首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The extracellular concentration of glutamate has previously been reported to increase to more than 10-fold the basal level during seizure activity. In the present study, we tested whether localized increases in extracellular glutamate concentration influence the rhythm of epileptiform discharges in the low-magnesium epilepsy model. In hippocampal slices of guinea-pigs, epileptiform activity was induced by omission of magnesium from the bath fluid. Glutamate and its subreceptor agonists N -methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid (AMPA) were ejected into different strata of the CA3 and CA1 regions using microiontophoretic and micropressure application. Glutamate, NMDA and AMPA applied to the CA3 region, but not to the CA1 region, induced a short-lasting increase in epileptiform discharge frequency, often followed by a transient reduction. The effect was most pronounced with application into the stratum lacunosum-moleculare of the CA3 region and could only be evoked in slices exceeding 400 μm in thickness. The effects on the rhythm of epileptiform discharges induced by NMDA and AMPA were blocked by their specific receptor antagonists. They were not influenced by application of GABAA and GABAB receptor antagonists. Changes in somatic membrane potential of CA3 pyramidal neurons did not correlate with changes in the rhythm of epileptiform discharges elicited in this region. The transient suppression of epileptiform discharges that followed the increase in discharge frequency was abolished by an adenosine A1 receptor antagonist. We propose that localized increases in extracellular glutamate concentration modify the rhythm of epileptiform discharges due to changes in neuronal network activity.  相似文献   

2.
To investigate whether epileptiform activity in the immature brain is modulated by dopamine, we examined the effects of dopaminergic agonists and antagonists in an intact in vitro preparation of the isolated corticohippocampal formation of immature (postnatal days 3 and 4) C57/Bl6 mice using field potential recordings from CA3. Epileptiform discharges were induced by a reduction of the extracellular Mg2+ concentration to 0.2 mM. These experiments revealed that low concentrations of dopamine (<0.3 μM) attenuated epileptiform activity, whereas >3 μM dopamine enhanced epileptiform activity. The D1‐agonist SKF38393 (10 μM) had a strong proconvulsive effect, and the D2‐like agonist quinpirole (10 μM) mediated a weak anticonvulsive effect. The proconvulsive effect of 10 μM dopamine was completely abolished by the D1‐like receptor antagonist SCH39166 (2 μM) or the D2‐like antagonist sulpiride (10 μM), whereas the D2 antagonist L‐741626 (50 nM) and the D3 antagonist SB‐277011‐A (0.1 μM) were without effect. The anticonvulsive effect of 0.1 μM dopamine could be suppressed by D1‐like, D2, or D3 receptor antagonists. A proconvulsive effect of 10 μM dopamine was also observed when AMPA, NMDA, or GABAA receptors were blocked. In summary, these results suggest that 1) dopamine influences epileptiform activity already at early developmental stages; 2) dopamine can bidirectionally influence the excitability; 3) D1‐like receptors mediate the proconvulsive effect of high dopamine concentrations, although the pharmacology of the anticonvulsive effect is less clear; and 4) dopamine‐induced alterations in GABAergic and glutamatergic systems may contribute to this effect. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
GABA mediated excitation in immature rat CA3 hippocampal neurons   总被引:6,自引:0,他引:6  
Intracellular recordings from rat hippocampal neurons in vitro during the first postnatal week revealed the presence of spontaneous giant depolarizing potentials (GDPs). These were generated by the synchronous discharge of a population of neurons. GDPs reversed polarity at -27 and -51 mV when recorded with KCl or K-methylsulphate filled electrodes, respectively. GDPs were blocked by the GABAA receptor antagonist bicuculline (10 microM). Iontophoretic or bath applications of GABA (10-300 microM) in the presence of tetrodotoxin (1 microM), induced a membrane depolarization or in voltage clamp experiments an inward current which reversed polarity at the same potential as GDPs. The response to GABA was blocked in a non-competitive manner by bicuculline (10 microM) and did not desensitize. GABA mediated GDPs were presynaptically modulated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors. Their frequency was reduced or blocked by NMDA receptor antagonists and by the rather specific non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). The frequency of GDPs was enhanced by glycine and D-serine (10-30 microM) in a strychnine insensitive manner. This effect was blocked by AP-5, suggesting that it was mediated by the allosteric modulatory site of the NMDA receptor. These observations suggest that most of the 'excitatory' drive in immature neurons is mediated by GABA acting on GABAA receptors; furthermore excitatory amino acids modulate the release of GABA by a presynaptic action on GABAergic interneurons.  相似文献   

4.
We have been using glial cells derived from aged mouse cerebral hemispheres (MACH) at several passages to study the responsiveness of astrocytes to microenvironmental signals in culture. In the present study, we examined the effects of excitatory amino acids on the activity of glutamine synthetase, a marker for astrocytes. MACH glia cell passages 25 to 29 were used. Culture groups were Dulbecco's modified Eagle's medium +10% fetal bovine serum (control); glutamate 100 μM; γ-amino-3-hydroxy-5-methyl isoxazole-4-propionic acid (AMPA) 50 μM; kainic acid 10 μM; N-methyl-d-aspartate (NMDA) 10 μM. In all treated groups glutamine synthetase activity was significantly higher than in controls. We speculate that this increase represents an enhanced differentiation of immature astrocytes. In a second series, we examined the effects of glutamate receptor antagonists on glutamine synthetase activity as follows. MACH cultures were treated with glutamate 100 μM in combination with either L(+)-2-amino-3-phosphonopropionic acid (L-AP3; 50 μM); D(−)-2-amino-5-phosphonopentanoic acid (D-AP5; 50 μM) or 6,7-dinitroquinoxaline-2,3-dione (DNQX; 50 μM). The increase in GS activity produced by glutamate was exhibited by the non-selective NMDA receptor antagonist, DNQX, but not by the metabotropic receptor antagonist, L-AP3 or a selective NMDA receptor antagonist, D-AP5. We also found that in cultures treated with glutamate, a number of astrocytes resembled “reactive astrocytes” morphologically. These astrocytes were absent in cultures treated with glutamate + DNQX. The findings provide supportive evidence that astrocytes from aged mouse cerebral hemispheres respond to excitatory amino acids and that this response is mediated by non-NMDA receptor activation.  相似文献   

5.
We report that extracellular application of cesium (Cs+, 3 mM) potentiated the epileptiform discharge evoked by GABAA-receptor antagonist bicuculline methiodide (BMI 50 microM) in rat neocortical slices maintained in vitro. Cs+ changed BMI-induced epileptiform burst of a few hundred milliseconds evoked by extracellular focal stimuli into epileptiform discharge only a few seconds long (1.8-7 s). Moreover, Cs+ induced the appearance of spontaneously occurring epileptiform activities (0.038-0.15 Hz). Simultaneous intracellular/extracellular recordings indicated that each intracellular epileptiform burst was correlated with a field discharge. Variation of the membrane potential modified only the amplitude of the epileptiform burst and did not alter its frequency of occurrence, indicating that each discharge was a synchronous population event. The epileptiform discharges were not blocked by the N-methyl-D-aspartate (NMDA) receptor antagonist 3-((+-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP 5-10 microM). In contrast, the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX 0.5-5 microM) greatly reduced the duration of each epileptiform discharge by abolishing its afterdischarges in a concentration-dependent manner. This reduction in duration was accompanied by an increase in frequency of occurrence, however. After blockade of non-NMDA receptors with CNQX, a CPP-sensitive spontaneous discharge could be observed. These findings indicate that the inorganic cation Cs+ applied extracellularly can induce spontaneously occurring epileptiform activities in BMI-treated neocortical slices. In addition, receptors of excitatory amino acids play a major role in synchronizing this type of Cs+/BMI-induced spontaneous epileptiform activities.  相似文献   

6.
The GABA(A) receptor antagonist bicuculline methiodide (BMI, 10 microM) transformed the evoked synaptic responses, recorded intracellularly from the CA3 area of neonatal (postnatal days 3-7, P3-P7), juvenile (P8-P20) and adult hippocampal slices, into long-lasting paroxysmal depolarizations (PDs), with repetitive action potentials (APs). In the same preparation, GABA(A)-mediated fast-IPSPs were depolarizing at resting membrane potential (RMP), with a reversal potential shifting to a hyperpolarizing direction with age (n=15, P6-P17). BMI provoked also spontaneous PDs in juvenile (20/30) and adult (7/10) but not in neonatal (0/12) neurons. PDs were depressed by either the NMDA receptor antagonist CPP (10 microM) or the non-NMDA antagonist CNQX (10 microM), but were blocked only by the combination of the two (n=6), indicating that activation of either NMDA or non-NMDA receptors can independently sustain PDs in immature hippocampus. In conclusion, these findings show that endogenous GABA tonically inhibits CA3 synaptic responses in neonatal life despite the depolarizing nature of GABA(A)-mediated potentials. Moreover, they suggest that during the 1st postnatal week, disinhibition alone is not sufficient to provoke spontaneous epileptiform discharges in CA3 hippocampal area.  相似文献   

7.
The effects of excitatory amino acid receptor antagonists kynuretic acid and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) on epileptiform activity induced by 4-aminopyridine (4-AP) were studied in rat amygdala slices using intracellular recording techniques. Five to 10 min after switching to 4-AP-containing solution, spontaneous epileptiform bursts were observed in 35 out of 45 slices studied. The spontaneous epileptiform events consisted of an initial burst followed by a number of afterdischarges. Superfusion with kynuretic acid, a broad-spectrum excitatory amino acid receptor antagonist, reversibly reduced the duration of the spontaneous bursting discharges in a dose-dependent manner. The frequency of spontaneous bursting was also decreased. The IC50, estimated from the graph of the concentration-response relationship, was approximately 130 μM. In addition, CNQX which is a specificnon-N-methyl-d-aspartate (NMDA) receptor antagonist blocked the spontaneous and evoked epileptiform bursting. In 11 out of 15 neurons tested, there was a residual depolarizing component remained. This depolarizing component was reversibly blocked by specific NMDA receptor antagonist,d,l-2-amino-5-phosphonovaleate (d,l-APV). Relative to the CNQX-sensitive component, thed,l-APV-sensitive component is much smaller in amplitude and shorter in duration indicating that NMDA receptor plays only a minor role in this process. These data suggest that the generation of propagation of spontaneous epileptiform events induced by 4-AP in the neurons of basolateral amygdala is mediated by excitatory amino acids and that activation of non-NMDA receptors is of primary importance.  相似文献   

8.
Alpha-dendrotoxin (α-DTx), a snake venom toxin which blocks several types of fast-activating voltage-dependent potassium channels, induces limbic seizures and neuronal damage when injected into the brain. The mechanisms underlying these convulsant and neuropathological actions are not fully understood. We have studied the effects of α-DTx on neurotransmitter release and electrical activity in rat hippocampal brain slices and the role of excitatory amino acid receptors in mediating these actions of the toxin. α-DTx increased the basal release of acetylcholine, glutamate, aspartate, and GABA in a concentration-dependent manner and induced epileptiform bursting in the CA1 and CA3 regions of the slice. The increase in neurotransmitter release was evident during the first 4 min after toxin addition, whereas the bursting appeared after a concentration-dependent delay (20–40 min with 250 nM toxin). The N-methyl-D-aspartate (NMDA) receptor antagonists AP5 and MK-801 had no effect on the frequency or amplitude of dendrotoxin-induced epileptiform bursts, but the non-NMDA antagonists CNQX and DNQX abolished bursting in both CA1 and CA3 within 4–6 min. In contrast, the toxin-induced increases in neurotransmitter release were not blocked by DNQX. This study has demonstrated that, following exposure to α-DTx, there is a rapid increase in the release of neurotransmitters which precedes the onset of epileptiform bursting in the hippocampus. Since DNQX abolished the bursting but had no effect on the increase in neurotransmitter release, these results suggest that DNQX blocks α-DTx-induced epileptiform activity by antagonism of postsynaptic non-NMDA receptors. J. Neurosci. Res. 48:499–506, 1997. © British Crown copyright 1997/DERA—published with the permission of the Controller of Her Majesty's Stationery Office.  相似文献   

9.
The role of γ-aminobutyric acid B (GABAB) receptors in the generation and maintenance of bicuculline-induced epileptiform activity in rat neocortical slices was studied using electrophysiological methods. A block of GABAB receptors in the presence of functional GABAA receptor-mediated inhibition was not sufficient to induce epileptiform activity. In the presence of the GABAA receptor antagonist bicuculline (10 μm ) and at suprathreshold stimulation, the GABAB receptor antagonist CGP 35348 (10–300 μm ) significantly potentiated epileptiform activity. With stimulation at threshold intensity, low concentrations of CGP 35348 (10–30 μm ) potentiated bicuculline-induced activity, whereas higher concentrations (100–300 μm ) invariably led to a reversible suppression of stimulus-evoked epileptiform discharges. CGP 35348 also enhanced picrotoxin-induced epileptiform activity, but at higher concentrations it was considerably less effective in suppressing such epileptiform discharges. The GABA uptake inhibitor nipecotic acid partially mimicked the actions of CGP 35348: with stimulation at threshold intensity, it reversibly suppressed bicuculline-induced epileptiform field potentials, but it did not influence epileptiform activity induced by picrotoxin. We conclude that a postsynaptic blockade of GABAB receptors induces an amplification of epileptiform activity in neocortical slices disinhibited by GABAA receptor antagonists. An additional blockade of presynaptic GABAB receptors, especially under conditions of weak stimulation of the neurons, reduces the inhibitory auto-feedback control of GABA release, leading to a displacement of competitive antagonists from the postsynaptic GABAA receptor and hence, to a suppression of epileptiform activity induced by competitive GABAA receptor antagonists.  相似文献   

10.
Under ischemic conditions, the excitatory amino acids (EAA), glutamate and aspartate, accumulate in the extracellular compartment of brain and, by excessive stimulation of EAA receptors, trigger excitotoxic degeneration of CNS neurons. Since glutamate and aspartate exert excitotoxic activity through both of the generally recognized classes of EAA receptors [N-methyl-D-aspartate (NMDA) and non-NMDA], it follows that both receptor classes may play a role in ischemic neuronal degeneration. Although several laboratories have reported that NMDA receptor antagonists confer protection in vivo against ischemic neuronal degeneration, very little is known about the ability of non-NMDA antagonists to confer such protection, a major reason being that non-NMDA antagonists that penetrate blood-brain barriers have not been available. In the present study, we examined the ability of NMDA or non-NMDA antagonists, either individually or in combination, to prevent neuronal degeneration in vivo in the adult rat retina rendered ischemic by dye/photothrombotic occlusion of retinal blood vessels. In this model, delivery of drugs to the ischemic tissue is assured by intravitreal administration. Intravitreal administration of the NMDA antagonist, MK-801, reduced the severity of ischemic damage approximately 50% (a ceiling effect that could not be increased by administering higher doses). The predominantly non-NMDA antagonist, CNQX, when administered in the highest dose permitted by its solubility limitations, provided equivocal (statistically nonsignificant) protection, but the two drugs combined provided greater than 80% protection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
P W Gean 《Brain research》1990,530(2):251-256
The effects of excitatory amino acid receptor antagonists kynuretic acid and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) on epileptiform activity induced by 4-aminopyridine (4-AP) were studied in rat amygdala slices using intracellular recording techniques. Five to 10 min after switching to 4-AP-containing solution, spontaneous epileptiform bursts were observed in 35 out of 45 slices studied. The spontaneous epileptiform events consisted of an initial burst followed by a number of afterdischarges. Superfusion with kynuretic acid, a broad-spectrum excitatory amino acid receptor antagonist, reversibly reduced the duration of the spontaneous bursting discharges in a dose-dependent manner. The frequency of spontaneous bursting was also decreased. The IC50, estimated from the graph of the concentration-response relationship, was approximately 130 microM. In addition, CNQX which is a specific non-N-methyl-D-aspartate (NMDA) receptor antagonist blocked the spontaneous and evoked epileptiform bursting. In 11 out of 15 neurons tested, there was a residual depolarizing component remained. This depolarizing component was reversibly blocked by specific NMDA receptor antagonist, D,L-2-amino-5-phosphonovaleate (D,L-APV). Relative to the CNQX-sensitive component, the D,L-APV-sensitive component is much smaller in amplitude and shorter in duration indicating that NMDA receptor plays only a minor role in this process. These data suggest that the generation or propagation of spontaneous epileptiform events induced by 4-AP in the neurons of basolateral amygdala is mediated by excitatory amino acids and that activation of non-NMDA receptors is of primary importance.  相似文献   

12.
We examined whether epileptiform activity can be induced and prevented by mild reduction of GABAA receptor-mediated inhibition and non-NMDA receptor-mediated excitation, respectively, in different regions of combined hippocampal/entorhinal cortical slices from juvenile rats (P15–21). We used the receptor antagonists bicuculline (GABAA) and CNQX (non-NMDA) as tools to investigate the sensitivities of the CA1, the subiculum (SUB) and the medial entorhinal cortex (MEC) for generating epileptiform discharges upon extracellular stimulation. We found that low concentrations of bicuculline (<3.5 μM) were enough to induce epileptiform discharges in the three regions. These discharges were similar to those observed under high concentrations of bicuculline (>10 μM) and consisted of stereotyped population bursts, recorded both extra- and intracellularly. Interestingly, the CA1 and SUB were more susceptible to generate discharges compared to the MEC in the same slices. We also found that non-NMDA excitation was critical in controlling discharges, as they were blocked by CNQX in a concentration-dependent manner. The sensitivity of the CA1 region to CNQX was lower than that of the SUB and MEC. Based on these regional differences, we show that epileptiform activity can be pharmacologically isolated within the CA1 region in the hippocampal–entorhinal circuitry in vitro.  相似文献   

13.
In a substantial number of cases, Human Immunodeficiency Virus type 1 (HIV-1) infection causes neuronal cell loss and leads to the development of AIDS associated dementia. Several studies have suggested that both host and viral factors contribute to neuronal loss. Here we studied the effect of HIV-1 Tat in primary rat neuronal cells as a model to understand mechanism of neuronal cell death. At nano molar concentration, recombinant Tat induced cell death in primary rat mixed cortical neurons. Tat could also induce uptake of calcium in primary rat cultures. When cells were incubated with NMDA receptor antagonists, MK-801 and D-CPP, cell death and 45Ca uptake were inhibited. Under similar conditions non-NMDA antagonists, NBQX, DNQX and CNQX, and sodium channel antagonist, TTX, did not inhibit Tat induced neuronal cell death. In a similar way HIV associated products from in vitro HIV-1 infected cells induced neuronal cell death which was inhibited by NMDA receptor antagonist. Results presented in this paper suggest that activation of NMDA receptors by HIV-1 Tat is responsible for neuronal cell death in primary rat cortical neurons.  相似文献   

14.
Fast oscillations at approximately 200 Hz, termed ripples, occur in the hippocampus and cortex of several species, including humans, and are thought to play a role in physiological (e.g., sensory information processing or memory consolidation) and pathological (e.g., seizures) processes. Blocking gamma-aminobutyric acid type A (GABA(A)) receptor-mediated inhibition represents one of the most often used models of epileptiform discharge. Here we found that bath application of the GABA(A) receptor antagonist picrotoxin (50 microM) to mouse hippocampus-entorhinal cortex slices induced spontaneous epileptiform activity (duration 536.6 +/- 146.1 msec, mean +/- SD; interval of occurrence 14.8 +/- 3.3 sec, n = 12) with two distinct phases of discharge; the first was characterized, in the dentate gyrus only, by high-frequency, field oscillations (ripples) at 206.3 +/- 23.4 Hz (n = 12), whereas the second component corresponded to afterdischarges in the theta range frequency. Ripples, which were also recorded in "minislices" only of the dentate gyrus, were unaffected by application of the mu-opioid receptor agonist (D-Ala2-N-Me-Phe,Gly-ol)enkephalin (10 microM; n = 6) or the N-methyl-D-aspartate (NMDA) receptor antagonist 3-(2-carboxy-piperazine-4-yl)-propyl-l-phosphonate (10 microM; n = 5). In contrast, the non-NMDA glutamatergic receptor antagonist 6-cyano-7-nitro-quinoxaline-2,3-dione (10 microM; n = 5) completely blocked all picrotoxin-induced activities. In addition, application of the GABA(B) receptor agonist baclofen (0.01-0.5 microM; n = 6) dose dependently and reversibly abolished all picrotoxin-induced activities. We also found that application of the gap-junction decouplers carbenoxolone (0.2-0.5 mM; n = 6) or octanol (0.2-0.5 mM; n = 3) blocked the second phase while leaving ripples unchanged. These findings demonstrate that the disinhibited dentate gyrus can generate ripple activity at approximately 200 Hz that is contributed by ionotropic glutamatergic mechanisms and is not dependent on either GABA(A) receptor-mediated or gap-junction mechanisms.  相似文献   

15.
The quinoxalinedione, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), has been introduced as a relatively selective antagonist of non-N-methyl-D-aspartate (non-NMDA) glutamate receptors. We studied the ability of CNQX to block excitatory amino acid-induced neurotoxicity in murine cortical cell cultures. 100 microM CNQX blocked the acute neuronal swelling induced by 500 microM kainate, but it also attenuated the swelling and degeneration induced by 500 microM NMDA. Addition of 1 mM glycine to the CNQX eliminated antagonism of NMDA toxicity, while preserving antagonism of the neuronal degeneration induced by kainate or AMPA. This selective non-NMDA antagonist combination of CNQX plus glycine substantially attenuated the acute neuronal swelling induced by brief exposure to 500 microM glutamate, but had little effect on subsequent late degeneration, supporting the conclusion that rapidly triggered glutamate-induced cortical neuronal death is predominantly mediated by NMDA receptors.  相似文献   

16.
A large body of evidence exists to demonstrate that excitatory amino acids (EAA) and their receptors are involved in the pathophysiological mechanisms linking several acute brain insults, such as cerebral ischemia, to neuronal degeneration and death. Accordingly, the use of EAA receptor antagonists can be beneficial in attenuating or preventing the neuronal irreversible damage subsequent to various neuropathological syndromes. We have investigated the effect of 15 min of simulated ischemic conditions, i. e., oxygen/glucose deprivation, on hippocampal slices preparation measuring, as neurotoxicity indexes, both the amino acids efflux in the incubation medium, detected by HPLC, and the inhibition of protein synthesis, evaluated as 3H-Leucine incorporation into proteins. Accumulation of neurotransmitter amino acids was measured in the medium during the “ischemic” period. Glutamate increased 30-fold over the basal level while aspartate was sevenfold and GABA 12-fold higher than in normal conditions. After a reoxygenation period of 30 min, the rate of protein synthesis of hippocampal slices subjected to “ischemia” was reduced to 35–50% of controls. The non-competitive NMDA antagonist MK-801 (100 μM) and the competitive NMDA antagonist CGP 39551 (100–250 μM) as well as the non-NMDA receptor antagonist NBQX (100 μM) and AP3 (300 μM) were unable to counteract the metabolic impairment when they were present alone in the incubation fluid during simulated “ischemia.” An incomplete, but highly significant (p < 0.001), protection from protein synthesis impairment was achieved in the presence of an equimolar concentration (100 μM) of MK-801 and NBQX. A similar protective effect could be reproduced using 100 μM NBQX in concomitance with a high Mg++ (20 μM) voltage-dependent block of the NMDA receptor-associated channel but not exposing the slices to a NBQX (100 μM) and CGP 39551 (100–250 μM) mixture. The recovery of protein synthesis in the presence of the MK-801/NBQX effective combination was not paralleled by a detectable decrease in the amount of amino acids released in the incubation medium during the “ischemic” period. Taken together, the present data allow new insights into neurotoxicity-mediating mechanisms, suggesting that multiple additive processes are involved and that antagonists acting at different sites on excitatory amino acid receptor subtype can show different neuroprotective potency. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Intracellular and extracellular recordings from CA3 hippocampal neurons in vitro were used to study the ability of several NMDA (N-methyl-d-aspartate) receptor antagonists to suppress epileptiform bursts induced by NMDA and convulsants not thought to act at NMDA receptors. The antagonists, APV (d-2-amino-5-phosphonovalerate), AP-7 (d,l-2-amino-7-phosphonoheptanoate) and CPP (d,l-3-[(±)-2-car☐ypiperazin-4-yl-]-propyl-1-phosphonic acid), blocked the spontaneous and evoked bursts induced by NMDA. CPP, but not APV or AP-7, prevented the development of bursts induced by Mg-free medium. The NMDA antagonists failed to block bursting induced by kainate, 7 mM K+, mast cell degranulating peptide, anoxia or spontaneous bursting. In some cases the NMDA antagonists induced spontaneous bursts or enhanced burst frequency, a proconvulsant effect. It is concluded that activation of NMDA receptors is sufficient but not necessary for burst generation in the CA3 region.  相似文献   

18.
The potential toxic effects of the metabotropic glutamate receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) and its interactions with the N-methyl- -aspartate (NMDA) receptor were studied in hippocampal brain slice cultures, using densitometric measurements of the cellular uptake of propidium iodide (PI) to quantify neuronal degeneration. Cultures exposed to ACPD, showed a concentration (2–5 mM) and time (1–4 days) dependent increase in PI uptake in CA1, CA3 and dentate subfields after 24 h and 48 h of exposure, with CA1 pyramidal cells being most sensitive. The neurodegeneration induced by 2 mM ACPD was completely abolished by addition of 10 μM of the NMDA receptor antagonist (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), while 20 μM of the 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainic acid receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) had no effect. Co-exposing cultures to a subtoxic dose of 300 μM ACPD together with 10 μM NMDA, which at this dose is known to induce a fairly selective degeneration of CA1 pyramidal cells, significantly increased the PI uptake in both CA1 and CA3, compared to cultures exposed to 10 μM NMDA only. Adding the 300 μM ACPD as pretreatment for 30 min followed by a 30 min wash in normal medium before the ACPD/NMDA co-exposure, eliminated the potentiation of NMDA toxicity. The potentiation was also blocked by addition of 10 or 100 μM 2-methyl-6-(phenylethynyl)pyridine (MPEP) (mGluR5 antagonist) during the co-exposure, while a corresponding addition of 10 or 100 μM 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) (mGluR1 antagonist) had no effect. We conclude that, stimulation of metabotropic glutamate receptors with ACPD at concentrations of 2 mM or higher induces a distinct subfield-related and time and concentration dependent pattern of hippocampal degeneration, and that ACPD at subtoxic concentrations modulates NMDA-induced excitotoxicity through the mGluR5 receptor in a time dependent way.  相似文献   

19.
GABAergic synaptic transmission plays an important role in the patterning of epileptiform activity. We have previously shown that global loss of GABA(B) receptor function due to transgenic deletion of the GABA(B1) receptor subunit exacerbates epileptiform activity induced by pharmacological manipulations in hippocampal slices. Here we show that a similar hyperexcitable phenotype is observed in hippocampal slices prepared from a transgenic mouse expressing a GABA(B2) receptor subunit lacking its C terminal tail (the DeltaGB2-Ct mouse); a molecular manipulation that also produces complete loss of GABA(B) receptor function. Thus, epileptiform bursts that are sensitive to NMDA receptor antagonists (induced by either the GABA(A) receptor antagonist bicuculline (10muM) or removal of extracellular Mg(2+)) were significantly longer in duration in DeltaGB2-Ct slices relative to WT slices. We now extend these observations to demonstrate that a stimulus train induced bursting (STIB) protocol also evokes significantly longer bicuculline sensitive bursts of activity in DeltaGB2-Ct slices compared to WT. Furthermore, synchronous GABA(A) receptor-mediated potentials recorded in the presence of the potassium channel blocker 4-aminopyridine (4-AP, 100muM) and the ionotropic glutamate receptor antagonists NBQX (20muM) and D-AP5 (50muM) were significantly prolonged in duration in DeltaGB2-Ct versus WT slices. These data suggest that the loss of GABA(B) receptor function in DeltaGB2-Ct hippocampal slices promotes depolarising GABA(A) receptor-mediated events, which in turn, leads to the generation of ictal-like events, which may contribute to the epilepsy phenotype observed in vivo.  相似文献   

20.
Inappropriate activation of NMDA receptors during a period of cerebral ischaemia is a crucial event in the pathway leading to neuronal degeneration. However, significant research has failed to deliver a clinically active NMDA receptor antagonist, and competitive NMDA antagonists are ineffective in many experimental models of ischaemia. The NMDA receptor itself has a number of modulatory sites which may affect receptor function under ischaemic conditions. Using rat organotypic hippocampal slice cultures we have investigated whether the redox modulatory site affects the neuroprotective efficacy of NMDA receptor antagonists against excitotoxicity and experimental ischaemia (OGD). NMDA toxicity was significantly enhanced in cultures pretreated with a reducing agent. The noncompetitive antagonist MK-801 and a glycine-site blocker were equally neuroprotective in both normal and reduced conditions, but there was a significant rightward shift in the dose-response curves of the competitive antagonists APV and CPP and the uncompetitive antagonist memantine. OGD produced neuronal damage predominantly in the CA1 region, which was prevented by MK-801 and memantine, but not by APV or CPP. Inclusion of an oxidizing agent during the period of OGD had no effect alone, but significantly enhanced the neuroprotective potency of the competitive antagonists. These data clearly demonstrate that chemical reduction of the redox modulatory site of the NMDA receptor decreases the ability of competitive antagonists to block NMDA receptor-mediated neuronal damage, and that the reducing conditions which occur during simulated ischaemia are sufficient to produce a similar effect. This may have important implications for the design of future neuroprotective agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号