首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
It has been postulated that the neuronal growth-associated protein GAP-43 plays an essential role in axon elongation. Although termination of developmental axon growth is generally accompanied by a decline in expression of GAP-43, a subpopulation of dorsal root ganglion (DRG) neurons retains constitutive expression of GAP-43 throughout adulthood. Peripheral nerve regeneration occurring subsequent to injury of the peripheral axon branches of adult DRG neurons is accompanied by renewed elevation of GAP-43 expression. Lesions of DRG central axon branches in the dorsal roots are also followed by some regenerative growth, but little or no increase in GAP-43 expression above the constitutive level is observed. To determine whether dorsal root axon regeneration occurs only from neurons which constitutively express GAP-43, we have used retrograde fluorescent labeling to identify those DRG neurons which extend axons beyond a crush lesion of the dorsal root. Only GAP-43 immunoreactive neurons supported axon regrowth of 7 mm or greater within the first week. At later times, axon regrowth is seen to occur from neurons both with and without GAP-43 immunoreactivity. We conclude that regeneration of injured axons within the dorsal root is not absolutely dependent on the presence of GAP-43, but that expression of GAP-43 is correlated with a capacity for rapid growth.  相似文献   

2.
A possible role for nitric oxide in growth and regeneration of dorsal root ganglion (DRG) afferents has been explored in lesion experiments by comparing immunocytochemistry for nitric oxide synthase (NOS) with that for the growth-associated phosphoprotein 43 (GAP-43). Sciatic nerve ligature induced a progressive increase in the number of small DRG cell profiles immunopositive for NOS between 2 days and 4 weeks of survival. In the proximal stump of the ligature, NOS-immunopositive fibers began to appear 2 days after injury and their growth cones were especially evident after 7 days. NOS-immunopositive fibers appeared past (i.e., distal to) the ligature at 14 days of survival and extended for at least 6 mm in either direction 4 weeks after the lesion. Dorsal root ligature alone at L4–L5 did not result in expression of NOS in DRG neurons or in the appearence of NOS-immunopositive fibers. In rats with dorsal root ligature and nerve ligature, the results were similar to those with nerve ligature only. DRG cell profiles immunopositive for GAP-43 kept increasing from 2 days to 4 weeks after sciatic nerve ligature and included small neurons initially and large neurons subsequently. Numerous axons became GAP-43 immunopositive on both sides of the ligature from 2 days after injury. In double-labeled material, about 80% of DRG cell profiles immunopositive for NOS were also immunopositive for GAP-43. The two antigens co-occurred in peripheral nerve axons proximal to the ligature starting at about 7 days and distal to it at about 2 weeks after ligature. Thus, in response to nerve lesion, nitric oxide may not only provide an injury signal to the central nervous system but may also contribute to the growth and regeneration of injured axons. J. Comp. Neurol. 404:64–74, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

3.
The expression of growth-associated protein GAP-43 mRNA in spinal cord and dorsal root ganglion (DRG) neurons has been studied using an enzyme linked in situ hybridization technique in neonatal and adult rats. High levels of GAP-43 mRNA are present at birth in the majority of spinal cord neurons and in all dorsal root ganglion cells. This persists until postnatal day 7 and then declines progressively to near adult levels (with low levels of mRNA in spinal cord motor neurons and 2000–3000 DRG cells expressing high levels) at postnatal day 21. A re-expression of GAP-43 mRNA in adult rats is apparent, both in sciatic motor neurons and the majority of L4 and L5 dorsal root ganglion cells, 1 day after sciatic nerve section. High levels of the GAP-43 mRNA in the axotomized spinal motor neurons persist for at least 2 weeks but decline 5 weeks after sciatic nerve section, with the mRNA virtually undetectable after 10 weeks. The initial changes after sciatic nerve crush are similar, but by 5 weeks GAP-43 mRNA in the sciatic motor neurons has declined to control levels. In DRG cells, after both sciatic nerve section or crush, GAP-43 mRNA re-expression persists much longer than in motor neurons. There was no re-expression of GAP-43 mRNA in the dorsal horn of the spinal cord after peripheral nerve lesions. Our study demonstrates a similar developmental regulation in spinal cord and DRG neurons of GAP-43 mRNA. We show moreover that failure of re-innervation does not result in a maintenance of GAP-43 mRNA in axotomized motor neurons.  相似文献   

4.
It is well established that some populations of neurons of the adult rat central nervous system (CNS) will regenerate axons into a peripheral nerve implant, but others, including most thalamocortical projection neurons, will not. The ability to regenerate axons may depend on whether neurons can express growth-related genes such as GAP-43, whose expression correlates with axon growth during development and with competence to regenerate. Thalamic projection neurons which fail to regenerate into a graft also fail to upregulate GAP-43. We have tested the hypothesis that the absence of strong GAP-43 expression by the thalamic projection neurons prevents them from regenerating their axons, using transgenic mice which overexpress GAP-43. Transgene expression was mapped by in situ hybridization with a digoxigenin-labeled RNA probe and by immunohistochemistry with a monoclonal antibody against the GAP-43 protein produced by the transgene. Many CNS neurons were found to express the mRNA and protein, including neurons of the mediodorsal and ventromedial thalamic nuclei, which rarely regenerate axons into peripheral nerve grafts. Grafts were implanted into the region of these nuclei in the brains of transgenic animals. Although these neurons strongly expressed the transgene mRNA and protein and transported the protein to their axon terminals, they did not regenerate axons into the graft, suggesting that lack of GAP-43 expression is not the only factor preventing thalamocortical neurons regenerating their axons.  相似文献   

5.
Proteins characteristic of growing axons often fail to be induced or transported along axons that have been interrupted far from their cell bodies in the adult mammalian CNS. Here, we inquire whether long axons in the mammalian CNS can support efficient axonal transport and deposition of one such protein, GAP-43, when the protein is induced in neuron cell bodies. We have used immunocytochemistry to follow the fate of GAP-43 in dorsal column axons ascending the rat spinal cord from dorsal column axons ascending the rat spinal cord from dorsal root ganglion (DRG) neurons, after synthesis of the protein is induced in these cells by peripheral nerve injury. Sciatic nerve lesions do lead to an accumulation of GAP-43 in dorsal column axons derived from the lumbar DRG. However, in distal segments of these CNS axons, accumulation of GAP-43 is apparent only after a delay of 1-2 weeks, in contrast to its rapid accumulation in axon segments within the PNS environment, suggesting that deposition and stabilization of GAP-43 can be limited by local, posttranslational regulation. GAP-43 immunoreactivity subsides to control levels within 8 weeks after crush lesions that permit peripheral axon regeneration, but remains robust 8 weeks after resection lesions that prevent peripheral regeneration. Accumulation of GAP-43 in cervical dorsal column axons after peripheral nerve injury is closely correlated with the ability of these axons to respond to local cues capable of eliciting axon growth (Richardson and Verge, 1986).  相似文献   

6.
Close homologue of L1 (CHL1) is a cell recognition molecule known to promote axonal growth in vitro. We have investigated the expression of CHL1 mRNA by regenerating central nervous system (CNS) neurons, by using in situ hybridisation 3 days to 10 weeks following the implantation of living and freeze-killed peripheral nerve autografts into the thalamus of adult rats. At all survival times after implantation of living grafts, neurons of the thalamic reticular nucleus (TRN), close to the graft tip and up to 1 mm away from it, displayed strong signal for CHL1 mRNA, even though TRN neurons show very low levels of CHL1 mRNA expression in unoperated animals. When the cell bodies of regenerating neurons were identified by retrograde labelling from the distal portion of the grafts, 4-6 weeks after operation, most of the labelled cells were found in the TRN and could be shown to haveupregulated CHL1 mRNA. In addition, some neurons in dorsal thalamic nuclei near the graft tip transiently upregulated CHL1 mRNA during the first 3 weeks after graft implantation, and glial cells showing CHL1 mRNA expression were present at the brain/graft interface 3 days to 2 weeks after operation. Freeze-killed grafts, into which axons do not regenerate, caused a transient upregulation of CHL1 in very few TRN neurons near the graft tip and in glial cells at the brain/graft interface but did not produce prolonged CHL1 mRNA expression. CHL1 can therefore be added to the list of molecules (including GAP-43, L1, and c-jun) strongly expressed by CNS neurons that regenerate their axons into nerve grafts, but not by those neurons that fail to regenerate their axons.  相似文献   

7.
8.
9.
An alkaline phosphatase-labelled anti-sense oligodeoxynucleotide probe specific for growth-associated protein messenger RNA (GAP-43 mRNA) was used for non-radioactive in situ hybridisation histochemistry to follow relative changes in GAP-43 mRNA content in lumbar primary sensory neurons (L4-6) after unilateral ligation of the sciatic nerve. In normal dorsal root ganglia (DRG) 16% of neurons expressed GAP-43 mRNA, and these cells belonged to a sub-group of intermediate-sized (32-50 microns diameter) and large (> 50 microns) neurons. The hybridisation signal detected in these cells was weak to moderate. One day after nerve ligature a significant increase in the number of GAP-43 mRNA expressing neurons in the ipsilateral DRG was detected involving particularly the very small (12-20 microns) cells, and small cell population (20-32 microns), though the hybridisation signal was less pronounced in this latter cell group. A significant increase in the cellular content of GAP-43 mRNA was detected in both cell groups when compared to the normal DRG by 2 days after the lesion. At later times (4, 7, and 10 days postinjury) the intermediate-sized and large cell subpopulations also showed an increase in the number of GAP-43 mRNA positive neurons, followed by a significant rise in their content of GAP-43 mRNA. However, they did not reach the same intensity of hybridisation signal as seen in the small and very small neurons. All DRG neurons showed a maximum of GAP-43 mRNA expression by 10 days postsurgery. At longer times there was a slight decrease in the content of GAP-43 mRNA towards 14 days postinjury, but mRNA levels remained elevated up to 28 days after nerve ligature, the longest time point examined in this study. The different onset and levels of GAP-43 gene expression in the rat primary sensory neurons after lesion of their peripheral branch axons further characterize the different subclasses of these cells and may reflect their different involvement in the plastic changes following peripheral nerve injury.  相似文献   

10.
A segment of tibial nerve was autografted to the right corpus striatum of deeply anesthetized adult rats; the distal graft was left beneath the scalp. Horseradish peroxidase (HRP) conjugates were injected into the distal graft after 2–30 weeks, and the animals were killed 2–3 days later. Small numbers of neostriatal perikarya were HRP labeled at all survival times; most were large (ca. 20 μm in diameter), and many contained acetycholine esterase (AChE). Many more neurons were labelled in the substantia nigra pars compacta (SNpc) 4 weeks or more after grafting. When the graft encroached on the globus pallidus, numerous pallidal neurons, most of them AChE positive, were also labeled. Nigrostriatal neurons, a population of pallidal cholinergic neurons, and a subclass (or classes) of neostriatal neurons, including cholinergic interneurons, thus can be classified as central nervous system (CNS) neurons with a relatively strong regenerative response. In a second experimental series, animals were killed 1–4 weeks after grafting, and sections were probed for the expression of mRNAs encoding growth-associated protein 43 (GAP-43) and the cell adhesion molecules N-CAM and L1. Subpopulations of mostly large neurons scattered throughout the neostriatum gave moderate signals for GAP-43 and N-CAM mRNAs and a stronger signal for L1 mRNAs. Most SNpc neurons were strongly labeled with all three probes. Neostriatal grafts had no apparent effect on the expression of any of the mRNAs in the SNpc or on L1 and N-CAM mRNAs in the striatum. However, GAP-43 mRNA levels were increased in a few, mainly large neostriatal neurons around the graft tip, resembling the HRP-labeled cells. In contrast, previous work has shown upregulation (from an undetectable level) of GAP-43 and L1 mRNAs in neurons regenerating axons into grafts placed in the thalamus and cerebellum. Thus, GAP-43 and L1 mRNA expression, but not necessarily marked upregulation, may correlate with, and be intrinsic determinants of, the ability of CNS neurons to regenerate their axons. J. Comp. Neurol. 391:259–273, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Adult dorsal root ganglion (DRG) cells are capable of neurite outgrowth in vivo and in vitro after axotomy. We have investigated, in cultured adult rat DRG cells, the relative influence of nerve growth factor (NGF) or a prior peripheral nerve lesion on the capacity of these neurons to produce neurites. Since there is evidence suggesting that the growth-associated protein GAP-43 may play a crucial role in axon elongation during development and regeneration, we have also compared the effect of these treatments on GAP-43 mRNA expression. NGF increased the early neurite outgrowth in a subpopulation of DRG cells. This effect was substantially less, however, than that resulting from preaxotomy, which initiated an early and profuse neurite outgrowth in almost all cells. No difference in the expression of GAP-43 mRNA was found between neurons grown in the presence or absence of NGF over 1 week of culture, in spite of the increased growth produced by NGF. In contrast, cultures of neurons that had been preaxotomized showed substantial increase in GAP-43 mRNA and NGF had, as expected, a significant effect on substance P mRNA levels. Two forms of growth may be present in adult DRG neurons: an NGF-independent, peripheral nerve injury-provoked growth associated with substantial GAP-43 upregulation, and an NGF-dependent growth that may underlie branching or sprouting of NGF-sensitive neurons, but which is not associated with increased levels of GAP-43 mRNA. © 1994 Wiley-Liss, Inc.  相似文献   

12.
Cell adhesion molecules (CAMs), particularly L1, are important for axonal growth on Schwann cells in vitro. We have used in situ hybridization to study the expression of mRNAs for L1 and its close homologue CHL1, by neurons regenerating their axons in vivo, and have compared CAM expression with that of GAP-43. Adult rat sciatic nerves were crushed (allowing functional regeneration), or cut and ligated to maintain axonal sprouting but prevent reconnection with targets. In other animals lumbar dorsal roots were transected to produce slow regeneration of the central axons of sensory neurons. In unoperated animals L1 and CHL1 mRNAs were expressed at moderate levels by small- to medium-sized sensory neurons and L1 mRNA was expressed at moderate levels by motor neurons. Many large sensory neurons expressed neither L1 nor CHL1 mRNAs and motor neurons expressed little or no CHL1 mRNA. Neither motor nor sensory neurons showed any obvious upregulation of L1 mRNA after axotomy. Increased CHL1 mRNA was found in motor neurons and small- to medium-sized sensory neurons 3 days to 2 weeks following sciatic nerve crush, declining toward control levels by 5 weeks when regeneration was complete. Cut and ligation injuries caused a prolonged upregulation of CHL1 mRNA (and GAP-43 mRNA), indicating that reconnection with target tissues may be required to signal the return to control levels. Large sensory neurons did not upregulate CHL1 mRNA after axotomy and thus regenerated within the sciatic nerve without producing CHL1 or L1. Dorsal root injuries caused a modest, slow upregulation of CHL1 mRNA by some sensory neurons. CHL1 mRNA was also upregulated by many presumptive Schwann cells in injured nerves and by some satellite cells around large sensory neurons after sciatic nerve injuries and was transiently upregulated by some astrocytes in the degenerating dorsal columns after dorsal rhizotomy.  相似文献   

13.
In zebrafish, the capacity to regenerate long axons varies among different populations of axotomized neurons after spinal cord transection. In specific brain nuclei, 84-92% of axotomized neurons upregulate expression of the growth-related genes GAP-43 and L1.1 and 32-51% of these neurons regrow their descending axons. In contrast, 16-31% of spinal neurons with axons ascending to the brainstem upregulate these genes and only 2-4% regrow their axons. Dorsal root ganglion (DRG) neurons were not observed to regrow their ascending axons or to increase expression of GAP-43 mRNA. Expression of L1.1 mRNA is high in unlesioned and axotomized DRG neurons. In the lesioned spinal cord, expression of growth-related molecules is increased in a substantial population of non-axotomized neurons, suggesting morphological plasticity in the spinal-intrinsic circuitry. We propose that locomotor recovery in spinal-transected adult zebrafish is influenced less by recovery of ascending pathways, but more by regrowth of descending tracts and rearrangement of intraspinal circuitry.  相似文献   

14.
The protooncogene c-jun is highly expressed for long periods in axotomized PNS neurons. This may be related to their growth and regeneration. In contrast, axotomized CNS neurons show only a small and transient upregulation of c-jun. It has been suggested that there may be a correlation between this failure to maintain high levels of c-jun expression after axotomy and abortive CNS axonal regeneration. We have studied, by in situ hybridization and immunohistochemistry, the c-jun response after stab wound lesion, and after peripheral nerve grafting in the thalamus and cerebellum of the adult rat. A lesion elicits upregulation of c-jun in thalamic neurons ipsilateral to the lesion. This is most evident and prolonged in neurons such as those of the thalamic reticular nucleus, which have an established propensity to regenerate. After peripheral nerve grafting, the c-jun response in thalamic neurons is enhanced, mostly in neurons which have axons regenerating along the grafts. These neurons also upregulate growth-associated protein 43 (GAP-43). By comparison, injured Purkinje cells of the cerebellum which do not regenerate their axons along a graft, do not upregulate either c-jun or GAP-43, although they increase their expression of p75. Thus CNS neurons able to regenerate their axons along a peripheral nerve graft are those in which c-jun is induced after injury, and c-jun may play a critical role in the control of gene programs for axonal regeneration. Moreover, the observed differences in the ability of CNS neurons to regenerate their axons may relate to a difference in their intrinsic molecular response to axotomy.  相似文献   

15.
The neuronal-specific RNA-binding protein, HuD, binds to a U-rich regulatory element of the 3' untranslated region (3' UTR) of the GAP-43 mRNA and delays the onset of its degradation. We have recently shown that overexpression of HuD in embryonic rat cortical cells accelerated the time course of normal neurite outgrowth and resulted in a twofold increase in GAP-43 mRNA levels. Given this evidence, we sought to investigate the involvement of HuD during nerve regeneration. It is known that HuD protein and GAP-43 mRNA are expressed in the dorsal root ganglia (DRG) of adult rat and that GAP-43 is upregulated in DRG neurons during regeneration. In this study, we examined the expression patterns and levels of HuD and GAP-43 mRNA in DRG neurons following sciatic nerve injury using a combination of in situ hybridization, immunocytochemistry, and quantitative RT-PCR. GAP-43 and HuD expression increased in the ipsilateral DRG during the first 3 weeks of regeneration, with peak values seen at 7 days postcrush. At this time point, the levels of HuD and GAP-43 mRNAs in the ipsilateral DRG increased by twofold and sixfold, respectively, relative to the contralateral DRG. Not only were the temporal patterns of expression of HuD protein and GAP-43 mRNA similar, but also they were found to colocalize in the cytoplasm of DRG neurons. Moreover, both molecules were distributed in cytoplasmic granules containing ribosomal RNA. In conclusion, our results suggest that HuD is involved in the upregulation of GAP-43 expression observed at early stages of peripheral nerve regeneration.  相似文献   

16.
The expression of major cytoskeletal protein mRNAs was studied in adult rat dorsal root ganglion (DRG) neurons after crushing either their central or peripheral branch axons. mRNA levels in DRG neurons were examined by quantitative in situ hybridization with radiolabeled cDNA probes specific for the low-molecular-weight neurofilament protein (NF-L) and beta-tubulin. The large-sized (greater than 1000 microns 2) neurons which give rise to myelinated axons in lumbar ganglia (L4 and L5) were studied 1 d through 8 weeks after either dorsal root or sciatic nerve crush. NF-L and beta-tubulin mRNA levels in axotomized DRG neurons were compared to those in contralateral control DRG neurons, as well as to those in normal (completely untreated) DRG cells. In the case of NF-L mRNA, changes were observed after central as well as peripheral branch axotomy and the time course and magnitude of changes were similar after both types of axotomy. NF-L mRNA levels initially decreased (first 2 weeks after crush) and then began to return towards control levels at longer survival times. Similar, but less pronounced, changes in NF-L mRNA levels also occurred in contralateral DRG neurons (which were uninjured); the changes in contralateral neurons were not simply a result of surgical stress since no changes in NF-L mRNA levels were observed in sham-operated DRG neurons. In the case of tubulin mRNA, changes were observed after central as well as peripheral branch axotomy by in situ hybridization, but the time course and magnitude of changes were different after each type of axotomy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
Metabolic labeling and quantitative 2D gel fluorography were used to assess changes in the synthesis and transport of five fast-axonally transported and developmentally regulated proteins (GAP-43, SNAP-25, and proteins of 18, 22, and 23/24 kDa) after grafting of a peroneal nerve segment onto a transected optic nerve in adult rats. After optic nerve transection alone, only GAP-43 was up-regulated significantly compared to normal adult controls. The other proteins showed little change or were down-regulated following axotomy. By 4 weeks following optic nerve transection and peroneal nerve grafting, however, GAP-43, proteins 22 and 23/24 kDa showed a sustained up-regulation in synthesis and transport compared to normal controls; SNAP-25 and protein 18 kDa showed levels of expression similar to or slightly greater than normal controls. Increased expression of GAP-43 in retinal ganglion cells was also examined with immunocytochemistry. While a transient up-regulation of GAP-43 in retinal ganglion cells was observed following optic nerve transection, a sustained increase in GAP-43 immunoreactivity was present only in animals with nerve grafts. Backfilling of retinal ganglion cells from the grafts with horseradish peroxidase combined with GAP-43 immunocytochemistry revealed that all retinal ganglion cells with axons growing into the grafts were positive for GAP-43, but not all retinal ganglion cells showing GAP-43 immunoreactivity were extending axons into the grafts. We conclude that the presence of a nerve graft sustains the up-regulation of a number of proteins including GAP-43, and that this up-regulation is correlated with an increased potential for nerve growth, but other as yet unknown factors or conditions appear to play a role in determining if this growth potential will be realized.  相似文献   

19.
Peripheral benzodiazepine receptor (PBR) expression increases in small dorsal root ganglion (DRG) sensory neurons after peripheral nerve injury. To determine the functional significance of this induction, we evaluated the effects of PBR ligands on rodent sensory axon outgrowth. In vitro, Ro5-4864, a PBR agonist, enhanced outgrowth only of small peripherin-positive DRG neurons. When DRG cells were preconditioned into an active growth state by a prior peripheral nerve injury Ro5-4864 augmented and PK 11195, a PBR antagonist, blocked the injury-induced increased outgrowth. In vivo, Ro5-4864 increased the initiation of regeneration after a sciatic nerve crush injury and the number of GAP-43-positive axons in the distal nerve while PK 11195 inhibited the enhanced growth produced by a preconditioning lesion. These results show that PBR has a role in the early regenerative response of small caliber sensory axons, the preconditioning effect, and that PBR agonists enhance sensory axon regeneration.  相似文献   

20.
Axotomy of the peripheral axon of dorsal root ganglion (DRG) cells is known to result in chromatolysis and changes in protein synthesis in DRG cells. We investigated whether a stimulus produced by peripheral branch axotomy would affect the regenerative properties of both the central and peripheral axon of the DRG cell equally. To examine this question, a conditioning crush lesion was made distally on the sciatic nerve 2 weeks prior to a testing lesion of either the dorsal root or peripheral branch axon near the DRG. Fast axonal transport of radioactive proteins was used to assess regeneration of DRG axons. In the adult rat, leading peripheral branch axons normally regenerate at a rate of 4.4 mm/day. If a conditioning lesion of the sciatic nerve is made 2 weeks before the test lesion, the rate of peripheral branch axonal regeneration increases by 25% to 5.5 mm/day. This effect is not limited to the fastest growing axons in the nerve since a population of more slowly growing axons also exhibits accelerated outgrowth in response to a prior peripheral axotomy. In contrast to this, the fastest growing central branch axons of DRG cells, which normally regenerate at a rate of 2.5 mm/day, are not significantly affected by a prior peripheral axotomy. A population of more slowly growing axons in the dorsal root also does not exhibit accelerated outgrowth in response to a peripheral conditioning lesion. The results of these experiments indicate that changes in the DRG neuron's metabolism induced by prior axotomy of its peripheral axon do not affect the regenerative properties of both axons equally. This raises the possibility that accelerated axonal outgrowth in only one axonal branch results from a differentially regulated supply of proteins to the two axons by the DRG cell body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号