首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperpolarized (3)He MRI of the human lung was performed at 0.54 and 1.5 T using identical software and hardware (except for RF coils) at both field strengths. The T(*) (2) of (3)He gas in the lung was measured, and the effects of magnetic-susceptibility-induced field inhomogeneities on the appearance of interleaved-spiral and interleaved-echo-planar lung images at 1.5 T were compared to those at 0.54 T. Mean T(*) (2) values for (3)He gas in the healthy human lung were 26.8 +/- 1.5 ms and 67.9 +/- 1.3 ms at 1.5 and 0.54 T, respectively. At 0.54 T, interleaved-spiral images showed markedly less blurring due to susceptibility effects compared to images acquired at 1.5 T. At both 0.54 and 1.5 T, interleaved-echo-planar images appeared essentially identical to corresponding GRE images, even though the data-sampling period per echo and echo time were substantially longer for the interleaved-echo-planar images acquired at 0.54 T.  相似文献   

2.
The purpose of this work was to validate ventilation‐weighted (VW) and perfusion‐weighted (QW) Fourier decomposition (FD) magnetic resonance imaging (MRI) with hyperpolarized 3He MRI and dynamic contrast‐enhanced perfusion (DCE) MRI in a controlled animal experiment. Three healthy pigs were studied on 1.5‐T MR scanner. For FD MRI, the VW and QW images were obtained by postprocessing of time‐resolved lung image sets. DCE acquisitions were performed immediately after contrast agent injection. 3He MRI data were acquired following the administration of hyperpolarized helium and nitrogen mixture. After baseline MR scans, pulmonary embolism was artificially produced. FD MRI and DCE MRI perfusion measurements were repeated. Subsequently, atelectasis and air trapping were induced, which followed with FD MRI and 3He MRI ventilation measurements. Distributions of signal intensities in healthy and pathologic lung tissue were compared by statistical analysis. Images acquired using FD, 3He, and DCE MRI in all animals before the interventional procedure showed homogeneous ventilation and perfusion. Functional defects were detected by all MRI techniques at identical anatomical locations. Signal intensity in VW and QW images was significantly lower in pathological than in healthy lung parenchyma. The study has shown usefulness of FD MRI as an alternative, noninvasive, and easily implementable technique for the assessment of acute changes in lung function. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
The effects of macroscopic background field gradients upon 2D gradient echo images of inhaled (3)He in the human lung were investigated at 1.5 T. Effective compensation of in-slice signal loss in (3)He gradient echo images was then demonstrated using a multiple acquisition interleaved single gradient echo sequence. This method restores signal dephasing through a combination of separate images acquired with different slice refocusing gradients. In vivo imaging of volunteers with the sequence shows substantial restoration of signal at the lung periphery and close to blood vessels. The technique presented may be useful when using (3)He MRI for volumetric measurements of lung ventilation and in studies using (3)He combined with intravenous contrast as a means of assessing lung ventilation/perfusion (V/Q).  相似文献   

4.
Conventional nuclear ventilation/perfusion (V/Q) scanning is limited in spatial resolution and requires exposure to radioactivity. The acquisition of pulmonary V/Q images using MRI overcomes these difficulties. When inhaled, hyperpolarized helium-3 ((3)He) permits MRI of gas distribution. Magnetic labeling of blood (arterial spin-tagging (AST)) provides images of pulmonary perfusion. Three normal subjects, two patients who had undergone single lung transplantation for emphysema, and one subject with pulmonary embolism (PE), were imaged. (3)He distribution and blood perfusion appeared uniform in the normal subjects and throughout the lung allografts. Gas distribution and perfusion in the emphysematous lungs were non-uniform and paralleled radiographic abnormalities. AST imaging alone revealed a lower-lobe wedge-shaped perfusion defect in the patient with PE that corresponded to computed tomography (CT) imaging. Hyperpolarized (3)He gas is demonstrated to provide ventilation images of the lung. Blood perfusion information may be obtained during the same examination using the AST technique. The sequential application of these imaging methods provides a novel tool for studying V/Q relationships.  相似文献   

5.
Assessment of regional lung perfusion and ventilation has significant clinical value for the diagnosis and follow‐up of pulmonary diseases. In this work a new method of non‐contrast‐enhanced functional lung MRI (not dependent on intravenous or inhalative contrast agents) is proposed. A two‐dimensional (2D) true fast imaging with steady precession (TrueFISP) pulse sequence (TR/TE = 1.9 ms/0.8 ms, acquisition time [TA] = 112 ms/image) was implemented on a 1.5T whole‐body MR scanner. The imaging protocol comprised sets of 198 lung images acquired with an imaging rate of 3.33 images/s in coronal and sagittal view. No electrocardiogram (ECG) or respiratory triggering was used. A nonrigid image registration algorithm was applied to compensate for respiratory motion. Rapid data acquisition allowed observing intensity changes in corresponding lung areas with respect to the cardiac and respiratory frequencies. After a Fourier analysis along the time domain, two spectral lines corresponding to both frequencies were used to calculate the perfusion‐ and ventilation‐weighted images. The described method was applied in preliminary studies on volunteers and patients showing clinical relevance to obtain non‐contrast‐enhanced perfusion and ventilation data. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Hyperpolarized (HP) 3He can be encapsulated within biologically compatible microspheres while retaining sufficient polarization to be used as a signal source for MRI. Two microsphere sizes were used, with mean diameters of 5.3 +/- 1.3 microm and 10.9 +/- 3.0 microm. These suspensions ranged in concentration from 0.9-7.0% gas by volume. Spectroscopic measurements in phantoms at 2 T yielded 3He relaxation times that varied with gas concentration. At the highest 3He concentration, the spinlattice relaxation time, T1, was 63.8 +/- 9.4 sec, while the transverse magnetization decayed with a time constant of T2* = 11.0 +/- 0.4 msec. In vivo MR images of the pelvic veins in a rat were acquired during intravenous injection of 3He microspheres (SNR approximately equal 15). Advantages such as intravascular confinement, lack of background signal, and limited recirculation indicate quantitative perfusion measurements may be improved using this novel signal source.  相似文献   

7.
The transverse relaxation time, T *(2), of hyperpolarized (HP) gas in the lung in vivo is an important parameter for pulse sequence optimization and image contrast. We obtained T *(2) maps of HP (3)He and (129)Xe in guinea pig lungs (n = 17) and in human lungs. Eight different sets of (3)He guinea pig studies were acquired, with variation of slice selection, tidal volume, and oxygen level. For example, for a (3)He tidal volume of 3 cm(3) and no slice selection, the average T *(2) in the trachea was 14.7 ms and 8.0 ms in the intrapulmonary airspaces. The equivalent (129)Xe experiment yielded an average T *(2) of 40.8 ms in the trachea and 18.5 ms in the intrapulmonary airspaces. The average (3)He T *(2) in the human intrapulmonary airspaces was 9.4 ms. The relaxation behavior was predicted by treating the lung as a porous medium, resulting in good agreement between estimated and measured T *(2) values in the intrapulmonary airspaces. Magn Reson Med 42:729-737, 1999.  相似文献   

8.
PURPOSE: To address the problem of inadequate signal-to-noise ratio (SNR) encountered in lung perfusion magnetic resonance imaging (MRI) by developing an indirect detection based on the strong hyperpolarized (HP) gas signal. MATERIALS AND METHODS: Our model is based on detecting the effects of gadolinium (Gd) flowing through lung capillaries by recording the phase of the nearby alveolar HP gas. In a HP gas 3He phantom we imaged gas phases before and after removing tubes containing paramagnetic solution away from the phantom. We also imaged HP gas phases in pig lungs before and after injection of Gd. Finally, parenchymal spin phase in excised lungs was measured as a function of Gd concentration. RESULTS: In the phantom, the differential phase map displayed a pattern characteristic of a susceptibility-induced dipole field, showing the possibility of an indirect detection. In vivo, the differential phase map showed homogeneous appearance, as expected for uniform perfusion in healthy lungs. Ex vivo, the parenchymal spin phases were shown to depend linearly on Gd concentration. CONCLUSION: Our method should allow indirect perfusion (Q) and direct ventilation (V) to be assessed simultaneously, thus allowing for diagnosis of V/Q mismatches. The linear dependency of parenchymal spin phase vs. Gd concentration may allow for quantification of lung perfusion.  相似文献   

9.
This study investigates the distribution of ventilation-perfusion (V/Q) signal intensity (SI) ratios using oxygen-enhanced and arterial spin labeling (ASL) techniques in the lungs of 10 healthy volunteers. Ventilation and perfusion images were simultaneously acquired using the flow-sensitive alternating inversion recovery (FAIR) method as volunteers alternately inhaled room air and 100% oxygen. Images of the T(1) distribution were calculated for five volunteers for both selective (T(1f)) and nonselective (T(1)) inversion. The average T(1) was 1360 ms +/- 116 ms, and the average T(1f) was 1012 ms +/- 112 ms, yielding a difference that is statistically significant (P < 0.002). Excluding large pulmonary vessels, the average V/Q SI ratios were 0.355 +/- 0.073 for the left lung and 0.371 +/- 0.093 for the right lung, which are in agreement with the theoretical V/Q SI ratio. Plots of the V/Q SI ratio are similar to the logarithmic normal distribution obtained by multiple inert gas elimination techniques, with a range of ratios matching ventilation and perfusion. This MRI V/Q technique is completely noninvasive and does not involve ionized radiation. A limitation of this method is the nonsimultaneous acquisition of perfusion and ventilation data, with oxygen administered only for the ventilation data.  相似文献   

10.
OBJECTIVE: To obtain T2* and proton density measurements of normal human lung parenchyma in vivo using submillisecond echo time (TE) gradient echo (GRE) magnetic resonance (MR) imaging. MATERIALS AND METHODS: Six normal volunteers were scanned using a 1.5-T system equipped with a prototype enhanced gradient (GE Signa, Waukausha, WI). Images were obtained during breath-holding with acquisition times of 7-16 s. Multiple TEs ranging from 0.7 to 2.5 ms were tested. Linear regression was performed on the logarithmic plots of signal intensity versus TE, yielding measurements of T2* and proton density relative to chest wall muscle. Measurements in supine and prone position were compared, and effects of the level of lung inflation on lung signal were also evaluated. RESULTS: The signal from the lung parenchyma diminished exponentially with prolongation of TE. The measured T2* in six normal volunteers ranged from 0.89 to 2.18 ms (1.43 +/- 0.41 ms, mean +/- S.D.). The measured relative proton density values ranged between 0.21 and 0.45 (0.29 +/- 0.08, mean +/- S.D.). Calculated T2* values of 1.46 +/- 0.50, 1.01 +/- 0.29 and 1.52 +/- 0.18 ms, and calculated relative proton densities of 0.20 +/- 0.03, 0.32 +/- 0.13 and 0.35 +/- 0.10 were obtained from the anterior, middle and posterior portions of the supine right lung, respectively. The anterior-posterior proton density gradient was reversed in the prone position. There was a pronounced increase in signal from lung parenchyma at maximum expiration compared with maximum inspiration. The ultrashort TE GRE technique yielded images demonstrating signal from lung parenchyma with minimal motion-induced noise. CONCLUSION: Quantitative in vivo measurements of lung T2* and relative proton density in conjunction with high-signal parenchymal images can be obtained using a set of very rapid breath-hold images with a recently developed ultrashort TE GRE sequence.  相似文献   

11.
Diffusion weighted 19F images of rat lung in vivo using SF6 are presented. Projection-reconstruction images were acquired by filling the rat lung with a mixture of SF6 and air, during 64 successive apneas. Each apnea lasted for 6 s, the time required to perform 100 accumulations of each k-space radial phase step for the five values of the diffusion gradient (TR = 10 ms). After diffusion images were acquired, an apparent diffusion coefficient (ADC) map was generated, yielding an average value for the ADC of 2.22 x 10(-6) m2/s and SD for ADC values of 1.27 x 10(-6) m2/s. To the best of our knowledge, this is the first in vivo diffusion weighting imaging application and the first ADC map obtained using 19F MRI.  相似文献   

12.
This work reports the use of single-shot spin echo sequences to achieve in vivo diffusion gas measurements and ultrafast imaging of human lungs, in vivo, with hyperpolarized (3)He at 0.1 T. The observed transverse relaxation time of (3)He lasted up to 10 s, which made it possible to use long Carr-Purcell-Meiboom-Gill echo trains. Preliminary NMR studies showed that the resolution of lung images acquired with hyperpolarized (3)He and single-shot sequences is limited to about 6 mm because of the diffusion of the gas in applied field gradients. Ultrafast images of human lungs in normal subjects, achieved in less than 0.4 s with the equivalent of only 130 micromol of fully polarized (3)He, are presented. Comparison with other studies shows that there is no SNR penalty by using low fields in the hyperpolarized case. Advantage was taken of the self diffusion-weighting of the rapid acquisition with relaxation enhancement (RARE) sequence to acquire apparent diffusion coefficient (ADC) images of the lungs. Time scales of seconds could be explored for the first time because there is no hindrance from T(*)(2) as with the usual approaches. At 0.1 T, 180 degrees RF pulses can be repeated every 10 ms without exceeding specific absorption rate limits, which would not be the case for higher fields. Moreover, at low field, susceptibility-induced phenomena are expected to be milder. This supports the idea that low-field imagers can be used for hyperpolarized noble gas MRI of lungs and may be preferred for ADC measurements.  相似文献   

13.
目的 探讨SPECT肺灌注与CT异机融合图像评价Ⅲ期非小细胞肺癌(NSCLC)患者区域肺功能的意义.方法 选择Ⅲ期NSCLC患者32例,治疗前行肺功能测试和胸部CT扫描,并在相同体位下行SPECT肺灌注显像,两套图像均传至Philips Pinnacle3放射治疗计划系统,依据外标记点进行手动异机图像融合.参考CT与SPECT肺灌注融合图像,按灌注缺损区与肿瘤病灶的大小关系分为4级:0级为无灌注受损;1级为肿瘤及其周围局部肺灌注受损;2级为1叶肺灌注受损;3级为超过1叶肺灌注受损.采用SPSS 13.0软件,行PearsonX2检验.结果 32例Ⅲ期NSCLC患者中,31例有程度不等的肺灌注缺损,其中1级13例,2级8例,3级10例.中央型NSCLC患者肺灌注缺损较周围型NSCLC患者严重,差异有统计学意义(X2=10.495,P<0.05).8例患者肺功能测试有不同程度的异常.CT与SPECT肺灌注融合图像阳性率96.9%(31/32),较肺功能测试阳性率25.0%(8/32)高,差异有统计学意义(X2=34.724,P<0.05).结论 SPECT肺灌注与CT异机融合图像能更好显示Ⅲ期NSCLC患者区域肺组织的功能状况,为此类患者制订手术方案、预测术后肺功能、优化放疗计划等提供更多的信息.  相似文献   

14.
Perfluorinated gases, particularly C2F6, are potentially suitable alternatives to hyperpolarized noble gases for pulmonary airspace spin density and diffusion MRI. This work focuses mainly on 19F imaging of C2F6 gas in healthy and emphysematous explanted lungs, avoiding regulatory issues of human in vivo measurements. Three-dimensional gradient echo and spin echo spin density images of human lungs can be made in 10 s with adequate signal-to-noise, demonstrating the feasibility for breathing dynamics to be captured during a succession of short breath holds. As expected, the spin echo images have much smaller susceptibility artifacts than the gradient echo images. 19F and 3He images of the same lungs are compared. The apparent diffusion coefficient (ADC) of C2F6 is sensitive to restrictions imposed by the lung microstructure: the average ADC is measured to be 0.018 cm2/s in healthy lungs versus 0.031 cm2/s in emphysematous lungs at a diffusion time Delta=2.2 ms. The low free diffusivity of pure C2F6 (D0=0.033 cm2/s) places it in a regime where the ADC measurement allows the surface-to-volume ratio to be determined in each voxel, a potentially valuable quantitative characterization of regional lung tissue destruction in emphysema.  相似文献   

15.
RATIONALE AND OBJECTIVE: To assess the feasibility of combining magnetic resonance (MR) perfusion, angiography, and 3He ventilation imaging for the evaluation of lung function in a porcine model. MATERIALS AND METHODS: Fourteen consecutive porcine models with externally delivered pulmonary emboli and/or airway occlusions were examined with MR perfusion, angiography, and 3He ventilation imaging. Ultrafast gradient-echo sequences were used for 3D perfusion and angiographic imaging, in conjunction with the use of contrast-agent injections. 2D multiple-section 3He imaging was performed subsequently via the inhalation of hyperpolarized 3He gas. The diagnostic accuracy of MR angiography for detecting pulmonary emboli was determined by two reviewers. The diagnostic confidence for different combinations of MR techniques was rated on the basis of a 5-point grading scale (5 = definite). RESULTS: The sensitivity, specificity, and accuracy of MR angiography for detecting pulmonary emboli were approximately 85.7%, 90.5%, and 88.1%, respectively. The interobserver agreement was very strong (k = 0.82). There was a clear tendency for confidence to increase when first perfusion and then ventilation imaging were added to the angiographic image (Wilcoxon signed ranks test, P = 0.03). CONCLUSION: The combination of the three methods of MR perfusion, angiography, and 3H ventilation imaging may provide complementary information on abnormal lung anatomy and function.  相似文献   

16.
A method for the study of the dynamics of the perfusion of the compliant vascular tree of the lungs using in vivo labelled 99mTc red cells and ECG gating is presented. Following blood pool labelling, posterior, ECG gated gamma camera images were acquired in time intervals of about 40 ms for 1,000-2,000 cardiac cycles. The images show the lungs plus the heart and great vessels. The image sequence containing the periodic variation of the blood activity in the lungs during the cardiac cycle is analyzed to obtain volume curves and functional images of the amplitude and phase of the lung perfusion. The interference of the heart and great vessels with the left lung can be avoided by excluding the superimposed areas in the ROIs with the sacrifice of part of the left lung. This technique allows dynamic visualization of the perfusion process in the compliant arterial and venous vascular trees of the lungs. The results obtained with this method in normals and some pathologies are discussed.  相似文献   

17.
The nuclear magnetic resonance (NMR) signal decay produced by reversible tissue-induced dephasing of the magnetization components in the transverse plane (reversible tissue-induced dephasing) was measured and expressed as a function of a new transverse relaxation time T'2 (T2 prime) for samples of rat liver, retroperitoneal fat, inflated lung, and corn oil. Simple exponentials did not adequately describe the observed NMR signal decay. Inflated lung demonstrated the most rapid signal decay (T'2 = 4.8 ms) followed by retroperitoneal fat (T'2 = 16 ms). No reversible tissue-induced dephasing was observed in liver (T'2 immeasurably long). In tissues which contain both fat and water, the chemically shifted 1H resonance peaks from -OH and -CH-are in phase with symmetric spin echo sequences but out of phase with asymmetric sequences. The interference of these two peaks produces a beat pattern with asymmetric sequences. Subtraction images obtained from paired symmetric- and asymmetric-sequence images accurately (r = .96) reflect T'2 and can be used to indicate the presence of fat. In vivo subtraction images of ethionine-induced fatty rat livers were significantly different from similar in vivo images of normal rat livers (P less than .0005). Since for each pixel of a subtraction image, the magnitude of the difference signal should be approximately proportional to the ratio of hydroxyl and alkyl protons, this simple spin echo sequence modification may obviate the need for more time-consuming 3-dimensional Fourier transform proton chemical shift images.  相似文献   

18.
Quantitative perfusion mapping of the human lung using 1H spin labeling   总被引:5,自引:0,他引:5  
PURPOSE: To evaluate the feasibility and reproducibility of a noninvasive, rapid and quantitative pulmonary perfusion mapping method using a two-compartment tissue model in combination with a (1)H spin labeling technique. MATERIALS AND METHODS: Ten healthy volunteers and three patients with cystic fibrosis (CF) were examined on a 1.5-T whole-body scanner. Global and selective lung T(1) maps based on an inversion recovery Snapshot FLASH technique were acquired from each subject with breath-holds at end-expiration. For comparison, corresponding Gd-DTPA-enhanced (1)H MR perfusion images were also obtained from each CF patient. RESULTS: Quantitative perfusion maps were calculated from the global and selective T(1) maps. The measured perfusion rates of the upper right lung in volunteers ranged from 400 to 600 mL/100 g/minute. The method showed a high intra-study reproducibility and low relative errors. In CF-patients, perfusion defects detected using Gd-DTPA-enhanced MR imaging were also detected using the spin labeling method. The perfusion rates of diseased lung tissues were less than 200 mL/100 g/minute. CONCLUSION: Noninvasive, robust and quantitative (1)H MR mapping of pulmonary perfusion was successfully performed using a rapid lung T(1) mapping in combination with spin labeling within the imaging slice. The proposed method has the potential to provide both important qualitative functional information and quantitative pulmonary perfusion rates in various lung diseases at various stages without the need of contrast agents.  相似文献   

19.
PURPOSE: The purpose of this study is to measure the longitudinal (T1) relaxation time of human lung parenchyma at 3.0 Tesla (T), independent of large vessel signal, and to examine T1 as a function of position in gravitational, isogravitational, and radial planes. MATERIALS AND METHODS: Sixteen subjects were imaged. A series of 16-20 turbo field echo images was acquired over a 6-s period after the application of a single nonselective inversion (180 degrees ) pulse. Tissue-based segmentation was used to separate parenchymal tissue from large pulmonary vascular tissue in the resulting images. Time-intensity curves for each tissue type were constructed and spin-lattice relaxation time was determined by line-fitting the time-intensity curves. The lung slice was divided into 10 regions of interest in the gravitational, isogravitational, and radial directions and regional T1 versus position gradient analyses were performed. RESULTS: The T1 relaxation time of human lung parenchyma at 3.0T was determined to be 1374 +/- 226 ms, while the T1 of blood in large pulmonary vessels was 1623 +/- 236 ms. Whole lung T1 was found to be 1397 +/- 214 ms. T1 of lung parenchyma was found to be significantly shorter than the T1 of blood in large pulmonary vessels and whole lung T1. No regional gradient was seen in the gravitational or isogravitational directions, but a significant gradient was seen in the radial direction.  相似文献   

20.
The 3He lung morphometry technique, based on MRI measurements of hyperpolarized 3He gas diffusion in lung airspaces, provides unique information on the lung microstructure at the alveolar level. In vivo 3D tomographic images of standard morphological parameters (airspace chord length, lung parenchyma surface‐to‐volume ratio, and number of alveoli per unit volume) can be generated from a rather short (several seconds) MRI scan. The technique is based on a theory of gas diffusion in lung acinar airways and experimental measurements of diffusion‐attenuated MRI signal. The present work aims at developing the theoretical background of a similar technique based on hyperpolarized 129Xe gas. As the diffusion coefficient and gyromagnetic ratio of 129Xe gas are substantially different from those of 3He gas, the specific details of the theory and experimental measurements with 129Xe should be amended. We establish phenomenological relationships between acinar airway geometrical parameters and the diffusion‐attenuated MR signal for human and small animal lungs, both normal lungs and lungs with mild emphysema. Optimal diffusion times are shown to be about 5 ms for human and 1.3 ms for small animals. The expected uncertainties in measuring main morphometrical parameters of the lungs are estimated in the framework of Bayesian probability theory. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号