in the medulla oblongata, TRH-staining disappeared from the vagal nuclei while it increased in transected nerve fibers ventral to the knife-cut. TRH-containing cells are mainly located in the nucleus raphe pallidus and raphe obscurus. TRH-containing fibers run dorsally within the raphe and enter the dorsal vagal complex at its rostral tip. Then they turn caudally and send branches laterally. Immediately caudal to the level of the obex, several TRH-containing fibers cross over the central canal. Cells in regions other than the raphe (hypothalamus or other rostral areas, ventrolateral medulla, cranial nerves) must contribute little to the TRH innervation of the nucleus of the solitary tract and dorsal vagal nucleus, since various knife-cuts transecting all above possible connections did not alter the TRH innervation pattern or TRH concentrations of these vagal nuclei.  相似文献   

5.
The nucleus tractus solitarii, the first central relay for gustatory and a variety of visceral afferents, is also an integrative center for numerous functions. Its interstitial subdivision is involved in swallowing and respiratory reflexes. The ultrastructural characteristics of this subdivision and of its laryngeal afferents were investigated in adult rat by a serial-section study and by application of wheat germ agglutinin-horseradish peroxidase conjugate to the peripheral afferent fibers. The interstitial subnucleus contained scattered small neuronal cell bodies with such ultrastructural features as a large nucleus with deep indentations and an organellepoor cytoplasm. On the basis of their size and vesicular content, the axon terminals were classified into three categories. Group I and group II terminals were small or large, respectively, and contained mainly small, round, and clear synaptic vesicles. Group III terminals were also small but contained small, pleomorphic, and clear vesicles. Axodendritic synapses were the most numerous. They were either asymmetrical, comprised of group I and II terminals, or symmetrical, comprised of group III terminals. More than 50% were part of complex synaptic arrangements in the form of rosettes or glomeruli. Axosomatic contacts involved both group I and group III terminals and were always symmetrical. A high frequency of axoaxonic synapses was found. They were symmetrical, comprised of group III terminals on group I or II terminals. Different types of symmetrical synaptic contacts made by dendrites were also found. This study indicates also that the ipsilateral interstitial subdivision constitutes the preferential site of termination for superior laryngeal afferents. The labeled axon terminals belonged exclusively to groups I and II and were involved in both axodendritic and axodxonic synapses. Some of the axodendritic synapses were part of rosettes or glomeruli. All these synaptic arrangements may be considered a morphological substrate for important processing of afferent information in the nucleus tractus solitarii. They may account for some of the integrative functions of the interstitial subnucleus such as physiological processes triggered from the superior laryngeal nerve.  相似文献   

6.
We have examined the distribution of neurotensin immunoreactivity within subnuclear regions of the nucleus of the tractus solitarius (NTS) and the dorsal motor nucleus of the vagus nerve (DVN) in the rat. In order to determine which regions of the NTS were involved in the regulation of baroreceptor reflexes, we mapped the central distribution of the aortic branch of the vagus nerve using transganglionic transport of horseradish peroxidase. Comparison of the pattern of aortic nerve innervation with that of the distribution of neurotensin-immunoreactive cells and fibers shows the dorsomedial nucleus of the NTS both to be the primary site of aortic baroreceptor termination and to contain the highest concentration of neurotensin-immunoreactive elements within the NTS. Neurotensin-immunoreactive fibers are also present in medial regions of the NTS adjacent to the area postrema where they may be involved in the modulation of vagal gastric afferents. Double-label experiments, in which, on the same tissue sections, neurotensin immunohistochemistry was combined with retrograde horseradish peroxidase labeling of DVN neurons, reveal a topographic innervation of vagal preganglionic motoneurons by neurotensin-immunoreactive fibers. The heaviest innervation is of lateral portions of the DVN and adjacent ventral portions of the NTS at the level of the obex, an area which may contain cardiac motoneurons. In this region neurotensin-immunoreactive fibers can be observed in close proximity to retrogradely labeled cells. The concentration of neurotensin elements in a region of the NTS which is involved in the control of baroreceptor reflexes provides a morphological basis for the cardiovascular effects produced by central administration of the peptide. Additional control may be exerted at the level of the motoneuron, as evidenced by apparent neurotensin fiber innervation of presumptive cardiac preganglionic neurons. Similarly, the distribution of neurotensin fibers suggests that the peptide may be acting in gastric regulatory areas of the NTS or on vagal secretomotor neurons to regulate gastric acid secretion.  相似文献   

7.
This study employed single cell recording and intracellular iontophoretic injection techniques to characterize and label gastric- and/or intestine-sensitive neurons in the rat nucleus of the solitary tract (NST). It was possible to divide our sample of NST neurons into three broad groups based on their response to increased intra-gastric and intra-duodenal pressure. Group 1 cells (N=14) were excited by duodenal distention but were not responsive to gastric stimulation. Most of these intestine-sensitive neurons exhibited a delayed tonic response to the stimulus. Group 2 neurons (N=13) were excited by gastric distention but were not sensitive to distention of the duodenum. The typical Group 2 neuron evidenced a rapid, phasic response to the distention stimulus. Group 3 neurons (N=29) responded to both gastric and duodenal stimulation. We found that the Group 2 neurons had greater dendritic length and more dendritic branch segments than the Group 1 or Group 3 neurons. Most of the Group 1 neurons were found in the subpostremal/commissural region of the NST, while the majority of the Group 2 neurons were in the gelatinous subnucleus and a disproportionate number of the Group 3 neurons were located in the medial subnucleus. The results of this investigation demonstrate that (1) there are relationships between the morphology and physiology of distention-sensitive neurons in the NST, and (2) there are distinct functional differences between the gelatinous, medial and commissural subnuclei of this nucleus. © 1995 Wiley-Liss, Inc.  相似文献   

8.
The projections from the central nucleus of the amygdala to the dorsal vagal complex were examined in the rat by means of anterograde and retrograde axonal transport of wheat germ agglutinin-horseradish peroxidase and anterograde degeneration. Light microscopic findings confirmed that the amygdala projects to the dorsal motor nucleus (DMV) and the nucleus of the solitary tract. Electron microscopic experiments demonstrated degenerating axosomatic and axodendritic terminals in the DMV following electrolytic lesions in the central nucleus of the amygdala.  相似文献   

9.
Neurons of the dorsal motor nucleus of the vagus nerve were studied following injections of horseradish peroxidase into the vagus nerve in a monkey (Macaca fascicularis). In frozen sections, the dorsal motor nucleus appeared to be completely filled by labeled medium-sized (20-30 micron in long axis) neurons. Labeled dendrites from these neurons often extended outside the borders of the nucleus into the nucleus of the tractus solitarius. In 1 micron thick plastic sections and ultrathin sections of the dorsal motor nucleus, two distinct types of neurons were observed with the light and electron microscope. Medium-sized neurons with abundant cytoplasm and an oval nucleus were retrogradely labeled with HRP, while small (10-15 micron in long axis) neurons with a paucity of organelles and an invaginated nucleus remained unlabeled. Medium-sized neurons outnumbered the small neurons by approximately five to one. The synaptic organization of the dorsal motor nucleus in monkey was studied and compared with that in cat. The porportions of different types of axosomatic synapses were similar in both species. Terminals containing round vesicles and making symmetrical or asymmetrical contact with the postsynaptic structure were more common than synaptic terminals containing pleomorphic vesicles. In both species, there was a slightly greater synaptic density on the medium-sized neurons than on the small neurons. The synaptic density in the monkey dorsal nucleus was greatest on the smallest dendrites in the neuropil and least on the somata.  相似文献   

10.
Unilateral removal of the nodose ganglion resulted in a significant decrease in choline acetyltransferase activity in the ipsilateral dorsal motor nucleus of the vagus but was without effect on enzyme activity in the nucleus of the solitary tract. High affinity glutamate uptake in the dorsal motor nucleus of the vagus and along the rostrocaudal extent of the nucleus of the solitary tract was not affected by nodose ganglionectomy.  相似文献   

11.
Nerve fibers and terminals immunoreactive for cholecystokinin (CCK) were demonstrated in the nucleus of the solitary tract (NTS) of the rat using light and electron microscopic immunocytochemistry. The following morphological and biochemical evidence suggests that CCK in the NTS seems to be of extrinsic, most probably vagal, origin: (1) axon fragments of the intracranial vagus were identified by immunostaining on their way to the solitary tract; (2) CCK-immunostaining could be localized in nerve terminals in the nucleus of the solitary tract, where only a very few immunopositive dendrites or cell bodies were present; and (3) transecting the major neuronal afferents (via solitary tract and/or more laterally) resulted in a complete disappearance of radioimmunoassayable CCK from the nucleus of the solitary tract.  相似文献   

12.
To identify the distribution of central preganglionics associated with each branch of the subdiaphragmatic vagus, the fluorescent tracer True Blue (TB) was administered intraperitoneally to rats with 4 out of 5 branches cauterized, and then, after 72 h, the animals were sacrificed for histological analysis. Each vagal branch contained the axons of a topographically distinct column of cells within the dorsal motor nucleus of the vagus (DMN). The columns representing the 4 branches with the largest numbers of efferents are organized as paired, bilaterally symmetrical, longitudinal distributions on either side of the medulla. Each DMN side contains a column occupying the medial two-thirds or more of the nucleus and corresponding to one of the gastric branches (left DMN, anterior gastric; right DMN, posterior gastric). Also on each side, the lateral pole of the DMN consists of a coherent cell column corresponding to one of the celiac branches (left DMN, accessory celiac; right DMN, celiac). The fifth branch, the hepatic, is represented by a limited number of somata forming a diffuse column largely coextensive with that representing the anterior gastric branch. At some levels of the DMN, the columns overlap. Labeled cells observed in the reticular formation were correlated in number, left-right ratios and response to vagotomy with those in the DMN, which suggests that they are displaced cells of the nucleus. Distributions of labeled cells in the nucleus ambiguus and the retrofacial nucleus were not tightly correlated with those of the DMN. An analysis of cell counts obtained for each of the individual branches suggests that vagal axons do not generally send collaterals through more than one branch.  相似文献   

13.
Background A previous study demonstrated the presence of protease‐activated receptor (PAR) 1 and 2 in the dorsal motor nucleus of vagus (DMV). The aim of this study is to characterize the effect of thrombin on the apoptosis of DMV neurons. Methods The dorsal motor nucleus of vagus neurons were isolated from neonatal rat brainstems using micro‐dissection and enzymatic digestion and cultured. Apoptosis of DMV neurons were examined in cultured neurons. Apoptotic neuron was examined by TUNEL and ELISA. Data were analyzed using anova and Student’s t‐test. Key Results Exposure of cultured DMV neurons to thrombin (0.1 to 10 U mL?1) for 24 h significantly increased apoptosis. Pretreatment of DMV neurons with hirudin attenuated the apoptotic effect of thrombin. Similar induction of apoptosis was observed for the PAR1 receptor agonist SFLLR, but not for the PAR3 agonist TFRGAP, nor for the PAR4 agonist YAPGKF. Protease‐activated receptors 1 receptor antagonist Mpr(Cha) abolished the apoptotic effect of thrombin, while YPGKF, a specific antagonist for PAR4, demonstrated no effect. After administration of thrombin, phosphorylation of JNK and P38 occurred as early as 15 min, and remained elevated for up to 45 min. Pretreatment of DMV neurons with SP600125, a specific inhibitor for JNK, or SB203580, a specific inhibitor for P38, significantly inhibited apoptosis induced by thrombin. Conclusions & Inferences Thrombin induces apoptosis in DMV neurons through a mechanism involving the JNK and P38 signaling pathways.  相似文献   

14.
15.
We have recently shown that distension-sensitive vagal afferents are part of a neural circuit affecting absorption of water in the rat small intestine. Our results indicated that vagal afferent activity directly or indirectly influences the activity of neurons in the dorsal motor nucleus of the vagus (DMNV). In the present study we pursued this interaction by examining the structure and function of neurons in the DMNV and nucleus of the solitary tract (NST) that responded to moderate distension of the small intestine. Distension-sensitive cells were filled by intracellular iontophoretic injection of horseradish peroxidase. A total of 43 distension-sensitive brainstem neurons were successfully characterized and labeled. Sixteen of the 17 NST neurons were excited by distension of the small intestine. Ten of the seventeen were restricted to the ipsilateral NST. Only two NST neurons possessed axons that terminated in the subjacent DMNV. In contrast to the response profile of the NST neurons, 24 of 26 DMNV neurons were inhibited by intestinal distension. Fourteen of the DMNV neurons appeared to contribute to the vagus nerve and 15 extended dendrites into the overlying NST. We propose that distension-induced inhibition of DMNV activity is accomplished by inhibitory NST neurons, which synapse on the dendrites of DMNV neurons in the NST.  相似文献   

16.
By using immunocytochemical method, the prenatal ontogeny of substance P-like immunoreactivity (SP-LI) was demonstrated in the dorsal motor nucleus of the vagus nerve (nX) and the nucleus tractus solitarii (nTS) of the human fetus at fetal age (menstruation age) of 11.5 weeks to 40 weeks. The time of initial appearance of SP-LI in the human brainstem nTS was between the fetal age 11.5 weeks and 16 weeks. At fetal age 16 weeks, the nTS showed moderate density of SP-LI fibers and terminals in subnucleus dorsalis of the nTS and nX. While the fetus grew, the density of SP-LI in the human fetus brainstem nTS and nX increased gradually from fetal age 16 weeks to 40 weeks. According to the Nissl staining, at fetal age 23 weeks, the nTS of human fetus can be subdivided into dorsal, medial, dorsolateral, ventrolateral and ventral gelatinosus subnuclei. The cytoarchitectonic subdivisions of human fetus nTS is in good agreement with the results obtained by immunocytochemical staining. These findings indicated that substance P (SP) might play an important role in the development of human brainstem nX, nTS, their related cranial nerves, and in their functional establishment during the pranatal period.  相似文献   

17.
Methionine (Met5)-enkephalin has been implicated in autonomic functions involving vagal reflexes within the nucleus of the solitary tract (NTS). We examined the light and electron microscopic relationships between neurons containing methionine (Met5)-enkephalin-like immunoreactivity (MELI) and vagal afferents and motor dendrites in the rat NTS. A polyclonal antibody raised against Met5-enkephalin and showing maximal cross-reactivity with this peptide was localized by immunoautoradiography. In the same sections, vagal afferents and motor neurons were identified by histochemical detection of anterogradely and retrogradely transported horseradish peroxidase (HRP). By light microscopy, the MELI was detected in perikarya distributed principally in the dorsomedial, intermediate and parasolitary subdivisions of the NTS. These subnuclei as well as medial and commissural divisions of the NTS also showed: (1) aggregates of silver grains thought to overlie terminals containing MELI, and (2) anterogradely transported HRP in varicose processes. Electron microscopic analysis of the dorsomedial NTS at the level of the area postrema established that MELI was detectable in perikarya, dendrites, and axon terminals. Most of the MELI was associated with large dense core vesicles (dcvs). These opioid terminals formed primarily symmetric synapses on proximal and asymmetric synapses on distal dendrites. Analysis of the dendritic targets of terminals containing MELI revealed that 13/222 were in synaptic contact with dendrites also containing MELI. The remainder of the terminals containing MELI either lacked recognized junctions or formed synapses with unlabeled dendrites. In comparison to the terminals containing MELI in the same series of sections, anterogradely labeled vagal terminals extensively formed asymmetric junctions with distal dendrites and spines. Of the observed anterogradely labeled terminals 6/84 formed synapses with dendrites containing MELI and 3/84 with dendrites containing retrogradely transported HRP. The remainder of the junctions were with dendrites lacking detectable immunoautoradiographic or HRP-labeling. The majority of the recognized synapses on labeled dendrites were at more proximal sites possibly reflecting more limited detection of both MELI and retrogradely transported HRP in smaller dendrites. However, the presence of even a few junctions at proximal sites on dendrites where synaptic transmission is known to be more effective suggests a potentially strong modulation of both opioid and vagal motor neurons by visceral afferents in the NTS. In addition to forming synapses on dendrites, both vagal afferents and terminals containing MELI showed frequent synaptic associations with unlabeled terminals, but not with each other. This finding suggests that the previously demonstrated opiate binding sites on vagal afferents is most likely attributed to other endogenous opiates.  相似文献   

18.
The neuropeptide content of neurons of the nucleus of the solitary tract (NTS), which have local and commissural projections to the dorsal motor nucleus of the vagus (DMNX) and to NTS, were demonstrated in the pigeon (Columba livia) by using a combined fluorescein-bead retrograde-transport-immunofluorescence technique. The specific peptides studied were bombesin, cholecystokinin, enkephalin, galanin, neuropeptide Y, neurotensin, and substance P. Perikarya immunoreactive for bombesin were located in the Medial tier subnuclei of NTS and the caudal NTS. Most galanin- and substance P-immunoreactive cells were found in subnucleus medialis ventralis. Cells immunoreactive for neuropeptide Y were found in the medial tier of NTS and in the lateral tier, especially in subnucleus lateralis dorsalis intermedius. The majority of enkephalin- and neurotensin-immunoreactive cells were found centrally in subnuclei medialis dorsalis and medialis intermedius. Cells immunoreactive for cholecystokinin were located in subnuclei laterolis dorsalis pars anterior, medialis superficialis, and the caudal NTS. Based on the presence of retrogradely labeled cells, numerous neurons of the medial tier of NTS, but extremely few lateral tier NTS neurons, had projections to the ipsilateral and contralateral DMNX and NTS. The number of retrogradely labeled NTS cells was always greater ipsilateral than contralaterally. The percentages of peptide-immunoreactive NTS cells that projected to the ipsilateral and contralateral DMNX were in the ranges of 29–61% and 10–48%, respectively. The percentages of peptide-immunoreactive NTS cells that projected to the contralateral NTS ranged from 13 to 60%. Peptide-immunoreactive NTS cells that have local and commissural projections to DMNX and NTS may act as interneurons in vagovagal reflex pathways and in the integration of visceral sensory and forebrain input to NTS and DMNX. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Immunohistochemical localization of bombesin/gastrin-releasing peptide ( GRP )-like immunoreactivity (BN/ GRP -LI) and substance P-like immunoreactivity (SP-LI) in consecutive sections of rat hypothalamus was studied. Bombesin/ GRP -like immunoreactivity in the hypothalamus was partially characterized by gel filtration chromatography followed by radioimmunoassay. In the hypothalamus, SP-LI was more widely distributed than BN/ GRP -LI. Only the anterior and medial parvocellular parts of the nucleus paraventricularis and the nucleus suprachiasmaticus contained numerous cell bodies which exhibited BN/ GRP -LI. Neurons in these areas did not exhibit SP-LI. In contrast, cell bodies exhibiting SP-LI were numerous in the nucleus preopticus medialis and lateralis, nucleus anterior, nucleus ventromedialis and dorsomedialis, nucleus lateralis, nucleus arcuatus, and nucleus premamillaris ventralis and dorsalis. Only occasional cell bodies in these areas exhibited BN/ GRP -LI. It is concluded that the neuronal systems in the hypothalamus containing BN/ GRP -LI and SP-LI are separate, though the terminal fields in many areas overlap. Two peaks of BN/ GRP -LI were detected after gel filtration chromatography from extracts of the rat nucleus paraventricularis. The high molecular weight form coeluted with synthetic GRP (1-27), and the small molecular weight form eluted after synthetic bombesin. Thus, the endogenous BN/ GRP -LI is probably not authentic bombesin.  相似文献   

20.
We examined the subnuclear organization of projections to the parabrachial nucleus (PB) from the nucleus of the solitary tract (NTS), area postrema, and medullary reticular formation in the rat by using the anterograde and retrograde transport of wheat germ agglutinin-horseradish peroxidase conjugate and anterograde tracing with Phaseolus vulgaris-leucoagglutinin. Different functional regions of the NTS/area postrema complex and medullary reticular formation were found to innervate largely nonoverlapping zones in the PB. The general visceral part of the NTS, including the medial, parvicellular, intermediate, and commissural NTS subnuclei and the core of the area postrema, projects to restricted terminal zones in the inner portion of the external lateral PB, the central and dorsal lateral PB subnuclei, and the "waist" area. The dorsomedial NTS subnucleus and the rim of the area postrema specifically innervate the outer portion of the external lateral PB subnucleus. In addition, the medial NTS innervates the caudal lateral part of the external medial PB subnucleus. The respiratory part of the NTS, comprising the ventrolateral, intermediate, and caudal commissural subnuclei, is reciprocally connected with the K?lliker-Fuse nucleus, and with the far lateral parts of the dorsal and central lateral PB subnuclei. There is also a patchy projection to the caudal lateral part of the external medial PB subnucleus from the ventrolateral NTS. The rostral, gustatory part of the NTS projects mainly to the caudal medial parts of the PB complex, including the "waist" area, as well as more rostrally to parts of the medial, external medial, ventral, and central lateral PB subnuclei. The connections of different portions of the medullary reticular formation with the PB complex reflect the same patterns of organization, but are reciprocal. The periambiguus region is reciprocally connected with the same PB subnuclei as the ventrolateral NTS; the rostral ventrolateral reticular nucleus with the same PB subnuclei as both the ventrolateral (respiratory) and medial (general visceral) NTS; and the parvicellular reticular area, adjacent to the rostral NTS, with parts of the central and ventral lateral and the medial PB subnuclei that also receive rostral (gustatory) NTS input. In addition, the rostral ventrolateral reticular nucleus and the parvicellular reticular formation have more extensive connections with parts of the rostral PB and the subjacent reticular formation that receive little if any NTS input. The PB contains a series of topographically complex terminal domains reflecting the functional organization of its afferent sources in the NTS and medullary reticular formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号