首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maternal UPD 20 in a hyperactive child with severe growth retardation.   总被引:3,自引:0,他引:3  
Maternal uniparental disomy was observed in a 4-year-old boy with severe pre- and postnatal growth retardation (body height: 85 cm = 12 cm < third percentile, head circumference: 48 cm = 10 cm < third percentile), a few minor facial findings, and with apparent hyperactivity. His intelligence is within the normal range for his age. Karyotype analysis revealed two cell lines, one apparently normal with 46,XY, the other with a tiny marker (47,XY, + mar). Microdissection and reverse chromosome painting using the marker DNA library as a probe, as well as PCR analysis revealed that the marker is from chromosome 20 and contains only the centromere and pericentromeric segments, but none of the pericentromeric loci for microsatellites. Microsatellite analysis of 25 chromosome 20 loci disclosed maternal uniparental disomy for all 16 informative markers. Maternal heterodisomy was evident for seven loci of the short arm segment 20p11.2-pter. Maternal isodisomy was found at five loci, three of them map to the proximal 20p11.2 segment and two to 20q. To our knowledge, this is the first case of maternal disomy 20 in humans.  相似文献   

2.
The association of maternal uniparental disomy for chromosome 7 and postnatal growth failure has been reported in four cases and suggests the presence of genomic imprinting of one or more growth related genes on chromosome 7. However, in the reported cases, the possibility of homozygosity for a recessive mutation could not be excluded as the cause of the growth failure as in all cases isodisomy rather than heterodisomy for chromosome 7 was present. We report a case of prenatal and postnatal growth retardation associated with a prenatal diagnosis of mosaicism for trisomy 7 confined to the placenta. DNA typing of polymorphic markers on chromosome 7 has established that the zygote originated as a trisomy 7 with two maternal and one paternal chromosomes 7 with subsequent loss of the paternal chromosome resulting in a disomic child with maternal heterodisomy for chromosome 7. The growth failure seen in this child with heterodisomy 7 lends strong support to the hypothesis of imprinted gene(s) on chromosome 7.  相似文献   

3.
Prenatal diagnosis of true mosaic trisomy 7 is rare in amniotic fluid and can be misinterpreted as pseudomosaic. The phenotype is highly variable and may be modified by a maternal uniparental disomy of chromosome 7 leading to mild Russell-Silver syndrome (RSS). We report here the third postnatal case of mosaic trisomy 7 with maternal uniparental disomy of chromosome 7 in a boy presenting a mild RSS. Fetal karyotype performed in amniocentesis for intrauterine growth retardation was considered normal. Mosaic trisomy 7 was diagnosed after birth, on fibroblasts karyotype performed for blaschkolinear pigmentary skin anomalies and failure to thrive. Maternal uniparental disomy of chromosome 7 was observed in blood sample. Retrospectively, trisomic 7 cells were identified in one prenatal long-term flask culture revealing a prenatal diagnosis failure. This report emphasizes the difficulty of assessing fetal mosaicism and distinguishing it from pseudomosaicism in cultured amniocytes. It is important to search for uniparental disomy as an indirect clue of trisomy 7 mosaicism and a major prognosis element. Although there are only few prenatal informative cases, detection of trisomy 7 in amniocentesis appears to be associated with a relatively good outcome when maternal uniparental disomy has been ruled out.  相似文献   

4.
We describe a liveborn infant with uniparental disomy (UPD) with trisomy 15 mosaicism. Third trimester amniocentesis yielded a 46,XX/47,XX,+15 karyotype. Symmetrical growth retardation, distinct craniofacies, congenital heart disease, severe hypotonia and minor skeletal anomalies were noted. The infant died at 6 weeks of life. Peripheral lymphocyte chromosomes were “normal” 46,XX in 100 cells. Parental lymphocyte chromosomes were normal. Skin biopsy showed 47,XX,+15 in 80% of fibroblasts and results were equivalent in fibroblasts from autopsy lung tissue. Molecular analysis revealed maternal uniparental heterodisomy for chromosome 15 in the 46,XX cell line. We describe an emerging phenotype of trisomy 15 mosaicism, confirm that more than one tissue should be studied in all cases of suspected mosaicism, and suggest that UPD be considered in all such cases. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Stable centromeric breakage in non-acrocentric chromosomes and balanced reciprocal translocation mosaicism are both rare events. We studied a family in which the mother had mosaicism for a balanced reciprocal translocation between chromosomes 10 and 16 which was associated with a break in chromosome 16 centromere α-satellite DNA {46,XX,t(10;16)(q11.2;q11.1) [29]/46,XX[25]}. The derivative chromosome 16 contained only a very small amount of 16 α-satellite DNA while the derivative 10 contained all of the 10 α-satellite DNA as well as a large amount of the 16 α-satellite DNA. The same translocation was present in all cells in her son who was found prenatally to have trisomy 16 mosaicism {46,XY,t(10;16) (q11.2;q11.1)mat[22]/47,idem,+16[4]}. Trisomy 16 cells were subsequently determined to be confined to the placenta. DNA polymorphism analyses in the family demonstrated maternal uniparental disomy for chromosome 16 in the diploid child. The child, at age 7 months, had minor facial anomalies similar to a previously reported case of maternal uniparental disomy for chromosome 16. In addition to illustrating several rare events, this family further demonstrated that substantial deletion of the centromeric α-satellite DNA does not impair centromere function and both mitotic and meiotic stability are retained in such cases. Am. J. Med. Genet. 80:418–422, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
We present the case of a maternal heterodisomy for chromosome 7 in the daughter of a t(7;16)(q21;q24) reciprocal translocation carrier. The proband was referred to the hospital for growth retardation and minor facial dysmorphism without mental retardation. A diagnosis of Silver‐Russell syndrome was suspected. Chromosomal analysis documented a 46,XX,t(7;16)(q21;q24)mat chromosome pattern. Microsatellite analysis showed a normal biparental inheritance of chromosome 16 but a maternal heterodisomy of chromosome 7. Occurrence of uniparental disomy (UPD) is a well‐recognized consequence of chromosomal abnormalities that increase the rate of meiotic nondisjunction, mainly Robertsonian translocations and supernumerary chromosomes. Although reciprocal translocations should, theoretically, be also at increased risk of UPD, only three cases have been reported so far. However, because the association between uniparental disomy and reciprocal translocation may exist with an underestimated frequency, prenatal diagnosis is recommended when clinically relevant chromosomes for UPD are involved. © 2002 Wiley‐Liss, Inc.  相似文献   

7.
We present the case of a maternal heterodisomy for chromosome 7 in the daughter of a t(7;16)(q21;q24) reciprocal translocation carrier. The proband was referred to the hospital for growth retardation and minor facial dysmorphism without mental retardation. A diagnosis of Silver-Russell syndrome was suspected. Chromosomal analysis documented a 46,XX,t(7;16)(q21;q24)mat chromosome pattern. Microsatellite analysis showed a normal biparental inheritance of chromosome 16 but a maternal heterodisomy of chromosome 7. Occurrence of uniparental disomy (UPD) is a well-recognized consequence of chromosomal abnormalities that increase the rate of meiotic nondisjunction, mainly Robertsonian translocations and supernumerary chromosomes. Although reciprocal translocations should, theoretically, be also at increased risk of UPD, only three cases have been reported so far. However, because the association between uniparental disomy and reciprocal translocation may exist with an underestimated frequency, prenatal diagnosis is recommended when clinically relevant chromosomes for UPD are involved.  相似文献   

8.
Prader–Willi syndrome is caused by the loss of paternal gene expression on 15q11.2–q13.2, and one of the mechanisms resulting in Prader–Willi syndrome phenotype is maternal uniparental disomy of chromosome 15. Various mechanisms including trisomy rescue, monosomy rescue, and post fertilization errors can lead to uniparental disomy, and its mechanism can be inferred from the pattern of uniparental hetero and isodisomy. Detection of a mosaic cell line provides a unique opportunity to understand the mechanism of uniparental disomy; however, mosaic uniparental disomy is a rare finding in patients with Prader–Willi syndrome. We report on two infants with Prader–Willi syndrome caused by mosaic maternal uniparental disomy 15. Patient 1 has mosaic uniparental isodisomy of the entire chromosome 15, and Patient 2 has mosaic uniparental mixed iso/heterodisomy 15. Genome‐wide single‐nucleotide polymorphism array was able to demonstrate the presence of chromosomally normal cell line in the Patient 1 and trisomic cell line in Patient 2, and provide the evidence that post‐fertilization error and trisomy rescue as a mechanism of uniparental disomy in each case, respectively. Given its ability of detecting small percent mosaicism as well as its capability of identifying the loss of heterozygosity of chromosomal regions, genome‐wide single‐nucleotide polymorphism array should be utilized as an adjunct to the standard methylation analysis in the evaluation of Prader–Willi syndrome. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Lindor NM, Jalal SM, Thibodeau SN, Bonde D, Sauser KL, Karnes PS. Mosaic trisomy 16 in a thriving infant; maternal heterodisomy for chromosome 16
Clin Genet 1993: 44: 185–189. © Munksgaard, 1993
Trisomy 16 is the most common trisomy in spontaneous abortions and is usually, if not always, lethal in the nonmosaic state. We report a liveborn infant with trisomy 16 mosaicism first diagnosed by amniocentesis at 20 weeks gestation. At birth, the infant was growth retarded and mildly dysmorphic. At age 14 months she was developmentally normal and had facial asymmetry. Her length, weight and head circumference were normal. Pure trisomy 16 was found in cells from the placenta. A normal female karyotype was found in lymphocytes from the infant. Skin fibroblasts revealed a trisomy 16 karyotype in 6 of 30 cells. Molecular analysis showed maternal uniparental heterodisomy, indicating that the trisomic conceptus arose from a nondisjunction of maternal meiosis. Fibroblasts may be the tissue of choice for detection of low-level trisomy 16 mosaicism.  相似文献   

10.
Intrauterine growth retardation (IUGR) with or without additional abnormalities is recognised as a common feature of maternal uniparental disomy for chromosome 16 (mUPD 16) and is usually associated with confined placental mosaicism (CPM). Although it is likely that the CPM largely contributes to the IUGR, postnatal growth retardation and other common abnormalities may also be attributed to the mUPD. Five cases with mUPD 16 and CPM were analysed for common regions of isodisomy using polymorphic markers distributed along the length of the chromosome. In each case the aberration was consistent with a maternal meiosis I error. Complete isodisomy was not detected in any of the patients although two patients were found to be mixed with both iso- and heterodisomy. Interestingly, the patient with the greater region of isodisomy was the most severely affected. The fact that there were no common regions of isodisomy in any of the patients supports the hypothesis that imprinted genes, rather than recessive mutations, may play a role in the shared phenotypes.  相似文献   

11.
Most instances of maternal uniparental disomy (UPD) start as trisomies and, similar to the latter, show a significant increase of mean maternal age at delivery. To investigate the incidence of UPD in offspring of older mothers, we investigated two groups of patients: 1) 50 patients with unclassified developmental defects born to mothers 35 years or older at delivery were tested for UPD for all autosomes by means of microsatellite marker analysis; 2) The incidence of UPD versus other etiologies in correlation, with maternal age below versus 35 years and above at delivery was studied in patients investigated in our laboratory for maternal UPD 15 (Prader-Willi syndrome, PWS), paternal UPD 15 (Angelman syndrome, AS), and maternal UPD 7 (Silver-Russell syndrome, SRS). In group 1, four patients of 50 showed UPD for an autosome that clarified the etiology of their developmental problems: a 27-year-old woman with growth retardation and early puberty disclosed maternal heterodisomy 14; a 15-year-old girl revealed paternal isodisomy 15; a 6-year-old boy with suspected Smith-Lemli-Opitz syndrome was shown to have maternal heterodisomy 16 with additional mosaic partial trisomy 16(pter-p13); a 16-month-old girl with intrauterine growth retardation and a dysmorphic pattern revealed maternal heterodisomy 7. In group 2 the offspring of older mothers showed a clear increase of UPD compared with the mothers below 35 years at delivery. The binomial distribution gave P-values of 1.9 x 10(-10), 2.6 x 10(-4), and 0.01 for PWS, AS, and SRS, respectively. The correlation between increase of paternal UPD 15 with advanced maternal age might be explained by maternal non-disjunction leading to hypohaploid gamete (nullisomy) for chromosome 15 with subsequent or concomitant duplication of the paternal homologue (paternal isodisomy). The three UPD 15 AS cases with mothers older than 35 years at delivery revealed isodisomy, whereas the three cases from younger mothers showed heterodisomy. This study confirms the hypothesis that uniparental disomy is a not negligible cause of congenital developmental anomalies in children of older mothers.  相似文献   

12.
Prenatal trisomy 7 is usually a cell culture artifact in amniocytes with normal diploid karyotype at birth and normal fetal outcome. In the same way, true prenatal trisomy 7 mosaicism usually results in a normal child except when trisomic cells persist after birth or when trisomy rescue leads to maternal uniparental disomy, which is responsible for 5.5-7% of patients with Silver-Russell syndrome (SRS). We report here on the unusual association of SRS and Hirschsprung's disease (HSCR) in a patient with maternal uniparental heterodisomy 7 and trisomy 7 mosaicism in intestine and skin fibroblasts. HSCR may be fortuitous given its frequency, multifactorial inheritance and genetic heterogeneity. However, the presence of the trisomy 7 mosaicism in intestine as well as in skin fibroblasts suggests that SRS and HSCR might possibly be related. Such an association might result from either an increased dosage of a nonimprinted gene due to trisomy 7 mosaicism in skin fibroblasts (leading to SRS) and in intestine (leading to HSCR), or from an overexpression, through genomic imprinting, of maternally expressed imprinted allele(s) in skin fibroblasts and intestine or from a combination of trisomy 7 mosaicism and genomic imprinting. This report suggests that the SRS phenotype observed in maternal uniparental disomy 7 (mUPD(7)) patients might also result from an undetected low level of trisomy 7 mosaicism. In order to validate this hypothesis, we propose to perform a conventional and molecular cytogenetic analysis in different tissues every time mUPD7 is displayed.  相似文献   

13.
We present a case with discordant results in three prenatal screening methods, with additional genetic analyses. Non-invasive prenatal testing (NIPT) was performed on a 41-year-old Japanese woman at 10 weeks of gestation, and the result was positive for trisomy 18 with high accuracy. Amniocentesis was performed at 16 weeks of gestation. However, the result showed 47,XX,+mar[16]/47,XX,+18[2]. Fetal examination by ultrasound revealed no malformations. After termination of the pregnancy, we performed additional genetic analyses, and confirmed the presence of confined placental mosaicism (CPM). Furthermore, a small supernumerary marker chromosome (sSMC) was detected in fetal cells, which was derived de novo from the centromere of chromosome 18. Single nucleotide polymorphism array analysis revealed that fetal chromosome 18 was inherited with maternal uniparental disomy, with a relatively large copy-neutral loss of heterozygosity, including its centromere. Our genetic analyses strongly indicated the cause of result discrepancy in prenatal testing as incomplete trisomy 18 rescue leading to atypical CPM with a sSMC. These findings also offer insight into the mechanisms by which chromosomal aberrations form during human oogenesis and embryogenesis.  相似文献   

14.
A 3.3 year old girl with Prader-Willi syndrome (PWS) and mosaicism for two aneuploidies, 47,XXX and 47,XX,+15, is presented. The triplo-X cell line was found in white blood cells and fibroblasts, the trisomy 15 cell line in 50% of the fibroblasts. Using methylation studies of the PWS critical region and by polymorphic microsatellite analysis, the existence of uniparental maternal heterodisomy for chromosome 15 was shown in white blood cells. This provided a molecular explanation for the PWS in this child. In fibrolasts, an additional paternal allele was detected for markers on chromosome 15, which is in agreement with the presence of mosaicism for trisomy 15 in these cells. This example provides direct evidence for trisomic rescue by reduction to disomy as a possible basis for PWS. Whereas the trisomy 15 was caused by a maternal meiosis I error, the triplo-X resulted from a postzygotic gain of a maternal X chromosome, as shown by the finding of two identical maternal X chromosomes in the 47,XXX cell line. Because the triplo-X and the trisomy 15 were present in different cell lines, gain of an X chromosome occurred either in the same cell division as the trisomy 15 rescue or shortly before or after.  相似文献   

15.
Maternal uniparental disomy for the entire chromosome 7 hasso far been reported in three patients with intrauterine andpostnatal growth retardation. Two were detected because theywere homozygous for a cystic fibrosis mutation for which onlythe mother was heterozygous, and one because he was homozygousfor a rare COL1A2 mutation. We investigated 35 patients witheither the Silver-Russell syndrome or primordial growth retardationand their parents with PCR markers to search for uniparentaldisomy 7. Four of 35 patients were found to have maternal disomy,including three with isodisomy and one with heterodisomy. Thedata confirm the hypothetical localization of a maternally imprintedgene (or more than one such gene) on chromosome 7. It is suggestedto search for UPD 7 in families with an offspring with sporadicSilver-Russell syndrome or primordial growth retardation.  相似文献   

16.
Among 58,000 amniocenteses completed, our laboratories found one case of true cytogenetic trisomy 2 mosaicism in a fetus with multiple abnormalities. In contrast, 11 fetuses phenotypically normal at birth were found to have true trisomy 2 mosaicism in their chorionic villus cells among the 10,500 fetuses tested by chorionic villus sampling (CVS). In our single abnormal case, amniocentesis performed at 19 weeks after finding an elevated maternal serum AFP found two independent cultures with trisomy 2 karyotypes in 8 of 25 and 7 of 31 amniocytes, respectively. Although oligohydramnios was noted by ultrasound, the mother elected to continue the pregnancy. At 26 weeks the fetus had intrauterine growth retardation (IUGR), hydronephrosis, and cardiac abnormalities. When delivered by Cesarean section at 30 weeks, the infant had multiple anomalies and developed necrotizing enterocolitis and severe cholestasis. At 5 months coronal magnetic resonance imaging (MRI) displayed delayed myelination and abnormal brain morphology. The patient also exhibited significant growth failure and developmental delay. Although chromosomes were normal in blood, skin fibroblasts, and ascites fluid cells, 4 of 100 hepatic biopsy fibroblasts were 47,XY,+2. Molecular analysis excluded uniparental disomy (UPD) of chromosome 2 in the 46,XY cell line. This and other reports of rare phenotypically abnormal trisomy 2 mosaic fetuses identified by karyotyping amniocytes emphasizes the substantially higher fetal risk of abnormal development than when trisomy 2 is found only in chorionic villus cells. Am. J. Med. Genet. 72:343–346, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
We report a 26-month-old boy with XYY syndrome, with the complication of Prader-Willi syndrome (PWS) due to uniparental maternal disomy of chromosome 15. To our knowledge, this is the first case of XYY syndrome and PWS. Clinical findings were fully compatible with the diagnostic criteria for PWS. Molecular analysis revealed a maternal heterodisomy of chromosome 15, indicating that non-disjunction of chromosome 15 had occurred at maternal meiosis I, and that the non-disjunction of chromosome Y and of chromosome 15 had occurred independently. Received: May 10, 1999 / Accepted: June 22, 1999  相似文献   

18.
We report on a boy with a maternal uniparental disomy for chromosome 14 (UPD(14)). At 7 years of age he was referred to us by the paediatrician because of symptoms of Prader-Willi syndrome (PWS). He showed short stature, obesity, mild developmental delay, cryptorchidism, and some mild dysmorphic features. The history further indicated intrauterine growth retardation at the end of the pregnancy. His mother was 44 years of age at the time of his birth. After birth he showed hypotonia with poor sucking, for which gavage feeding was needed. Motor development was delayed. After 1 year he became obese despite a normal appetite. Recurrent middle ear infections, a high pain threshold, and a great skill with jigsaw puzzles were reported. There were no behavioural problems or sleep disturbance. Chromosomal analysis was normal (46,XY). DNA analysis for Prader-Willi syndrome showed no abnormalities. Two years later he was re-examined because we thought his features fitted the PWS-like phenotype associated with maternal UPD(14). At that time precocious puberty was evident. DNA analysis showed maternal heterodisomy for chromosome 14. In all the previously described 11 cases with maternal UPD(14), a Robertsonian translocation involving chromosome 14 was detected cytogenetically before DNA analysis. This is the first report of diagnosis of maternal UPD(14) based on clinical features. This finding underlines the importance of DNA analysis for maternal UPD(14) in patients with a similar PWS-like phenotype even without previous identification of a Robertsonian translocation involving chromosome 14.  相似文献   

19.
Although a number of infants with maternal uniparental disomy of chromosome 16 (upd(16)mat) have been reported, the evidence for imprinting on chromosome 16 is not yet conclusive. To test the hypothesis that upd(16)mat has a distinct phenotype, which would support the existence of imprinted gene(s) on chromosome 16, statistical analysis was performed on a large series (n = 83) of mosaic trisomy 16 cases with molecular determination of uniparental disomy status. The incidence of upd(16)mat was 40%, which is consistent with the expected one third from random chromosome loss during trisomy rescue (P = 0.262). In pairwise comparisons, upd(16)mat was found to be associated with fetal growth restriction (P = 0.029) and with increased risk of major malformation (RR = 1.43; P = 0.053). Regression modeling showed that the effect of upd(16)mat on fetal/neonatal weight and malformation is independent of the degree of trisomy detected in the fetus. Regression modeling to control for the degree of trisomy detected in the placenta was not possible due to limited sample size. We conclude that upd(16)mat is associated with more severe growth restriction, and possibly, with higher risk of malformation. Our hypothesis is that imprinted gene(s) exist on chromosome 16 and that abnormal expression of these gene(s) in upd(16)mat cells during development results in decreased cell proliferation. Although we do not advocate prenatal testing for upd(16), studies on the long-term outcome of upd(16)mat neonates is necessary for counseling purposes.  相似文献   

20.
Trisomy 4 mosaicism is extremely rare: herein we report the cytogenetic and molecular characterization and prenatal US findings of a case diagnosed prenatally. The diagnosis of level III mosaicism was established in cultured amniotic fluid cells (22.5%). At 22 weeks gestation, micrognathia and hypotelorism were suspected at 2-D sonography, and confirmed at 3-D examination. In addition, 2-D US showed cerebellar hypoplasia associated with borderline ventriculomegaly (confirmed at magnetic resonance imaging, MRI), spine deformity (hemivertebra), and a complete atrioventricular septal defect (AVSD). The pregnancy was terminated. Trisomy 4 mosaicism was confirmed in placental and fetal skin cultured cells. The cord blood karyotype was normal. Molecular analysis excluded uniparental disomy of chromosome 4, and indicated that the trisomy 4 was of maternal meiotic origin. In presence of chromosome 4 mosaicism, accurate fetal sonography and echocardiography are mandatory. Low level mosaicism and normal echographic examinations seem to be associated with good prognosis. In postnatal life, chromosome 4 mosaicism should be suspected, and cytogenetic analysis proposed of further tissues (i.e., skin), in presence of craniofacial dysmorphism, cardiac defects, and abnormal hands/feet, even if mental development is appropriate or only slightly impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号