首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-linked mental retardation (XLMR) is a heterogeneous disorder that can be classified as either non-specific (MRX), when mental retardation is the only feature, or as syndromic mental retardation (MRXS). Genetic defects underlying XLMR are being identified at a rapid pace, often starting from X-chromosomal aberrations and XLMR families with a well-defined linkage interval. Here, we present a new family with a syndromic form of XLMR, including mild mental retardation, short stature, microcephaly and hypogonadism. Two-point linkage analysis with 24 polymorphic markers spanning the entire X chromosome was carried out. We could assign the causative gene to a 6 cM interval in Xp22.1-p21.3, with a maximum LOD score of 2.61 for markers DXS989 and DXS1061 at theta = 0.00. No mutations were found in the presented family for two known MRX genes mapping to this interval, ARX and IL1RAPL-1. These data indicate that the interval Xp22.1-p21.3 contains at least one additional MRXS gene.  相似文献   

2.
Two families with nonspecific X-linked mental retardation (XLMR) are presented. In the first family, MRX49, 5 male patients in 2 generations showed mild to moderate mental retardation. Two-point linkage analysis with 28 polymorphic markers, dispersed over the X-chromosome, yielded a maximal LOD score of 2.107 with markers DXS7107 and DXS8051 at θ = 0.0, localizing the MRX49 gene at Xp22.3-p22.2, between Xpter and marker DXS8022. Multipoint linkage analysis showed negative LOD values over all other regions of the chromosome. In the second family, MRX50, 4 males in 2 generations showed moderate mental retardation. Pairwise linkage analysis with 28 polymorphic markers yielded a LOD score of 2.056 with markers DXS8054, DXS1055, and DXS1204, all at θ = 0.0. Flanking markers were DXS8012 and DXS991, situating the MRX50 gene at Xp11.3-Xp11.21, in the pericentromeric part of the short arm of the X chromosome. Am. J. Med. Genet. 73:474–479, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
MRX genes of 2 families with X-linked mental retardation (XLMR) were localized by linkage analysis. In family A, the gene was mapped to Xp22.31–p22.32, with significant LOD scores to various Xp22 markers within a distance of 6 Mb between DXS1223 and DXS1224. The MRX gene of this family was designated MRX37. In a mentally retarded female who is a carrier of the MRX37 gene, a random pattern of X inactivation was demonstrated. In family B, a positive LOD score, although not significant (< + 2), was found with the marker DXS1202 at Xp22.11–p22.2. © 1996 Wiley-Liss, Inc.  相似文献   

4.
X-linked mental retardation (XLMR) can be subdivided into syndromic and nonsyndromic or nonspecific. Patients with nonsyndroml XLMR show no characteristic manifestations, biochemical defects, or distinct fragile sites. Nevertheless, nonspecific XLMR seems to be heterogeneous. To determine the number and location of the genes responsible for XLMR, linkage studies in large pedigrees have to be performed. Here we report the data of linkage analysis in a large Brazilian family with 7 patients affected by a severe form of XLMR, with no other associated malformations. All the obligate carriers are normal. A close linkage without recombination (lod scores 1.95 and 3.25) was found between the disease locus and polymorphic DNA loci DXS255 (Xp11.22), DXS14 (Xp11.21). These results suggest tht the gene responsible for the disease in this family maps in the Xp11-cent of the X chromosome. Positive lod score in this region have also been reported for other XLMR genealogie, but with a much milder phenotype. The possibility of intragenic or locus heterogeneity is discussed. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Epidemiological studies have suggested that non-specific X-linked mental retardation (XLMR) might be at least as frequent as the fragile X syndrome. The identification of all mutations causing XLMR would thus appear of prime importance. In the absence of other clinical signs the problem of genetic heterogeneity is acute. This can be partly overcome by the analysis of large families. We have been able to perform linkage analysis in 3 such families. The condition in family 1 was described as clinically resembling the fra (X) syndrome by Proops et al [1983]: the kindred includes 7 affected males in 3 sibships. Family 2 from Denmark has affected males in 4 generations; however, several affected relatives in this extended pedigree are deceased. Family 3 from France counts 6 affected males in two sibships. The families were analysed with about 25 X-linked markers. Linkage with markers in Xp22.2-p22.3 was found in family 1: z(theta) = 2.62 at theta = 0.06 for DXS85 (probe 782). Suggestion of linkage was found in family 2 with both the Duchenne muscular dystrophy region (DXS164 in Xp21.2) and with DXS1 (Xq11-q12). In family 3, DXS159 (Xq12-q13) gave a lod score of 2.53 at theta = 0; results were compatible with localisation of the putative XLMR locus in this family proximal to DXYS1 (Xq21). These data suggest that at least two non-specific XLMR loci could exist, one in Xp22 and the other in the q12-q13 region.  相似文献   

6.
X-linked mental retardation (XLMR) is a genetically heterogeneous condition, due to mutations in at least 50 genes, involved in functioning of the central nervous system and located on the X chromosome. Nonspecific XLMR (MRX) is characterized essentially by mental retardation transmitted by X-linked inheritance. More than 80 extended MRX pedigrees have been reported to date, which have been distinguished exclusively by physical position of the corresponding gene on the X chromosome, established by linkage analysis. One such family, MRX21, which was described by us in 1993 and localized to Xp11.4-pter, has now been reanalyzed with additional markers and after one more affected individual had became available. This extra information allowed a significant reduction of the linkage interval and, eventually, identification of the mutant gene. A stop mutation in exon 10 of the IL1RAPL1 gene (in Xp21) was found in the four affected males and in obligate carriers, allowing conclusive counseling of other family members of uncertain carrier status. The W487X mutation results in the production of a truncated IL1RAPL protein, comprised of the extracellular Ig-like domain and transmembrane tract, but lacking the last 210 aminoacids of the cytoplasmic domain. MRX21 is the first extended MRX family with a point mutation in IL1RAPL1 and the second with a stop mutation, which had been previously found only in a small family. Our report confirms the role of the IL1RAPL1 gene in causing nonspecific mental retardation in males and underlines the importance of detailed linkage analysis before candidate gene mutational screening.  相似文献   

7.
Neuropathological findings in Moebius syndrome   总被引:1,自引:0,他引:1  
X-linked mental retardation (XLMR) is a genetically and clinically neterogenous common disorder. A cumulative frequency of about 1/600 male births was estimated by different authors, including the fragile X syndrome, which affects 1/4000 males. Given this very high cumulative frequency, identification of genes and molecular mechanisms involved in other XLMRs, represents a challenging task of considerable medical importance. In this report we describe clinical and molecular investigations in the family of a mentally retarded boy for whom a microdeletion in Xp21.3–22.1 was detected within the frame of a previously reported systematic search for deletion using STS-PCR screening. Thorough clinical investigation of the sibling showed that two affected brothers exhibit a moderate non-specific mental retardation without any additional neurological impairment, statural growth deficiency or characteristic dysmorphy. Molecular analysis revealed that the microdeletion observed in this family is an inherited defect which cosegregates with mental retardation as an X-linked recessive condition, since both non-deleted boys and transmitting mother are normal. These results and the inherited microdeletion detected within the same region associated with non-specific MR, reported by Raeymaekers et al., suggest that Xp21.3 MR locus is prone to deletions. Therefore, search for microdeletions in the eight families assigned by linkage analysis to this region might allow a better definition of the critical region and an identification of the gene involved in this X-linked mental retardation.  相似文献   

8.
An Austrian family with nonsyndromic X-linked mental retardation (MRX) is reported in which the obligatory carrier females are normal, and 5 affected males have mild to moderate mental retardation. Linkage analysis indicated an X pericentromeric localization, with flanking markers DXS989 and DXS1111 and a maximum multipoint LOD score of 2.09 (θ = 0) for the 7 cosegregating markers DXS1243, CybB, MAOB, DXS988, ALAS2, DXS991, and AR. MRX58 thus mapped within a 50-cM interval between Xp11.3 and Xq13.1 and overlapped with 23 other MRX families already described. This pericentromeric clustering of MRX families suggests allelism, with a minimum of 2 X-linked mental retardation (XLMR) genes in this region. Am. J. Med. Genet. 86:102–106, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

9.
Linkage localization of B?rjeson-Forssman-Lehmann syndrome   总被引:5,自引:0,他引:5  
B?rjeson-Forssman-Lehmann syndrome (BFLS) is a form of X-linked mental retardation (XLMR) with characteristic minor physical anomalies. It has no biochemical or cytogenetic markers. Heterozygous females may be entirely normal or may have mild-to-moderate manifestations. We studied 41 individuals from one family with BFLS for linkage on the X chromosome. The highest lod scores were 2.32 with DXS10 and 2.24 with DXS51, both at a theta = 0.0. A single recombinant was found between HPRT and BFLS. These results suggest that the BFLS locus is on the distal portion of Xq. Previously reported linkage studies in families with XLMR have not shown linkage with DXS10. This study suggests that one of the several X chromosome loci whose dysfunction is associated with mental retardation is located on distal Xq.  相似文献   

10.
Involvement of genes on the X-chromosome as a cause of mental retardation has been recognized for a long time. X-linked phenotypes of mental retardation have been divided into non-syndromic and syndromic based on associated manifestations. At present, more than 140 syndromic X-linked mental retardation (XLMR) conditions have been reported and a causative gene mutation has been identified in almost half of these. Here, we report on two brothers with short stature, microcephaly, severe mental retardation, and retinoschisis. Results of karyotype analysis, fragile-X and neuroimaging studies were normal. Fundus examination showed bilateral retinoschisis at variable stages in both sibs. X-linked retinoschisis is a retinal dystrophy caused by mutations in the RS1 gene at Xp22.1, which lead to splitting of the neural retina and reduced visual acuity in affected men. However, as yet there have been no reports of mental retardation in X-linked retinoschisis although genetic loci for XLMR and short stature have been mapped to Xp22.1. Sequencing and microarray analysis failed to find any alteration of RS1 gene or copy number alteration in the region. In addition, genotype analysis of Xp22.1 provided evidence against linkage to this region. The associated findings of retinoschisis and mental retardation in two brothers suggest a new mental retardation syndrome likely to be an X linked trait.  相似文献   

11.
X-linked mental retardation (XLMR) is a heterogeneous disorder with both syndromic and non-syndromic forms. Here we describe the clinical and molecular characterisation of a family with a syndromic form of XLMR with hypogonadism and short stature. We investigated a family in which four male members in two generations presented with hypergonadotrophic hypogonadism associated with development of small and abnormal testes. In two of the males, late-onset testicular ascent was noted. In addition, all affected males had short stature (<0.4th centile) and mild learning difficulties and three out of the four had microcephaly. Karyotypes were normal and endocrine investigations confirmed primary testicular failure. The phenotype segregated as an X-linked trait. Haplotype and genetic two-point linkage analysis with 22 microsatellites excluded the whole X chromosome except for a region on Xq25-Xq27 encompassing 13.7Mb with a maximum LOD score of 1.1 for marker DXS8038 at theta=0.05. One family previously described as having XLMR with hypogonadism and short stature maps to the same X chromosome region implicated in our family. However, the more severe mental retardation, muscle wasting and tremor described in this other family would suggest that our family is affected by a novel XLMR syndrome.  相似文献   

12.
Mental retardation (MR) affects an estimated 2-3% of the population. A considerable fraction of mental retardation is due to X-linked genes. Of these genes, about 136 are responsible for syndromic X-linked MR (XLMR). One such XLMR syndrome, Stocco dos Santos, was first described in 1991. This family was re-visited, which allowed further delineation of the clinical phenotype. Additionally, linkage analysis was conducted, which resulted in the localization of this XLMR syndrome to the pericentric region, Xp11.3 to Xq21.1, with a maximum LOD score of 3.14 at loci AR and DXS983.  相似文献   

13.
The syndrome of infantile spasms, hypsarrhythmia, and mental retardation (West syndrome) is a classical form of epilepsy, occurring in early infancy, which is etiologically heterogeneous. In rare families, West syndrome is an X-linked recessive condition, mapped to Xp11.4-Xpter (MIM 308350). We have identified a multi-generation family from Western Canada with this rare syndrome of infantile spasms, seen exclusively in male offspring from asymptomatic mothers, thereby confirming segregation as an X-linked recessive trait. Using highly polymorphic microsatellite CA-repeat probes evenly distributed over the entire X chromosome, linkage to markers DXS7110, DXS989, DXS1202, and DXS7106 was confirmed, with a maximum LOD score of 3.97 at a theta of 0.0. The identification of key recombinants refined the disease-containing interval between markers DXS1226 and the adrenal hypoplasia locus (AHC). This now maps the X-linked infantile spasms gene locus to chromosome Xp21.3-Xp22.1 and refines the interval containing the candidate gene to 7.0 cM. Furthermore, this interval overlaps several loci previously linked with either syndromic or non-syndromic X-linked mental retardation (XLMR), including one recognized locus implicated in neuroaxonal processing (radixin, RDXP2). Collectively, these studies lend strong support for the presence of one or more genes intrinsic to brain development and function, occurring within the critical interval defined between Xp21.3-Xp22.1.  相似文献   

14.
Nonspecific X-linked mental retardation (MRX) includes several distinct genetic entities in which mental retardation is not associated with additional distinguishing physical changes. We report linkage data in a Spanish family with MRX, using polymorphic DNA markers distributed over the X chromosome. Two-point linkage analysis demonstrated close linkage between the MRX locus and DXS85 in Xp22.3 with a peak lod score of 2.28 at a Ø = 0.00. Analysis of multiple informative meioses suggested a localization of the MRX locus (MRX24) between DXS278 and DXS207. Multipoint linkage analysis resulted in a maximum LOD score of 2.45 at 3 cM proximal to DXS85, and allowed us to reject a localization of the MRX24 gene in all other regions from Xp21–Xqter. These findings localize the MRX24 gene in the chromosomal region Xp22.2–p22.3. © 1995 Wiley-Liss, Inc.  相似文献   

15.
Two families with nonspecific X-linked mental retardation (MRX) are presented. In the first family, MRX51, three male patients showed mild to borderline mental retardation. Multipoint linkage analysis yielded a maximal LOD score of 2.10 between markers DXS8012 and DXS1003, localizing the MRX51 gene at Xp11.3-p11.23. In the second family, XLMR7, three men showed moderate mental retardation (MR), and one possible female carrier had mild MR. Multipoint linkage analysis yielded an LOD score of 1.80 between markers DXS8063 and DXS1047, situating the disease gene at Xq23-q26.1. When the analysis was performed considering the affected female to be an expressing heterozygote carrier of the disease mutation, a maximal LOD score of 2.10 was found in the same region.  相似文献   

16.
An Austrian family with nonsyndromic X-linked mental retardation (MRX) is reported in which the obligatory carrier females are normal, and 5 affected males have mild to moderate mental retardation. Linkage analysis indicated an X pericentromeric localization, with flanking markers DXS989 and DXS1111 and a maximum multipoint LOD score of 2.09 (straight theta = 0) for the 7 cosegregating markers DXS1243, CybB, MAOB, DXS988, ALAS2, DXS991, and AR. MRX58 thus mapped within a 50-cM interval between Xp11.3 and Xq13.1 and overlapped with 23 other MRX families already described. This pericentromeric clustering of MRX families suggests allelism, with a minimum of 2 X-linked mental retardation (XLMR) genes in this region.  相似文献   

17.
The EuroMRX family cohort consists of about 400 families with non-syndromic and 200 families with syndromic X-linked mental retardation (XLMR). After exclusion of Fragile X (Fra X) syndrome, probands from these families were tested for mutations in the coding sequence of 90 known and candidate XLMR genes. In total, 73 causative mutations were identified in 21 genes. For 42% of the families with obligate female carriers, the mental retardation phenotype could be explained by a mutation. There was no difference between families with (lod score >2) or without (lod score <2) significant linkage to the X chromosome. For families with two to five affected brothers (brother pair=BP families) only 17% of the MR could be explained. This is significantly lower (P=0.0067) than in families with obligate carrier females and indicates that the MR in about 40% (17/42) of the BP families is due to a single genetic defect on the X chromosome. The mutation frequency of XLMR genes in BP families is lower than can be expected on basis of the male to female ratio of patients with MR or observed recurrence risks. This might be explained by genetic risk factors on the X chromosome, resulting in a more complex etiology in a substantial portion of XLMR patients. The EuroMRX effort is the first attempt to unravel the molecular basis of cognitive dysfunction by large-scale approaches in a large patient cohort. Our results show that it is now possible to identify 42% of the genetic defects in non-syndromic and syndromic XLMR families with obligate female carriers.  相似文献   

18.

Background

X-linked mental retardation (XLMR) is the leading cause of mental retardation in males. Mutations in the ARX gene in Xp22.1 have been found in numerous families with both nonsyndromic and syndromic XLMR. The most frequent mutation in this gene is a 24 bp duplication in exon 2. Based on this fact, a panel of XLMR families linked to Xp22 was tested for this particular ARX mutation.

Methods

Genomic DNA from XLMR families linked to Xp22.1 was amplified for exon 2 in ARX using a Cy5 labeled primer pair. The resulting amplicons were sized using the ALFexpress automated sequencer.

Results

A panel of 11 families with X-linked mental retardation was screened for the ARX 24dup mutation. Four nonsyndromic XLMR families – MRX29, MRX32, MRX33 and MRX38 – were found to have this particular gene mutation.

Conclusion

We have identified 4 additional XLMR families with the ARX dup24 mutation from a panel of 11 XLMR families linked to Xp22.1. This finding makes the ARX dup24 mutation the most common mutation in nonsyndromic XLMR families linked to Xp22.1. As this mutation can be readily tested for using an automated sequencer, screening should be considered for any male with nonsyndromic MR of unknown etiology.  相似文献   

19.
Families with mentally retarded males found to be negative for FRAXA and FRAXE mutations are useful in understanding the genetic basis of X‐linked mental retardation. According to the most recent data (updated to 1999), 69 MRX loci have been mapped and 6 genes cloned. Here we report on a linkage study performed on 20 subjects from a 4‐generation Sardinian family segregating a non‐specific X‐linked recessive mental retardation (XLMR)(MRX72) associated with global delay of all psychomotor development. Five of 8 affected males have been tested for mental age, verbal and performance skills and behavioral anomalies; mental impairment ranged from mild to severe. Only minor anomalies were present in the affected subjects. Two‐point linkage analysis based on 28 informative microsatellites spanning the whole X chromosome demonstrated linkage between the disorder and markers DXS1073 and F8c in Xq28 (maximum Lod score of 2.71 at θ = 0.00). Multipoint linkage analysis confirmed the linkage with a Zmax of 3.0 at θ = 0.00 at DXS1073 and F8c. Recombination in an affected male at DXS1073 and F8c allowed us to delimit centromerically and telomerically the region containing the putative candidate gene. The region, where MRX72 maps, overlaps that of another MRX families previously mapped to Xq28, two of which harbored mutations in GDI. Involvement of this gene was excluded in our family, suggesting another MRX might reside in Xq28. Am. J. Med. Genet. 94:376–382, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号