首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The excitatory amino acid neurotransmitter glutamate participates in the control of most (and possibly all) neuroendocrine systems in the hypothalamus. This control is exerted by binding to two classes of membrane receptors, the ionotropic and metabotropic receptor families, which differ in their structure and mechanisms of signal transduction. To gain a better understanding about the precise sites of action of glutamate and the subunit compositions of the receptors involved in the glutamatergic neurotransmission in the hypothalamus and septum, in situ hybridization was used with 35S-labeled cRNA probes for the different ionotropic receptor subunits, including glutamate receptor subunits 1-4 (GluR1-GluR4), kainate-2, GluR5-GluR7, N-methyl-D-aspartate (NMDA) receptor 1 (NMDAR1), and NMDAR2A-NMDAR2D. The results showed that subunits of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate-preferring, kainate-preferring, and NMDA-preferring receptor subunits are distributed widely but heterogeneously and that the GluR1, GluR2, kainate-2, NMDAR1, NMDAR2A, and NMDAR2B subunits are the most abundant in the hypothalamus. Thus, GluR1 subunit mRNA was prominent in the lateral septum, preoptic area, mediobasal hypothalamus, and tuberomammillary nucleus, whereas kainate-2 subunit mRNA was abundant in the medial septum-diagonal band, median and anteroventral preoptic nuclei, and supraoptic nuclei as well as the magnocellular portion of the posterior paraventricular nucleus. Regions that contained the highest levels of NMDAR1 subunit mRNA included the septum, the median preoptic nucleus, the anteroventral periventricular nucleus, and the supraoptic and suprachiasmatic nuclei as well as the arcuate nucleus. Together, the extensive distribution of the different GluR subunit mRNAs strengthen the view that glutamate is a major excitatory neurotransmitter in the hypothalamus. The overlap in the distribution of the various subunit mRNAs suggests that many neurons can express GluR channels that belong to different families, which would allow a differential regulation of the target neurons by glutamate.  相似文献   

2.
The hypopthalamic paraventricular nucleus (PVN) coordinates multiple aspects of homeostatic regulation, including pituitary-adrenocortical function, cardiovascular tone, metabolic balance, fluid/electrolyte status, parturition and lactation. In all cases, a substantial component of this function is controlled by glutamate neurotransmission. In this study, the authors performed a high-resolution in situ hybridization analysis of ionotropic glutamate receptor subunit expression in the PVN and its immediate surround. N-methyl-D-aspartate (NMDA) receptor 1 (NMDAR1), NMDAR2A, and NMDAR2B mRNAs were expressed highly throughout the PVN and its perinuclear region as well as in the subparaventricular zone. NMDAR2C/2D expression was limited to subsets of neurons in magnocellular and hypophysiotrophic regions. In contrast with NMDA subunit localization, AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate)-preferring and kainate (KA)-preferring receptor subunit mRNAs were expressed heterogeneously in the PVN and surround. Glutamate receptor 1 (GluR1) mRNA labeling was most intense in preautonomic subregions, whereas GluR2, GluR4, GluR5, and KA2 were expressed in hypophysiotrophic cell groups. It is noteworthy that GluR5 mRNA expression was particularly robust in the dorsolateral region of the medial parvocellular PVN, suggesting localization in corticotropin-releasing hormone neurons. All four AMPA subunits and GluR6 and GluR7 mRNAs were expressed highly in the perinuclear PVN region and the subparaventricular zone. These data suggest the capacity for multifaceted regulation of PVN function by glutamate, with magnocellular neurons preferentially expressing NMDA subunits, preautonomic neurons preferentially expressing AMPA subunits, and hypophysiotrophic neurons preferentially expressing KA subunits. Localization of all species in the perinuclear PVN suggests that glutamate input to the immediate region of the PVN may modulate its function, perhaps by communication with local gamma-aminobutyric acid neurons.  相似文献   

3.
In mammals, the suprachiasmatic nucleus is responsible for the generation of most circadian rhythms and their entrainment to environmental cues. Cholinergic agents can alter circadian rhythm phase, and fibres immunoreactive for choline acetyltransferase, the biosynthetic enzyme for acetylcholine, are present in the suprachiasmatic nucleus. Since there are no cholinergic somata in the suprachiasmatic nucleus, these fibres must represent the terminals of cholinergic neurons whose cell bodies are located elsewhere in the brain. This study was aimed at locating the cholinergic neurons that project to the suprachiasmatic nucleus by retrograde and anterograde tract-tracing and immunohistochemistry for choline acetyltransferase in the rat. After injection of fluorogold, a retrograde tracer, into the suprachiasmatic nucleus, retrogradely labelled neurons that were immunopositive for choline acetyltransferase were located throughout the rostrocaudal extent of the cholinergic basal nuclear complex, with highest densities in the substantia innominata and the nucleus basalis magnocellularis. A few cells were also located in the medial septum and in the vertical and horizontal limbs ofthe diagonal band of Broca. In the brainstem, double-labelled neurons were located in the laterodorsal tegmental nucleus, pedunculopontine tegmental nucleus and the parabigeminal nucleus. Injections of the anterograde tracer biocytin in these three brainstem nuclei resulted in fibre labelling in the suprachiasmatic nucleus, consistent with the retrograde findings. No clearly double-labelled cells were located in the retina. These results suggest that the suprachiasmatic nucleus receives cholinergic afferents from both the basal forebrain and mesopontine tegmentum which may mediate cholinergic effects on circadian rhythms. © 1993 Wiley-Liss, Inc.  相似文献   

4.
The substantia nigra (SN) has long been known as an important source of afferents to the pedunculopontine tegmental nucleus (PPN). However, it has not been established which of the chemospecific cell populations receive this synaptic input. We sought to address this issue by a correlative light and electron microscopic approach that combines anterograde tracing of nigral efferents with pre-embedding choline acetyltransferase (ChAT) and/or glutamate (Glu) immunohistochemistry. Following large bilateral injections of Phaseolus vulgaris–leucoagglutinin (PHA-L) in the SN, the labeled nigrotegmental fibers were concentrated in a small area of the mesopontine tegmentum which contained very few ChAT-immunoreactive (ChAT-ir) cell bodies. However, strands of fine varicose fibers penetrated to adjacent regions of the PPN which harbored numerous cholinergic perikarya. The anterogradely labeled boutons were often seen in the proximity of ChAT-ir perikarya and dendrites, but the majority (82–93%) established symmetric synaptic junctions with noncholinergic profiles. In the pars dissipata of the PPN (PPNd), one-third of the labeled terminals synapsed onto noncholinergic perikarya and primary dendrites, while in the pars compacta of the PPN (PPNc) axosomatic synapses were rare. The possibility that the perikarya receiving a rich synaptic input from the SN are glutamatergic was tested in experiments combining anterograde transport of biotinylated tracers biocytin and dextran-amine (BDA) with glutamate immunohistochemistry. In double-labeled sections, Glu-ir perikarya within the terminal plexus of nigrotegmental fibers were surrounded by synaptic terminals. The PPNd also contained retrogradely BDA-labeled neurons which were contacted by anterogradely labeled terminals. These results indicate that although a small subpopulation of cholinergic neurons in the mesopontine tegmentum receive direct synaptic input from the SN, the primary target of nigrotegmental fibers are glutamatergic cells in the PPNd. Our results also provide ultrastructural evidence that some nigrotegmental fibers innervate pedunculonigral neurons. J. Comp. Neurol. 395:359–379, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Glutamate is required for the transmission of inspiratory drive in respiratory premotor and motor neurons. The glutamate receptors (GluRs) responsible for this essential function have yet to be anatomically characterized. We mapped the GluR subtypes expressed by respiratory premotor and motor neurons by using combined immunohistochemistry and retrograde labeling in adult rats. Phrenic motoneurons and bulbospinal ventral respiratory group (VRG) neurons were retrogradely labeled and immunolabeled with subunit-specific antibodies against the N-methyl-D-aspartate (NMDA) receptor subtype (NMDAR1) and the non-NMDA receptor subtypes, α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA; GluR1, GluR2/3, GluR4) and kainate (GluR5–7). Phrenic motoneurons and bulbospinal VRG neurons showed positive immunolabeling for all five GluR subunits. These results support the hypothesis that NMDA and non-NMDA receptor subtypes underlie the excitation of bulbospinal VRG neurons and phrenic motoneurons. Furthermore, immunolabeling for each receptor subtype demonstrated a unique distribution along the neuronal membrane. Immunoreactivity for AMPA receptor subunits was distributed throughout somata and proximal dendrites, NMDAR1 subunit immunolabeling was localized to somata, and GluR5–7 subunit immunolabeling was confined largely to dendrites. The differential distribution of AMPA, kainate, and NMDA receptors on the somal and dendritic surface of respiratory neurons suggests that the location of glutamatergic synapses along the neuronal surface is an important determinant of glutamate-mediated postsynaptic currents. Consequently, different patterns of glutamatergic excitation of respiratory neurons could be achieved by selective activation of different profiles of GluR subtypes on different portions of the neuronal membrane. J. Comp. Neurol. 389:94–116, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
The medullary and spinal efferents of the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum were investigated by employing (1) the anterograde autoradiographic methodology and (2) the retrograde transport of HRP and/or WGA-HRP in combination with choline acetyltransferase immunohistochemistry. The anterograde experiments identified five descending pathways from the mesopontine tegmentum: (1) Probst's tract, which descends in the dorsolateral reticular formation in close relation to the nucleus of the solitary tract; (2) a ventrolateral branch of Probst's tract that extends ventrolaterally alongside the spinal trigeminal nucleus; (3) a ventromedial branch of Probst's tract that extends ventromedially through the gigantocellular field of the medulla; (4) the medial reticulospinal tract, which descends in parallel with the medial longitudinal fasciculus and turns ventrolaterally along the dorsal surface of the inferior olive to enter the ventrolateral funiculus of the spinal cord; and (5) a crossed ventromedial pathway, which descends in a ventral paramedian position through the magnocellular field of the medulla. The origins of these pathways reflected a rough lateral-to-medial topography of mesopontine tegmental cell groups. The parabrachial nucleus, situated furthest laterally, for example, projected primarily through Probst's tract and its ventrolateral branch. The pedunculopontine tegmental nucleus, midbrain extrapyramidal area, and the subceruleal region, situated more medially, projected descending axons largely through the ventromedial branch of Probst's tract. The pontine tegmental field, situated furthest medially and ventromedially, was the largest contributor to the medial reticulospinal tract. The retrograde transport experiments confirmed these general organizational features. The combination of retrograde transport with choline acetyltransferase immunohistochemistry established that the cholinergic pedunculopontine tegmental nucleus contributes a large portion to the mesopontine tegmental innervation of the medullary reticular formation. A much smaller number of cholinergic pedunculopontine neurons project as far as the spinal cord. Spinal projections from the mesopontine tegmentum originate largely from non-cholinergic neurons of the midbrain extrapyramidal area, subceruleal region, K?lliker-Fuse division of the parabrachial nucleus, and pontine tegmental field.  相似文献   

7.
Using standard immunohistochemical procedures, we investigated the changes in the expression of ionotropic glutamate receptor (GluR) subunits, GluRl, GluR5/6/7, and NMDAR1, in the subthalamic nucleus of developing rats. The general sequence of development for each subunit was the same. At early postnatal ages, there was dense neuropil staining and cellular clustering which progressed to decreased neuropil staining and an even distribution of conspicuous cells in the later postnatal ages and in the adult. GluR5/6/7 displayed the earliest maturation, while GluR1 exhibited the slowest maturation. These morphological changes suggest a different time course for the functionality of GluR subtypes in the developing subthalamic nucleus. Correlative electrophysiological studies demonstrated functional GluRs as early as 16 days of age. All neurons tested displayed robust responses to kainate and N-methyl-D-aspartate, and these responses were modulated by dopamine.  相似文献   

8.
We examined the expression profile of subunits of ionotropic glutamate receptors [N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionate (AMPA)] during postnatal development of connectivity in the rat vestibular nucleus. Vestibular nuclear neurons were functionally activated by constant velocity off-vertical axis rotation, a strategy to stimulate otolith organs in the inner ear. These neurons indicated Fos expression as a result. By immunodetection for Fos, otolith-related neurons that expressed NMDA/AMPA receptor subunits were identified as early as P7, and these neurons were found to increase progressively up to adulthood. Although there was developmental invariance in the percentage of Fos-immunoreactive neurons expressing the NR1, NR2A, GluR1, or GluR2/3 subunits, those expressing the NR2B subunit decreased from P14 onward, and those expressing the GluR4 subunit decreased in adults. These double-immunohistochemical data were corroborated by combined immuno-/hybridization histochemical data obtained from Fos-immunoreactive neurons expressing NR2B mRNA or GluR4 mRNA. The staining of both NR2B and GluR4 in the cytoplasm of these neurons decreased upon maturation. The percentage of Fos-immunoreactive neurons expressing the other ionotropic glutamate receptor subunits (viz. NR1, NR2A, GluR1, and GluR2/3) remained relatively constant throughout postnatal maturation. Triple immunofluorescence further demonstrated coexpression of NR1 and NR2 subunits in Fos-immunoreactive neurons. Coexpression of NR1 subunit with each of the GluR subunits was also observed among the Fos-immunoreactive neurons. Taken together, the different expression profiles of ionotropic glutamate receptor subunits constitute the histological basis for glutamatergic neurotransmission in the maturation of central vestibular connectivity for the coding of gravity-related horizontal head movements.  相似文献   

9.
10.
Ascending projections from the pedunculopontine tegmental nucleus (PPT) and the surrounding mesopontine tegmentum to the forebrain in the rat are here examined by using both retrograde and anterograde tracing techniques combined with choline acetyltransferase (ChAT) immunohistochemistry. The anterogradely transported lectin Phaseolus vulgaris-leukoagglutinin (PHA-L) was iontophoretically injected into the PPT in 12 rats. Anterogradely labelled fibers and varicosities were observed in the thalamic nuclei, confirming the findings of our previous retrograde studies (Hallanger et al: J. Comp. Neurol. 262:105-124, '87). In addition, PHA-L-labelled fibers and varicosities suggestive of terminal fields were observed in the anterior, tuberal, and posterior lateral hypothalamic regions, the ventral pallidum in the region of the nucleus basalis of Meynert, the dorsal and intermediate lateral septal nuclei, and in the central and medial nuclei of the amygdala. To determine whether these were cholinergic projections, the retrograde tracer WGA-HRP was injected into terminal fields in the hypothalamus, septum, ventral pallidum, and amygdala. Numerous ChAT-immunoreactive neurons in the PPT and laterodorsal tegmental nucleus (LDT) were retrogradely labelled from the lateral hypothalamus. These cholinergic neurons constituted over 20% of those retrogradely labelled in the dorsolateral mesopontine tegmentum; the balance consisted of noncholinergic neurons of the central tegmental field, retrorubral field, and cuneiform nucleus. Following placement of WGA-HRP into dorsal and intermediate lateral septal regions, the vast majority (greater than 90%) of retrogradely labelled neurons were cholinergic neurons of the PPT and LDT, with few noncholinergic retrogradely labelled neurons in the adjacent tegmentum. In contrast, fewer cholinergic neurons were retrogradely labelled following placement of tracer into the nucleus basalis of Meynert or into the central, medial, and basolateral nuclei of the amygdala, while numerous noncholinergic neurons of the central tegmental field rostral to the PPT and of the retrorubral field adjacent to the PPT were retrogradely labelled in these cases. These anterograde and retrograde studies demonstrate that cholinergic PPT and LDT neurons provide a substantial proportion of mesopontine tegmental afferents to the hypothalamus and lateral septum, while projections to the nucleus basalis and the amygdala are minimal.  相似文献   

11.
Serotonergic synaptic inputs to cholinergic neurons in the laterodorsal and pedunculopontine tegmental nuclei were examined with pre-embedding dual-label immunoelectron microscopy. Numerous serotonin-immunoreactive axon terminals visualized with a silver-enhanced immunogold method were present in both of these tegmental nuclei. Serotonergic terminals occasionally made synaptic contacts with the soma and proximal dendrites of cholinergic tegmental neurons labelled with a choline acetyltransferase-immunoreactive peroxidase-anti-peroxidase diaminobenzidine reaction product. In the rostralmost region of the laterodorsal tegmental nucleus, a few serotonergic neurons of the dorsal raphe nucleus were interspersed among cholinergic neurons. Some dendrites of these serotonergic neurons appeared to contain synaptic vesicles. Both myelinated and unmyelinated serotonergic axons were present in the mesopontine tegmentum. The presence of serotonergic synapses onto tegmental cholinergic neurons is consistent with previous behavioral and electrophysiological findings suggesting an inhibitory role of serotonin in the induction of rapid eye movement sleep and its phenomenology through an action on cholinergic neurons in the mesopontine tegmentum.  相似文献   

12.
To determine the distributions of glutamate receptors throughout the macaque hypothalamus, we utilized highly specific antipeptide antibodies to visualize α-amino-3-hydroxy-5-methyl4-isoxazole propionate receptor subunits (GluRl, GluR2 and GluR3 {designated as GluR2/3}, and GluR4); kainate receptor subunits (GluR6 and GluR7, {Idesignated as GluR6/7}), and a metabotropic receptor (mGluRlα). The results indicate that these glutamate receptors are distributed differentially throughout the monkey hypothalamus. α-Amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors are the dominant non-N-methyl-D-aspartate glutamate receptors within the monkey hypothalamus, and the GluR2 subunit is most abundant. GluR1-immunoreactive neurons and neuropil are observed predominantly in the tuberal and mammillary nuclei. GluR2/3-immunoreactive neurons and neuropil have a broader distribution within preoptic, anterior, tuberal, and caudal regions. Separate (but partially overlapping) distributions of GluRl- and GluR2/3-immunoreactive neurons were found, suggesting that the GluR1, GluR2, and/or GluR3 subunits may be coexpressed in subsets of hypothalamic neurons. In contrast, GluR4 immunoreactivity was expressed minimally within monkey hypothalamus. GluR6/7 immunoreactivity was enriched selectively within the suprachiasmatic nucleus. mGluRlα immunoreactivity was present in the mammillary complex. The localization of non-N-methyl-D-aspartate glutamate receptor subunits to neurons throughout the macaque hypothalamus provides further evidence for the glutamatergic regulation of neuroendocrine, autonomic, and limbic circuits. Differential distributions of glutaniate receptor subunits may increase the dynamic range of the effects of presynaptic glutamate, allowing for the regulation of several distinct functions subserved by hypothalamic neurons. © 1995 Wiley-Liss, Inc.  相似文献   

13.
The present study was undertaken to examine the cholinergic innervation of the brainstem reticular formation in an effort to understand the potential role of cholinergic neurons in processes of sensory-motor modulation and state control. The cholinergic cells and processes within the pontomedullary reticular formation were studied in the rat by application of peroxidase-antiperoxidase immunohistochemistry with silver intensification for choline-acetyltransferase (ChAT). ChAT-immunoreactive cells were located in the pontomesencephalic tegmentum within the laterodorsal and pedunculopontine tegmental (LDT and PPT) nuclei, where they numbered approximately 3,000 on each side and were scattered in the midline, medial, and lateral medullary reticular formation, where they numbered approximately 10,000 in total on each side. The cholinergic neurons within the reticular formation were commonly medium in size and gave rise to multiple dendrites that extended for considerable distances within the periventricular gray or the reticular formation, as is typical of other isodendritic reticular neurons. A prominent innervation of the entire pontomedullary reticular formation was evident by varicose ChAT-immunoreactive fibers that often surrounded large noncholinergic reticular neurons in a typical perisomatic pattern of termination, suggesting a potent influence of the cholinergic innervation on pontomedullary reticular neurons. The contribution of the pontomesencephalic cholinergic neurons to the innervation of the medial medullary and lateral pontine reticular formation was studied by retrograde transport of horseradish peroxidase conjugated wheat germ agglutinin (WGA-HRP) in combination with ChAT immunohistochemistry. A proportion of the cholinergic neurons within the laterodorsal tegmental nucleus (pars alpha) and the pedunculopontine tegmental nucleus were retrogradely labelled on the ipsilateral (10-15%) and contralateral (5-10%) sides from the medial medullary reticular formation, indicating a significant contribution to the cholinergic innervation of this region, which, however, also appeared to derive in part from intrinsic medullary cholinergic neurons. The major fiber system by which the medial medullary reticular formation was reached by the pontomesencephalic cholinergic neurons appeared to correspond to the lateral tegmentoreticular tract. Fibers passed from these cholinergic cells ventrally through the lateral pontine tegmentum, in the region of the subcoeruleus, where they also appeared to innervate by fibres en passage the noncholinergic neurons of the region. A significant proportion of the pontomesencephalic cholinergic neurons were retrogradely labelled from the lateral pontine tegmentum.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The topographical relationships between cholinergic neurons, identified by their immuno-reactivity for choline acetyltransferase (ChAT) or their staining for β-nicotinamide ademine dinucleotide phosphate (NADPH)-diaphorase, and dopaminergic, serotoninergic, Nonadrenergic, and glutamatergic neurons that occur in the mesopontine tegmentum, were studied in the squirrel monkey (Saimiri sciureus). The ChAT-positive neurons in the pedunculopontine nucleus (PPN) form two distinct subpopulations, one that corresponds to PPN pars compacta(PPNc) and the other to PPN pars dissipata (PPNd). The ChAT-positive neurons in PPNc are clustered along the dorsolateral border of the superior cerebellar peduncle (SP) at trochlear nucleus levels, whereas those in PPNd are scattered along the SP from midmesencephalic to midpontine levels. At levels caudal toe the trochlear nucleus, ChAT-positive neurons corresponding to the laterodorsal tegmental nucleus (LDT) lie within the periaqueductal gray and extend caudally as far as locus coeruleus levels. All ChAT-positive neurons in PPN and LDT stain for NADPH-diaphorase; the majority of large neurons in PPN and LDT are cholinergic, but some large neurons devoid of NADPH-diaphorase also occurnin these nuclei. Cholinergic neurons in the mesopontine tegmentum form clusters that are largely segregated from raphe serotonin immunoreactive neurons, as well as from nigral dopaminergic and coeruleal noradrenergic neurons, as revealed by tyrosine hydroxylase immunohistochemistry. Nevertheless, dendrites of cholinergic and noradrenergic neurons are clolinergic and noradrenergic neurons are closely intermingled, suggesting the possibility of dendrodendritic contacts. In addition, numerous large and medium-sized glutamate-immunoreactive neurons are intermingled among cholinergic neurons in PPN. Furthermore, at trochlear nucleus levels, about 40% of cholinergic neurons display glutamate immunoreactivity, whereas other neurons express glutamate or ChAT immunoreactivity only. This study demonstrates that (1) cholinergic neurons remain largely segregated from monoaminergic neurons throughout the mesopontine tegmentum and (2) PPN contains cholinergic and glutamatergic neurons as well as neurons coexpressing ChAT and Glutamate in primates. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Corticostriatal and thalamostriatal projection systems have been shown to utilize glutamate as a neurotransmitter in mammals and birds. Although corticostriatal and thalamostriatal projection systems have been demonstrated in turtles, it is uncertain whether they too use glutamate as their neurotransmitter. Immunohistochemical localization of glutamate and of NMDA- and AMPA-type ionotropic glutamate receptor subunits (NMDAR2A/B, GluR1, GluR2/3, and GluR4) were used to address this issue. Numerous medium-sized neurons that were rich in NMDAR2A/B and GluR2/3 were observed in the striatal part of the basal ganglia of red-eared turtles. Smaller numbers of medium-sized neurons and some large neurons rich in the GluR1 and GluR4 subunits were also observed in the striatum. The striatal neuropil was notably rich in GluR1, GluR2/3 and NMDAR2A/B subunits. The pallidal region was specifically rich in large neurons possessing GluR4 subunits. Consistent with the glutamate receptors on striatal and pallidal neurons, sources of input to the striatum and pallidum in turtle such as the dorsomedial and dorsolateral thalamic nuclei (which appear to correspond to intralaminar thalamic nuclei), telencephalic pallial cell groups, and the apparent subthalamic nucleus homologue were rich in glutamatergic neurons. The results show that the thalamostriatal, corticostriatal and subthalamo-pallidal projection systems of turtles are glutamatergic and that similar basal ganglia cell types in turtles and mammals have largely similar glutamate receptor characteristics. Copyright (R) 2000 S.Karger AG, Basel  相似文献   

16.
Previous physiological and pharmacological evidence has suggested a neurotransmitter role for the excitatory amino acid glutamate in the leech central nervous system (CNS). In the present study, we sought to localize glutamate receptor (GluR) subunits (GluR 5/6/7, GluR 2/3 and N-methyl-D-aspartate receptor 1 [NMDAR 1]) and a glutamate transporter subtype [GLT-1] within the leech CNS using mono- and polyclonal antibodies. In whole-mounted tissue, small cells of the outer capsule and putative microglia labeled with both GluR 5/6/7 and GluR 2/3 but not NMDAR 1 subunit antisera. In general, GluR 5/6/7-like immunofluorescence was both more intense and more widespread than GluR 2/3-like immunolabeling. Cryostat-sectioned tissue revealed extensive GluR 5/6/7-like immunoreactivity throughout the neuropil as well as labeling within a few neuronal somata. GLT-1-like immunoreactivity localized to the inner capsule, which is the interface between neuronal somata and the neuropil and is deeply invested by processes of neuropil glia. These results complement previous physiological and pharmacological findings indicating that the leech CNS possesses the cellular machinery to respond to glutamate and to transport glutamate from extracellular spaces. Together, they provide further evidence for glutamate's role as a neurotransmitter within the leech CNS.  相似文献   

17.
In urethane-anaesthetized rats, single neuronal activity was recorded extracellularily in and around the laterodorsal tegmental nucleus, and the response to prolactin applied by pressure injection was examined. Three of six cholinergic neurons tested were excited by prolactin for more than 1 min. In two of three non-cholinergic neurons tested, prolactin application caused excitation which lasted a shorter time than that in the cholinergic neurons. The results suggest that prolactin may have physiological influences on these mesopontine neurons to increase paradoxical sleep.  相似文献   

18.
Subcortical and corticothalamic inputs excite thalamic neurons via a diversity of glutamate receptor subtypes. Differential expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainate, and N-methyl-D-aspartate (NMDA) receptor subunits (GluR1–4; GluR5–7; NR1, NR2A–D) on a nucleus- and cell type-specific basis was examined by quantitative in situ hybridization histochemistry and by immunocytochemical staining for receptor subunits and colocalized γ-aminobutyric acid (GABA) or calcium binding proteins. Levels of NMDA subunit expression, except NR2C, are higher than for the most highly expressed AMPA (GluR1,3,4) and kainate (GluR6) receptor subunits. Expression of NR2C, GluR2, GluR5, and GluR7 is extremely low. Major differences distinguish the reticular nucleus and the dorsal thalamus and, within the dorsal thalamus, the intralaminar and other nuclei. In the reticular nucleus, GluR4 is by far the most prominent, and NMDA receptors are at comparatively low levels. In the dorsal thalamus, NMDA receptors predominate. Anterior intralaminar nuclei are more enriched in GluR4 and GluR6 subunits than other nuclei, whereas posterior intralaminar nuclei are enriched in GluR1 and differ among themselves in relative NMDA receptor subunit expression. GABAergic intrinsic neurons of the dorsal thalamus express much higher levels of GluR1 and GluR6 receptor subunits than do parvalbumin- or calbindin-immunoreactive relay cells and low or absent NMDA receptors. Relay cells are dominated by NMDA receptors, along with GluR3 and GluR6 subunits not expressed by GABA cells. High levels of NR2B are found in astrocytes. Differences in NMDA and non-NMDA receptor profiles will affect functional properties of the thalamic GABAergic and relay cells. J. Comp. Neurol. 397:371–393, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
The regional distribution of ionotropic (AMPA and NMDA) and metabotropic (mGluR1alpha) glutamate receptor subunits was examined in the brain stem and cerebellum of the pond turtle, Chrysemys picta, by using immunocytochemistry and light microscopy. Subunit-specific antibodies that recognize NMDAR1, GluR1, GluR4, and mGluR1alpha were used to identify immunoreactive nuclei in the brain stem and cerebellum. Considerable immunoreactivity in the turtle brain stem and cerebellum was observed with regional differences occurring primarily in the intensity of staining with the antibodies. The red nucleus, lateral reticular nucleus and cerebellum labeled intensely for NMDAR1 and moderately for GluR1. The cerebellum also labeled strongly for mGluR1alpha. All of the cranial nerve nuclei labeled intensely for NMDAR1 and to varying degrees for GluR1, GluR4, and mGluR1alpha. Counterstaining revealed the presence of neuronal somata where there were no immunoreactive neurons in individual nuclei. This finding suggests that there are subpopulations of immunoreactive neurons within a given nucleus that bear different glutamate receptor subunit compositions. The results suggest that the glutamate receptor subunit distribution in the brain stem and cerebellum of turtles is similar to that reported for rats. Additionally, there is considerable colocalization of NMDA and AMPA receptors as revealed by light microscopy. These results have implications for the organization of neural circuits that control motor behavior in turtles, and, generally, for the function of brain stem and cerebellar neural circuits in vertebrates.  相似文献   

20.
Tse YC  Yung KK 《Brain research》2000,854(1-2):57-69
In order to characterize the expression of ionotropic glutamate receptor immunoreactivity in subpopulations of neurons in the rat substantia nigra pars reticulata (SNr), double labeling experiments were performed. Neurons in the reticulata were found to display GluR1, GluR2, GluR2/3, GluR4, N-methyl-D-aspartate receptor 1 (NMDAR1) and NMDAR2B immunoreactivity. Some of the reticulata neurons were shown to display GluR1 and GluR2 immunoreactivity or GluR2 and GluR4 immunoreactivity at the single cell level. In addition, subpopulations of reticulata neurons were characterized on the basis of the strong expression of parvalbumin (PV) and GABA transaminase immunoreactivity. All of the reticulata neurons that displayed strong immunoreactivity for PV or GABA transaminase also displayed immunoreactivity for GluR1, GluR2/3, GluR4, NMDAR1 and NMDAR2B. A tiny portion (around 15%) of reticulata neurons that display NMDAR1 immunoreactivity was found to be PV- or GABA-transaminase-negative. The present results indicate that native alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA)-type receptors and NMDA-type receptors in the rat substantia nigra are composed of heteromeric receptor subunits. The present findings further demonstrate that most of the AMPA-type and NMDA-type glutamate receptor subunits are primarily expressed by subpopulations of neurons in the rat SNr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号