首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The morphology and soma-dendritic distribution of anterograde biocytin-labelled rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) synaptic endings in the oculomotor and trochlear nuclei have been examined by electron microscopy by using both preembedding immunoperoxidase and postembedding immunogold methods. The results indicate that three morphological types of riMLF synaptic endings are distinguishable on the basis of synaptic vesicle morphology (spheroidal, pleiomorphic, or ellipsoidal) and postsynaptic membrane specializations (asymmetrical or symmetrical). All three morphological types of riMLF synaptic endings establish synaptic connections predominantly with dendrites. Synaptic endings that contain ellipsoidal synaptic vesicles have a more proximal soma-dendritic distribution than those that contain either spheroidal or pleiomorphic synaptic vesicles. Furthermore, all three morphological types of synaptic endings are encountered in the same motoneuron subdivisions of the oculomotor and trochlear nuclei in the same experiments. The findings suggest that subregions of the riMLF contain coexistent populations of excitatory and inhibitory premotor neurons that are related to opposite directions of vertical saccadic eye movements but that project to the same motoneuron subgroups on the ipsilateral side. Both the morphology and the mode, pattern, and soma-dendritic distribution of saccade-related riMLF synaptic endings that establish synaptic connections with vertical motoneurons differ from those of excitatory and inhibitory second-order vertical vestibular synaptic endings. These differences in the synaptic organization of riMLF and second-order vestibular inputs to oculomotor and trochlear motoneurons may be related to differences in the information transferred by each source, the riMLF input conveying eye-velocity signals, and the vestibular input conveying eye-position signals. © 1996 Wiley-Liss, Inc.  相似文献   

2.
The abducens internuclear and ascending tract of Deiters (ATD) pathways are the principal excitatory inputs to medial rectus motoneurons in the oculomotor nucleus and are related to the control of conjugate horizontal eye movements. Differences in the morphology and soma-dendritic distribution of abducens internuclear and ATD synaptic endings are correlated with known differences in the physiological properties of these independent inputs. The present study extends these observations to the ultrastructural localization of the excitatory amino acid neurotransmitters, glutamate and aspartate, using a postembedding immunogold procedure combined with the pre-embedding immunoperoxidase localization of anterogradely transported biocytin from the abducens nucleus and the ventral lateral vestibular nucleus. Consistent with their spheroidal synaptic vesicle content and the asymmetric pre/postsynaptic membrane profile, both the abducens internuclear and ATD synaptic endings are labeled with glutamate and aspartate. However, quantitative analysis of the density of colloidal gold particles associated with mitochondria versus synaptic vesicles/axoplasmic matrix reveals significant differences in the metabolic versus neurotransmitter pools of the amino acids in the two populations of synaptic endings. The findings indicate that both aspartate and glutamate, possibly co-localized, are the excitatory neurotransmitters utilized by abducens internuclear synaptic endings whose burst-tonic physiological activity conveys information related to eye position to medial rectus motoneurons. By contrast, glutamate is the excitatory neurotransmitter associated with ATD synaptic endings whose high frequency burst activity is related to head velocity.  相似文献   

3.
The dorsal cochlear nucleus (DCN) integrates the synaptic information depending on the organization of the excitatory and inhibitory connections. This study provides, qualitatively and quantitatively, analyses of the organization and distribution of excitatory and inhibitory input on projection neurons (fusiform cells), and inhibitory interneurons (vertical and cartwheel cells) in the DCN, using a combination of high-resolution ultrastructural techniques together with postembedding immunogold labeling. The combination of ultrastructural morphometry together with immunogold labeling enables the identification and quantification of four major synaptic inputs according to their neurotransmitter content. Only one category of synaptic ending was immunoreactive for glutamate and three for glycine and/or gamma-aminobutyric-acid (GABA). Among those, nine subtypes of synaptic endings were identified. These differed in their ultrastructural characteristics and distribution in the nucleus and on three cell types analyzed. Four of the subtypes were immunoreactive for glutamate and contained round synaptic vesicles, whereas five were immunoreactive for glycine and/or GABA and contained flattened or pleomorphic synaptic vesicles. The analysis of the distribution of the nine synaptic endings on the cell types revealed that eight distributed on fusiform cells, six on vertical cells and five on cartwheel cells. In addition, postembedding immunogold labeling of the glycine receptor alpha1 subunit showed that it was present at postsynaptic membranes in apposition to synaptic endings containing flattened or pleomorphic synaptic vesicles and immunoreactive for glycine and/or GABA on the three cells analyzed. This information is valuable to our understanding of the response properties of DCN neurons.  相似文献   

4.
To study the neurochemical identity of axons in synaptic contact with identified hypothalamic neurosecretory neurons in rats, we combined retrograde axonal transport of a marker molecule with postembedding immunogold staining for amino acid neurotransmitters. After intravenous injections of horseradish peroxidase, neurosecretory neurons with axons in the median eminence or neurohypophysis transported the peroxidase retrogradely back to the cell body of origin. Serial ultrathin sections from the paraventricular and arcuate nuclei were immunostained with glutamate or GABA antisera. Peroxidase-labeled neurons and their dendrites received synaptic contact from colloidal gold-labeled axons immunoreactive for GABA or for glutamate. Axons which were highly immunoreactive for GABA and other axons immunoreactive for glutamate but not for GABA consistently made converging synaptic contact with the same peroxidase-labeled cell. Some of the peroxidase-labeled neurons from the arcuate nucleus which were postsynaptic to both GABA and glutamate axons were themselves identified as being GABA immunoreactive. Serial ultrathin sections revealed that multiple presynaptic axons immunoreactive for glutamate or GABA made repeated contacts with single neurons. These results suggest a widespread convergence of the major inhibitory and excitatory amino acid transmitter on the neurons which control both the anterior and posterior pituitary hormones.  相似文献   

5.
The localization and distribution of brain-stem afferent neurons to the cat abducens nucleus has been examined by high-affinity uptake and retrograde transport of 3H-glycine. Injections of 3H-glycine selectively labeled (by autoradiography) only neurons located predominantly in the ipsilateral medial vestibular and contralateral prepositus hypoglossi nuclei, and in the contralateral dorsomedial reticular formation, the latter corresponding to the location of inhibitory burst neurons. The specificity of uptake and retrograde transport of 3H-glycine was indicated by the absence of labeling of the dorsomedial medullary reticular neurons ipsilateral and in close proximity to the injection site, where local uptake by diffusion could have occurred. The selectivity of uptake and transport was demonstrated by the absence of retrograde labeling following injections of 3H-GABA or 3H-leucine into the abducens nucleus. The immunohistochemical localization of glycine and GABA revealed a differential distribution of the 2 inhibitory neurotransmitter candidates in the extraocular motor nuclei. Glycine-immunoreactive staining of synaptic endings in the abducens nucleus was dense with a widespread soma-dendritic distribution but was sparse in the trochlear and oculomotor nuclei. By contrast, GABA-immunoreactive staining within the oculomotor and trochlear nuclei was associated with synaptic endings that were particularly prominent on the somata of motoneurons. GABA-immunoreactive staining in the abducens nucleus, however, was sparse. These differences between glycine- and GABA-immunoreactive staining in the extraocular motor nuclei were correlated with differences in the immunoreactivity of axons in the descending (glycine) and ascending (GABA) limbs of the medial longitudinal fasciculus. Glycine-immunoreactive neurons, furthermore, were observed in the same locations as neurons that were labeled autoradiographically by retrograde transport of 3H-glycine from the abducens nucleus. Electrophysiological recordings from abducens motoneurons and internuclear neurons revealed a marked reduction in the slow positivity of the orthodromic extracellular potential elicited by ipsilateral vestibular nerve stimulation following systemic administration of strychnine, an antagonist of glycine. Intracellular recordings demonstrated that the vestibular-evoked disynaptic inhibitory postsynaptic potentials in abducens neurons were effectively blocked by strychnine but were unaffected by picrotoxin, an antagonist of GABA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The cell bodies and proximal dendrites of postsynaptic dorsal column neurons were examined for synaptic boutons which displayed immunoreactivity for the principal excitatory and inhibitory neurotransmitters, glutamate and GABA. The neurons were labelled by retrograde transport of horseradish peroxidase and GABA or glutamate-containing boutons were revealed by performing postembedding immunogold reactions on electron microscope sections. Five neurons were examined and all of them were postsynaptic to boutons which contained either GABA or glutamate. Quantitative analysis of two of the cells revealed that more than 90% of the synaptic profiles associated with them displayed immunogold reactions for these transmitters. Analysis of series of alternate sections, which were reacted for either GABA or glutamate, showed that there was no overlap in the populations of immunoreactive boutons. Furthermore, GABA and glutamate immunoreactions were associated with boutons which had different morphological characteristics. In addition, some large glutamate-enriched boutons were postsynaptic to small boutons which displayed immunogold reactions for GABA. This study demonstrates morphological bases for direct excitation, postsynaptic inhibition and presynaptic inhibition of postsynaptic dorsal column cells.  相似文献   

7.
The amino acid L‐aspartate (ASP) is one of the most abundant excitatory neurotransmitters in the mammalian brain, but its distribution in other vertebrates has not yet been well characterized. We investigated the distribution of ASP in the brainstem and rostral spinal cord of the adult sea lamprey by using ASP immunohistochemistry. Our results indicate that ASP is accumulated in specific neurons, but not in glia (tanycytes). ASP‐immunoreactive neuronal populations were rather similar as the glutamatergic populations reported in the adult sea lamprey (Villar‐Cerviño et al. [2013] J Comp Neurol 521:522–557), although some important differences were noted. Characteristically, the largest reticular neurons of the lamprey brainstem (Müller cells) showed ASP immunoreactivity in perikarya and processes, in contrast to the absence or faint glutamate immunoreactivity reported in these perikarya. We also compared the distribution of ASP and γ‐aminobutyric acid (GABA) in brainstem neurons by using double immunofluorescence methods. In regions such as the midbrain tectum, dorsal isthmus, and motor nuclei, ASP and GABA immunoreactivity was mostly located in different neurons, whereas in other nuclei (torus semicircularis, octavolateralis area, parvocellular reticular formation), many of the ASP‐immunonegative neurons displayed colocalization with GABA. These results, together with those of our previous studies of colocalization of glutamate and GABA, suggest that some lamprey neurons may co‐release both excitatory and inhibitory neurotransmitters. Further investigation is needed to elucidate the pathways of uptake and release of ASP by ASP‐immunoreactive neurons. Our results indicate that ASP is a neurotransmitter in the central nervous system representative of agnathans, the earliest vertebrate group. J. Comp. Neurol. 522:1209–1231, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
The presence of internuclear neurons in the abducens and oculomotor nuclei of lampreys [González, M.J., Pombal, M.A., Rodicio, M.C. and Anadón, R., Internuclear neurons of the ocular motor system of the larval sea lamprey, J. Comp. Neurol. 401 (1998) 1-15] indicates that coordination of eye movements by internuclear neurons appeared early during the evolution of vertebrates. In order to investigate the possible involvement of inhibitory neurotransmitters in internuclear circuits, the distribution of gamma-aminobutyric acid (GABA) in the extraocular motor nuclei of the lamprey was studied using immunocytochemical techniques. Small GABA-immunoreactive (GABAir) neurons were observed in the three ocular motor nuclei. Numerous GABAir neurons were observed in the group of internuclear neurons of the dorsal rectus oculomotor subnucleus. A second group of GABAir neurons was observed among and below the trochlear motoneurons. Two further groups of GABAir interneurons, periventricular and lateral, were located in the abducens nucleus among the cells of the caudal rectus and the ventral rectus motor subnuclei, respectively. In addition to the presence of GABAir neurons, in all the ocular motor nuclei the motoneurons were contacted by numerous GABAir boutons. Taken together, these results suggest that GABA is involved as a neurotransmitter in internuclear pathways of the ocular motor system of lampreys.  相似文献   

9.
The developmental changes in the levels of amino acid neurotransmitters were analyzed by high pressure liquid chromatography during mouse olfactory bulb neurogenesis, from embryonic day (E)13 until the young adult age, between postnatal days (P)30 and P40. During the embryonic period, high levels of glutamate, aspartate and GABA were observed, with the values of GABA about 2-fold higher than those of glutamate and aspartate. At P0, the production of these neurotransmitters experienced birth stress as shown by a significant 2-fold reduction in their levels. During the first two postnatal weeks, a progressive increase in the glutamate content was detected diminishing slightly in the adult stage. The aspartate concentrations showed a maximal value at P3 and then decreased gradually until the second postnatal week; in the young adult age, its concentration was comparable with that of glutamate. The postnatal GABA contents increased progressively from birth to maturity, showing maximal levels at P3, P11 and in the adult. Throughout the studied developmental period, the concentration of glycine remained relatively low. With regard to taurine, very low concentrations were detected during the prenatal period but after birth, the taurine content gradually increased with age, and in the adult animal, its concentration was comparable with those of GABA and glutamate. Our data demonstrate the predominance of GABA and glutamate during olfactory bulb synaptogenesis, however, in the adult animal, both glutamate and aspartate exert the same influence in the excitatory synaptic transmission; in the adult inhibitory synaptic transmission, taurine appears to play an important neuromodulatory or neurotransmitter role as that of GABA. To determine the intrinsic neurotransmitter production, primary histotypic olfactory bulb cultures were prepared from mice at P10. The comparative analysis of in vitro neurotransmitter contents with those in in situ adult animal showed higher levels of endogenously produced glutamate, glycine and GABA in the olfactory bulb than the extrinsic ones coming from olfactory nerve axons and higher olfactory brain centers. On the other hand, most of aspartate and taurine neurotransmitters apparently come from extrinsically located neurons.  相似文献   

10.
This study documents the variation in the amino acid neurotransmitter contents during mouse parietal cortex development, from embryonic day 13 (E13) until young adulthood, between postnatal day 21 (P21) and P30. Taurine, an inhibitory neurotransmitter and neuromodulator, is the most abundant neurotransmitter in the developing neocortex, whereas, at the adult stage, glutamate is the more prominent neurotransmitter playing an excitatory role, and GABA is the major inhibitory neurotransmitter. During the proliferative stage of neurogenesis in the mouse cerebral cortex, between E13 and E17, relatively high levels of glutamate, aspartate, taurine and glycine were detected, consistent with a possible trophic influence of these neurotransmitters during cortical development prior to synaptogenesis. Between E17 and E19, a significant decline in the contents of these neurotransmitters was observed, consistent with earlier reports of cell death in the ventricular and subventricular zones during this stage of development. During the perinatal period, a progressive increment in glutamate level was seen between E21 and P5, and then the values remained constant until the second postnatal week. Glutamate also decreased by about 25% between P11 and P15, on the other hand, aspartate diminished by about 20% between P7 and P9. These results were consistent with previous reports of histogenetic cell death during the first 2 postnatal weeks in mouse neocortex. GABA increased from the embryonic period until young adulthood, in contrast, the glycine content decreased; thus, in the adult parietal cortex, the GABA content was about 2.6-fold higher than that of glycine. During the first postnatal week, the concentrations of glutamate and GABA showed significant increments between P0 and P5, while those of aspartate and glycine remained constant. During this period, amino acids are predominantly excitatory and the cerebral cortex is vulnerable to epileptiform activity; the significant increment in taurine content between P0 and P3 suggests a neuroprotective action of taurine against excitotoxicity. At P15, coinciding with the period of maximum cortical synaptogenesis, significant increments in GABA and glycine contents were observed which could be related to the maturation of inhibitory synaptic transmission. At the young adult stage, there was a rise in the levels of both excitatory neurotransmitters, glutamate and aspartate, and a significant reduction in the contents of all three inhibitory neurotransmitters, GABA, glycine and taurine.  相似文献   

11.
Using an antiserum directed against glutamate, we have analyzed the distribution of glutamate-like immunoreactive neurons in the terminal abdominal ganglion of the crayfish Procambarus clarkii. Approximately 160 central neurons (157 +/- 8; mean +/- SEM, n = 8) showed positive glutamate-like immunoreactivity, which represents approximately 25% of the total number of neurons in the terminal ganglion. Using a combination of intracellular staining with the marker Lucifer yellow and immunocytochemical staining has shown that most excitatory motor neurons are glutamatergic and that glutamate acts as an excitatory transmitter at peripheral neuromuscular junctions. Seven of 10 identified spiking local interneurons and only 2 of 19 identified ascending interneurons, showed positive immunoreactivity. Our observation that inhibitory spiking interneurons were immunopositive, whereas excitatory ascending interneurons were immunonegative, indicates that glutamate is likely to act as an inhibitory neurotransmitter within the central nervous system. Local pressure injection of L-glutamate into the neuropil of the ganglion caused a hyperpolarization of the membrane potentials of many interneurons. gamma-Aminobutyric acid (GABA)ergic posterolateral nonspiking interneurons and the bilateral nonspiking interneuron LDS showed no glutamate-like immunoreactivity, whereas non-GABAergic anterolateral III nonspiking interneurons showed glutamate-like immunoreactivity. Thus, not only GABA but also glutamate are used in parallel as inhibitory neurotransmitters at central synapses.  相似文献   

12.
The variation in the levels of excitatory (glutamate and aspartate) and inhibitory (GABA, glycine and taurine) neurotransmitters during neurogenesis in mouse cerebellum, from embryonic day (E) 15 until the young adult stage, was analyzed by high-pressure liquid chromatography. Between E15 and E21, high contents of GABA, glutamate and aspartate were detected, with the GABA levels approximately 2- to 3-fold higher than those of glutamate and aspartate. After birth, the levels of GABA remained high during the first 2 postnatal weeks and then reached a plateau comparable to adult values by the third week. The levels of glutamate and aspartate increased gradually from birth to the young adult stage, showing peak values at postnatal days (P) 3 and P11. Glycine and taurine were present at relatively low concentrations during the prenatal period, then rose significantly by about 4-fold after birth; their levels decreased by the end of the first postnatal week but increased gradually thereafter until reaching adult values by the third week. To determine the endogenous neurotransmitter production in the cerebellar cortex, primary histotypic cerebellar cultures prepared at P10 were analyzed and the in vitro transmitter contents were compared with the adult in situ values. The cultures showed about the same levels of glutamate and aspartate; however, their concentrations were lower by half than in vivo, suggesting that both play an equally important role in the excitatory neurotransmission of the cerebellar cortex internal circuitry pathways and that in mature cerebellum, about 50% of the excitatory synaptic inputs derive from the afferent climbing and mossy fibers. The in vitro GABA and glycine contents were comparable with the in vivo levels, whereas the taurine concentrations were about 5-fold lower in vitro than in vivo. These findings indicate that most of the GABA and glycine transmitters are produced intrinsically while a high proportion of taurine in the cerebellum comes from extracerebellar afferents. This study provides data on the changing levels of the amino acid neurotransmitters in developing mouse cerebellum and the relative proportions of neurotransmitter contents that are produced by intrinsic neurons in contrast to those derived from extrinsic afferent fibers.  相似文献   

13.
We have used retrograde transport and immunohistochemistry to study glutamate, aspartate, and enkephalin-like immunoreactive pathways from the mammillary nuclei to the anterior nuclei of the thalamus. Injections of wheat germ agglutinin conjugated to horseradish peroxidase into the anterodorsal thalamic nucleus resulted in retrogradely labelled cell bodies in the lateral mammillary nucleus, bilaterally, whereas injections into the anteroventral thalamic nucleus resulted in retrogradely labelled neurons in the ipsilateral medial mammillary nucleus. In three parallel series of sections immunoreacted for glutamate, aspartate, and enkephalin, respectively, 50-60% of the retrogradely labelled cell bodies were also immunolabelled for glutamate, 50-60% for aspartate, and 40-50% for enkephalin. The enkephalin-immunoreactive neurons may coincide with or constitute a separate population from the glutamate/aspartate-containing neurons. These results are compatible with the possibility that mammillothalamic projection neurons may use glutamate and/or aspartate and enkephalin as neurotransmitters.  相似文献   

14.
Postembedding immunocytochemistry was used to localize aspartate, glutamate, gamma-aminobutyric acid (GABA), and glutamine in hippocampus and striatum during normo- and hypoglycemia in rat. In both brain regions, hypoglycemia caused aspartatelike immunoreactivity to increase. In hippocampus, this increase was evident particularly in the terminals of known excitatory afferents-in GABA-ergic neurons and myelinated axons. Aspartate was enriched along with glutamate in nerve terminals forming asymmetric synapses on spines and with GABA in terminals forming symmetric synapses on granule and pyramidal cell bodies. In both types of terminal, aspartate was associated with clusters of synaptic vesicles. Glutamate and glutamine immunolabeling were markedly reduced in all tissue elements in both brain regions, but less in the terminals than in the dendrosomatic compartments of excitatory neurons. In glial cells, glutamine labeling showed only slight attenuation. The level of GABA immunolabeling did not change significantly during hypoglycemia. The results support the view that glutamate and glutamine are used as energy substrates in hypoglycemia. Under these conditions both excitatory and inhibitory terminals are enriched with aspartate, which may be released from these nerve endings and thus contribute to the pattern of neuronal death characteristic of hypoglycemia.  相似文献   

15.
In order to identify cytochemical traits relevant to understanding excitatory neurotransmission in brainstem auditory nuclei, we have analyzed in the dorsal cochlear nucleus the synaptic distribution of aspartate aminotransferase, glutamate, and vesicular zinc, three molecules probably involved in different steps of excitatory glutamatergic signaling. High levels of glutamate immunolabeling were found in three classes of synaptic endings in the dorsal cochlear nucleus, as determined by quantitation of immunogold labeling. The first type included auditory nerve endings, the second were granule cell endings in the molecular layer, and the third very large endings, better described as “mossy.” This finding points to a neurotransmitter role for glutamate in at least three synaptic populations in the dorsal cochlear nucleus. The same three types of endings enriched in glutamate immunoreactivity also contained histochemically detectable levels of aspartate aminotransferase activity, suggesting that this enzyme may be involved in the synaptic handling of glutamate in excitatory endings in the dorsal cochlear nucleus. There was also extrasynaptic localization of the enzyme. Zinc ions were localized exclusively in granule cell endings, as determined by a Danscher-selenite method, suggesting that this ion is involved in the operation of granule cell synapses in the dorsal cochlear nucleus. J. Comp. Neurol. 399:341–358, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Summary Amyotrophic lateral sclerosis (ALS) is a devastating motoneuronal degenerative disease, which is inevitably fatal in adults. ALS is characterized by an extensive loss of motoneurons in the cerebrospinal axis, except for those motoneurons that control eye movements and bladder contraction. The reason for this selectivity is not known. Systematic differences have been found in the organization of excitatory synaptic transmission in ALS-resistant vs. ALS-susceptible motor nuclei. However, although motoneurons express high levels of glycine receptors (GlyR) and GABA(A) receptors (GABA(A)R), no such studies have been carried out yet for inhibitory synaptic transmission. In this study, we compared the subunit composition, patterns of expression, density and synaptic localization of inhibitory synaptic receptors in ALS-resistant (oculomotor, trochlear and abducens) and ALS-vulnerable motoneurons (trigeminal, facial and hypoglossi). Triple immunofluorescent stainings of the major GABA(A)R subunits (alpha1, alpha2, alpha3, and alpha5), the GlyR alpha1 subunit and gephyrin, were visualized by confocal microscopy and analysed quantitatively. A strong correlation was observed between the vulnerability of motoneurons and the subunit composition of GABA(A)R, the GlyR/GABA(A)R density ratios and the incidence of synaptic vs. extrasynaptic GABA(A)R. These differences contrast strikingly with the uniform gephyrin cluster density and synaptic GlyR levels recorded in all motor nuclei examined. These results suggest that the specific patterns of inhibitory receptor organization observed might reflect functional differences that are relevant to the physiopathology of ALS.  相似文献   

17.
Isolated fresh cat trochlear and oculomotor nuclei, which contain the axon terminals of inhibitory neurons whose cell bodies are in the superior vestibular nucleus (SVN), actively synthesize and store [3H]GABA, [14C]acetylcholine, [3H]dopamine and [3H]tyramine from labeled precursors of these compounds. Twelve to 14 days following lesions of the ipsilateral superior vestibular nucleus or its efferent pathway to the oculomotor and trochlear nuclei, at a time when there is extensive degeneration of superior vestibular nucleus axon terminals in these nuclei, the synthesis and storage of GABA in the ipsilateral trochlear nucleus is markedly reduced compared to that in the contralateral trochlear nucleus; the synthesis of acetylcholine, dopamine and tyramine is not measurably affected. The oculomotor nuclei, which unlike the trochlear nuclei receive a heavy bilateral projection from the SVN, show no asymmetric decrease after SVN lesions in their ability to synthesize any of the compounds tested. The data support the identity of GABA as an inhibitory transmitter in the superior vestibular nucleus-trochlear nucleus pathway.  相似文献   

18.
The principle neuronal output of the neostriatum comes from medium spiny neurons that project from the caudate/putamen to the globus pallidus and substantia nigra. Although current evidence generally indicates that γ-aminobutyric acid (GABA) is the principal neurotransmitter in this pathway, this cannot account for the excitatory synaptic activity present among cultures of striatal neurons or the short latency excitatory postsynaptic potentials which often proceed or obscure inhibitory activity evoked by striatal stimulation. In this study, retrograde transport of [3H]D -aspartate has been used to demonstrate striatopallidal and striato-nigral neurons that possess a high-affinity uptake system for glutamate and aspartate and are therefore putatively glutamatergic. Injections of [3H]D -aspartate into the globus pallidus or substantia nigra, pars reticularis of the rat retrogradely labeled mediumsized neurons throughout the rostral-caudal extent of the neostriatum. To characterize this population further, adjacent sections were immunoreacted with antibodies to either GABA, glutamic acid decarboxylase (GAD), calbindin, or parvalbumin prior to autoradiographic processing. Under these conditions, autoradiographically labeled neurons displayed positive immunoreactivity for GABA, GAD, or calbindin. Autoradiographic label did not colocalize with parvalbumin immunoreactivity. The colocalization of anatomical markers of GABAergic and glutamatergic neurotransmission raises the possibility that both neurotransmitters are functionally expressed within single striatal projection neurons. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Serotoninergic fibers have been reported in both the abducens and facial nuclei of the cat. Furthermore, serotoninergic dorsal raphe and oculomotor internuclear neurons occupy similar locations in the periaqueductal gray overlying the oculomotor and trochlear motor nuclei. To resolve the issue of whether these two populations of neurons overlap, serotoninergic fibers were assayed in the abducens and facial nucleus; then the morphologies and distributions of identified serotoninergic neurons and oculomotor internuclear neurons were determined. Both the abducens and facial nuclei contained varicosities labelled with antibody to serotonin, but a much higher density of immunoreactive fibers was present in the latter, especially in its medial aspect. Distinct synaptic profiles labelled with antibodies to serotonin were observed in both nuclei. In both cases, terminal profiles contained numerous small, predominantly spheroidal, synaptic vesicles as well as a few, large, dense-core vesicles. These profiles made synaptic contacts onto dendritic and, in the facial nucleus, somatic profiles that occasionally displayed asymmetric, postsynaptic, membrane densifications. Following injection of horseradish peroxidase into either the abducens or facial nuclei, double-label immunohistochemical techniques demonstrated that the serotoninergic and oculomotor internuclear neurons form two distinct cell populations. The immunoreactive serotoninergic cells were distributed within the dorsal raphe nucleus, predominantly caudal to the retrogradely labelled oculomotor internuclear neurons. The latter were located in the oculomotor nucleus along its dorsal border and in the adjacent supraoculomotor area. Intracellular injection of horseradish peroxidase revealed that oculomotor internuclear neurons have multipolar somata with up to ten long, tapering dendrites that bifurcate approximately five times. Their dendritic fields were generally contained within the nucleus and adjacent supraoculomotor area. In contrast, putative serotoninergic neurons were often spindle-shaped and exhibited far fewer primary dendrites. Many of these long, narrow, sparsely branched dendrites crossed the midline and extended to the surface of the cerebral aqueduct. In the vicinity of the aqueduct they branched repeatedly to form a dendritic thicket. The axons of the intracellularly stained serotoninergic neurons emerged either from the somata or the end of a process with dendritic morphology, and in some cases they produced axon collaterals within the periaqueductal gray. Thus the oculomotor internuclear and serotoninergic populations differ in both distribution and morphology.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The synaptic organization of the accessory olfactory bulb (AOB) was studied in the rat with antibodies against the excitatory neurotransmitter glutamate (Glu) and the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). To a large extent, the immunoreactivity patterns produced by the two antibodies were complementary. Glu-like immunoreactivity (-LI) was observed in the glomerular neuropil, in the mitral cells, and in large neurons located in the periglomerular region. Immunogold electron microscopy revealed particularly high levels of Glu-LI in the axon terminals of vomeronasal neurons. GABA-LI was present in granule and periglomerular cells and in their processes. The dendritic spines of granule cells, which were presynaptic to mitral cells, were strongly labelled by the antiserum against GABA. Labelling of serial semithin sections showed that the GABA-positive and Glu-positive neurons of the periglomerular region are generally distinct, and colocalization of Glu and GABA occurred only in a few cells. These results are consistent with electrophysiological studies indicating that the synaptic organization of the AOB is similar to that of the main olfactory bulb. In both systems, Glu is the neurotransmitter used by primary afferents and output neurons, whereas GABA is involved in the circuits underlying lateral and feed-back inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号