首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study describes the organization of cells in the thalamic reticular nucleus (TRN) that project to the somatosensory part of the dorsal thalamus in the cat. Injections of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) and fluorescent dyes were made into the ventrobasal complex (VB) and the medial division of the posterior complex (POm) of the thalamus. The resultant retrograde labelling in TRN was analyzed. Large injections of a tracer in VB label many reticular cells that are restricted to a centroventral, or somatosensory, sector of TRN. Small injections of a tracer in VB produce narrow zones of labelled cells in this sector. In reconstructions these zones resemble thin “slabs,” which lie parallel to the plane of TRN along its oblique rostrocaudal dimension and occupy only a fraction of its thickness. In comparisons of the zones of labelled cells in TRN resulting from tracer injections in different nuclei of VB, inner cells, intermediate cells, and outer cells across the thickness of TRN project to the ventral posteromedial, the medial division of the ventral posterolateral, and the lateral division of the ventral posterolateral nuclei, respectively. Furthermore, shifts in injected areas along the dorsoventral dimension of VB produce similar shifts in zones of labelled cells in TRN. Thus, reticular cells form an accurate map on the basis of their connections with VB. Large injections of a tracer in the ventral subdivision of POm label many reticular cells that are also restricted to the centroventral sector of TRN. Small injections of a tracer in ventral POm produce broad zones of labelled cells in this sector. In comparisons of the zones of labelled cells in TRN resulting from tracer injections in different regions of ventral POm, cells that project to these regions are scattered across the thickness of TRN and occupy overlapping territories. Large injections of a tracer in either VB or ventral POm also label cells in a restricted centroventral region of the perireticular nucleus. Double injections of different tracers in VB and ventral POm produce many cells in TRN that are labelled from both of these dorsal thalamic structures and fewer cells that are labelled from only one or the other of these structures. These results indicate that there is a dual organization in the projections of cells in the somatosensory sector of TRN to dorsal thalamus: Projections to VB are topographically organized whereas those to ventral POm lack a topographical organization. Furthermore, both of these mapped and nonmapped projections can arise from single reticular cells in the somatosensory sector. © 1996 Wiley-Liss, Inc.  相似文献   

2.
The feline posterior ectosylvian gyrus contains a broad band of association cortex that is bounded anteriorly by tonotopic auditory areas and posteriorly by retinotopic visual areas. To characterize the possible functions of this cortex and to throw light on its pattern of internal divisions, we have carried out an analysis of its thalamic afferents. Deposits of differentiable retrograde tracers were placed at 17 cortical sites in nine cats. The deposit sites spanned the crown of the posterior ectosylvian gyrus and adjacent cortex in the suprasylvian sulcus. We compiled counts of retrogradely labeled neurons in 12 thalamic nuclei delineated by use of Nissl and acetylcholinesterase stains. We then employed a statistical clustering algorithm to identify groups of injections that gave rise to similar patterns of thalamic labeling. The results suggest that the posterior ectosylvian gyrus contains 3 fundamentally different cortical districts that have the form of parallel vertical bands. Very anterior cortex, overlapping previously identified tonotopic auditory areas (AI, P and VP) receives a dense projection from the laminated division of the medial geniculate body (MGl). An intermediate strip, to which we refer as the auditory belt, is innervated by axons from nontonotopic divisions of the medial geniculate body (MGds, MGvl, MGm, and MGd), from the lateral division of the posterior group (Pol), and from the posterior suprageniculate nucleus (SGp). A posterior strip, to which we refer as EPp, receives strong projections from the LM-SG complex (LM-SGa and LMp), and lighter projections from the intralaminar and lateroposterior (LPm and LPl) nuclei. On grounds of thalamic connectivity, EPp is not obviously distinguishable from adjacent retinotopic visual areas (PLLS, DLS, and VLS), and may be regarded as forming, together with these areas, a connectionally homogeneous visual belt.  相似文献   

3.
Spike trains of 153 single units were recorded in the caudoventral part of the thalamic reticular nucleus (RE) of 7 nitrous oxide anaesthetized cats. Functional properties defined by spontaneous activity pattern, studied by mean of auto renewal density histograms, were used to subdivide the units into 4 groups. Types I (18%), II (56%) and III (15%) were defined by an increasing bursting activity and Type IV (11%) by firing no bursts spontaneously. The responses to auditory stimuli confirmed that the caudoventral part of RE is tightly related to central auditory pathways. Responses to white noise bursts (200 ms duration) significantly let appear that Type I units responded in a high proportion (>70%) until 80 ms after the stimulus onset, Type II units where mostly affected during the entire stimulus duration, and Type III units showed preferentially late responses. The units responsive to high frequencies (>8 kHz) were mostly located in the dorsal and the units responsive to low frequencies (<2 kHz) in the anteroventral sector of auditory RE. However, only a loosely tonotopy is supported by this study. The neuronal circuitry within RE was shown to be stable when white noise bursts were delivered. Cross-correlograms indicated a large proportion of interconnected units (64%) and signs of mutual inhibition between neighboring RE units (11%). The hypothesis is discussed that the auditory RE exerts a fine control on the time-dependent analysis of the incoming auditory input to the cerebral cortex. The complex intranuclear connectivity suggests that the cell types correspond to distinct patterns of functional connections.  相似文献   

4.
Background: The thalamic reticular nucleus (TRN) is a shell-shaped gamma amino butyric acid (GABA)ergic nucleus, which is uniquely placed between the thalamus and the cortex, because it receives excitatory afferents from both cortical and thalamic neurons and sends inhibitory projections to all nuclei of the dorsal thalamus. Method: A review of the evidence suggesting that the TRN is implicated in the neurobiology of schizophrenia. Results: TRN-thalamus circuits are implicated in bottom-up as well as top-down processing. TRN projections to nonspecific nuclei of the dorsal thalamus mediate top-down processes, including attentional modulation, which are initiated by cortical afferents to the TRN. TRN-thalamus circuits are also involved in bottom-up activities, including sensory gating and the transfer to the cortex of sleep spindles. Intriguingly, deficits in attention and sensory gating have been consistently found in schizophrenics, including first-break and chronic patients. Furthermore, high-density electroencephalographic studies have revealed a marked reduction in sleep spindles in schizophrenics. Conclusion: On the basis of our current knowledge on the molecular and anatomo-functional properties of the TRN, we suggest that this thalamic GABAergic nucleus may be involved in the neurobiology of schizophrenia.  相似文献   

5.
To understand better how the brainstem may influence thalamocortical activity, we have examined the projection patterns of different brainstem nuclei to the thalamic reticular nucleus. Iontophoretic injections of biotinylated dextran were made into various nuclei of the brainstem (superior colliculus, periaqueductal grey matter, parabrachial nucleus, pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus, substantia nigra, ventral tegmental area, and locus coeruleus) of Sprague-Dawley rats by using stereotaxic coordinates. Our results show that afferents from each brainstem nucleus make distinct zones within the reticular nucleus. For example, the superior colliculus projects largely to the dorsal parts of the reticular nucleus, whereas the pedunculopontine nucleus projects to the ventral parts of the reticular nucleus. The substantia nigra, on the other hand, projects to the ventrolateral edge of the reticular nucleus. We also examined the distribution of these brainstem afferents within the dorsal thalamus and compared these distributions with those seen in the reticular nucleus. We found three different patterns. First, a given brainstem nucleus projects to a particular dorsal thalamic nucleus as well as to the corresponding, functionally associated, reticular sector (e.g., from the substantia nigra). Second, a given brainstem nucleus projects to a particular dorsal thalamic nucleus but not to the corresponding reticular sector (e.g., from the superior colliculus). Finally, a given brainstem nucleus projects to a given reticular sector but not to the corresponding dorsal thalamic nucleus (e.g., from the midbrain reticular nucleus). In general, our results indicate that various brainstem nuclei project to particular territories of the thalamic reticular nucleus. Through these reticular projections, brainstem nuclei may influence distinct thalamocortical pathways in addition to those that are influenced by their direct projection to the dorsal thalamus. J. Comp. Neurol. 396:531–543, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
The Somatotopic Organization Within the Rabbit's Thalamic Reticular Nucleus   总被引:1,自引:0,他引:1  
The organization of the somatosensory representation within the rabbit's thalamic reticular nucleus (TRN) was studied. Focal injections of horseradish peroxidase (HRP), wheatgerm agglutinin conjugated to HRP, or [3H]proline were made into somatosensory cortical area 1 (S1). The resultant labelling in the thalamus was analysed. Single injections into S1 result in single zones of terminal labelling in TRN that are restricted to the centroventral part of the sheet-like nucleus. In reconstructions from horizontal sections these zones of labelling resemble 'slabs', which lie in the plane of the nucleus parallel to its borders, occupy only a fraction of the thickness of the reticular sheet, and are elongated in the dorsoventral and oblique rostrocaudal dimensions. Thus, the slabs of S1 terminals, which represent various loci of the body surface, and the main distribution of the reticular dendrites have a similar orientation. In comparisons of the zones of labelling following single or double injections at different cortical sites in S1, an inner (medial) to outer (lateral) shift in labelling in the ventrobasal complex (VB) is accompanied by an inner (medial) to outer (lateral) shift in labelling along the thickness of the reticular sheet; a rostral to caudal shift in labelling in VB is accompanied by a rostral to caudal shift in labelling along the plane of the reticular sheet. Thus, like VB, the reticular nucleus receives a topographically accurate projection from S1. Further, the somatotopic map conveyed from S1 to TRN lies perpendicular to the plane of the nucleus and repeats the spatial organization of the map in VB. These findings, together with those for the visual sector of the rabbit's TRN, indicate that the representation of the cortical sheet is broken up into significant parcels at the inner and outer borders of the reticular sheet.  相似文献   

7.
The organization of the somatosensory representation within the cat's thalamic reticular nucleus (TRN) was studied. Focal injections of horseradish peroxidase (HRP), wheatgerm agglutinin conjugated to HRP, and/or [3H]proline were made into somatosensory cortical areas 1 (S1) and 2 (S2). The resultant labelling in the thalamus was analysed. Single injections into S1 result in single zones of terminal labelling in TRN that are restricted to the centroventral part of the sheet-like nucleus. In reconstructions from horizontal sections these zones of labelling resemble thin 'slabs', which lie in the plane of the nucleus parallel to its borders, occupy only a fraction of the thickness of the reticular sheet, and are broadly elongated in the dorsoventral and oblique rostrocaudal dimensions. Thus, the slabs of S1 terminals, which represent large loci of the body surface, and the main distribution of the reticular dendrites have a similar orientation. In comparisons of the zones of labelling following single or double injections at different cortical sites in S1, an inner (medial) to outer (lateral) shift in labelling in the ventrobasal complex (VB) is accompanied by an inner (medial) to outer (lateral) shift in labelling along the thickness of the reticular sheet. Thus, like VB the reticular nucleus receives a topographically accurate projection from S1. Further, the somatotopic map conveyed from S1 to TRN is orientated perpendicular to the plane of the nucleus and repeats the spatial organization of the map in VB. S2 injections result in zones of terminal labelling in that part of TRN that receives S1 inputs. On the basis of these findings, together with those in other mammalian species, two conclusions can be reached about corticoreticular relations. First, although there can be continuity in individual maps of cortical inputs to TRN, there are discontinuities in cortical representations at the inner and outer borders of the reticular sheet. Second, TRN can receive a significant convergence of inputs from different cortical areas.  相似文献   

8.
Increasing awareness that the thalamic reticular nucleus (TRN) plays an important role in controlling the output of cortically projecting cells in nuclei of the dorsal thalamus has focused attention on the question of whether there exist ascending projections to the TRN from the mesencephalic or other parts of the brainstem reticular formation (BRF). We have examined this and the related question of whether the neurons of TRN project to the BRF, by anterograde and retrograde tracing experiments with horseradish peroxidase (HRP) and HRP conjugated to wheat germ agglutinin. Injections of tracer were placed stereotaxically in the BRF at various depths and rostrocaudal and mediolateral coordinates, and the TRN and adjacent nuclei were examined in serial coronal sections, using tetramethylbenzidine as the principal chromogen. Retrogradely labelled cell bodies were consistently seen in hypothalamus and zona incerta but never in TRN, suggesting that, in the rat, TRN neurons do not project caudal to the thalamus. After 54 out of 60 injections, no terminal label was detected in any part of the TRN although such label was present in other parts of the thalamus, including the intralaminar nuclei, in the same sections. We therefore conclude that direct projections from the BRF to the TRN must be extremely sparse, and that those effects of BRF stimulation upon thalamocortical transmission that are mediated by the TRN (rather than by direct projections to dorsal thalamic nuclei) probably depend chiefly on indirect polysynaptic pathways.  相似文献   

9.
Gamma-aminobutyric acidergic (GABAergic) neurons in the thalamic reticular nucleus (TRN) spontaneously generate a synchronous bursting rhythm during slow-wave sleep in most mammals. A previous study at the electron microscopic level in cat anterior TRN has suggested that synchronous bursting activity could result from the large number of presumably GABAergic dendrodendritic synaptic contacts. However, little is known about the synaptology of the monkey thalamic reticular nucleus and whether it contains dendrodendritic contacts. To address this issue, we examined tissue obtained from Macaca fascicularis that was prepared for electron microscopy using postembedding techniques to demonstrate GABA immunoreactivity. Examination of the anterior (motor) and posterior (somatosensory) portions of the TRN disclosed the following: The majority of synaptic contacts (87.5% of 958) were formed by axon terminals showing no GABA immunoreactivity and making asymmetric synaptic contacts on dendrites or cell bodies. A further 6.4% of synaptic contacts was composed of GABA-immunoreactive presynaptic terminals making symmetric contacts with the dendrites of TRN neurons. The majority resembled the pleomorphic vesicle containing F-terminals seen in the dorsal thalamus and known to originate from axons of TRN. A subset or possible second class did not resemble any previously described class of GABA-immunoreactive terminals in the TRN. Both classes of these terminals making symmetric contacts may originate wholly or partially within the nucleus. There was one dendrodendritic synaptic contact and only a small number (3.2%) of axodendritic contacts with synaptic vesicles visible both pre- and postsynaptically. We conclude that dendrodendritic contacts are probably not responsible for the synchronized bursting neuronal activity seen in the slow-wave sleep of monkeys, and that, if TRN neurons are coupled synaptically, the most likely mechanism is through the synapses formed by recurrent axon collaterals of TRN neurons onto TRN dendrites. © 1994 Wiley-Liss, Inc.  相似文献   

10.
The thalamic reticular nucleus has been shown to receive cholinergic innervation from both the nucleus basalis of Meynert in the forebrain and the pedunculopontine and laterodorsal tegmental nuclei in the brainstem (Steriade et al.: Brain Res. 408:372-376, '87; Levey et al.: Neurosci. Lett. 74:7-13, '87). Relatively dense populations of choline acetyltransferase-(ChAT) immunoreactive axons and terminallike varicosities have been shown to be distributed throughout this nucleus (Levey et al.: J. Comp. Neurol. 257:317-332, '87). In this study, the ultrastructure of ChAT-immunoreactive axons and of their synaptic terminals in the reticular nucleus was examined in the electron microscope. All ChAT-immunoreactive axonal profiles in the reticular nucleus were presynaptic; the postsynaptic elements were exclusively dendritic profiles; and no axo-axonic or axosomatic contacts from labelled axons were observed. Most ChAT-immunoreactive synaptic contacts were made by profiles less than 0.25 micron in minor diameter. Single ChAT-immunoreactive axons made synaptic contact with several dendritic profiles as the axons were followed through serial sections. These results suggest that the cholinergic innervation of the reticular nucleus will modulate the function of reticular neurons by synapsing onto the dendrites of its neurons without direct effect on the corticothalamic and thalamocortical terminals which also innervate the reticular nucleus.  相似文献   

11.
The organization of limbic cortical afferents to the thalamic reticular nucleus (TRN) is described. Wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP), biocytin, neurobiotin, or fluorescent dextrans was delivered into the rat cingulate, retrosplenial, and, for comparison, somatosensory cortices, In other species a slab-like arrengement of cortical terminals has been described for sensory TRN sectors. Here this is seen in the rat somatosen-sory sector. Terminals from limbic cortices did not cluster into slabs but were found to fill the entire thickness of distinct rostral TRN regions. The cingulate and retrosplenial recipient TRN regions overlap, as do the projections from these cortical areas to anterior thalamic nuclei. Retrosplenial fibres contacted the dorsal and rostral TRN, which is be connected to the retrosplenial-recipient anteroventral, anterodorsal, and laterodorsal thalamic nucler. Cingulate terminals occupied more ventral regions of the rostral TRN. This area is connected to thalamic nuclei also innervated by the cingulate cortex: the mediodorsal and anteromedial nuclei. A loose, but clear, topography could be defined for the cingulate-reticular pathway: rostrocaudal and mediolateral directions in the cortex are represented by ventrodorsal and rostrocaudal directions in the TRN, respectively. This organization of limbic corticoreticular pathway corresponds to the arrangement of limbic corticothalamic connections. The ultrastruc-ture of the limbic cortical axon terminals was similar to that of the cortical boutons (D-type) described previously. The labelled terminals formed asymmetrical synapses onto dendritic profiles of reticular neurons. These findings, together with data in the literature, show significant morphological and connectional differences within the TRN that imply functional heterogeneities.  相似文献   

12.
The γ-aminobutyric acid (GABA)-containing neurons of the thalamic reticular nucleus (nRt) are a major source of inhibitory innervation in dorsal thalamic nuclei. Individual nRt neurons were intracellularly recorded and labelled in an in vitro rat thalamic slice preparation to investigate their projection into ventrobasal thalamic nuclei (VB). Camera lucida reconstructions of 37 neurons indicated that nRt innervation ranges from a compact, focal projection to a widespread, diffuse projection encompassing large areas of VB. The main axons of 65% of the cells gave rise to intra-nRt collaterals prior to leaving the nucleus and, once within VB, ramified into one of three branching patterns cluster, intermediate, and diffuse. The cluster arborization encompassed a focal region averaging approximately 25,000 μm2 and contained a high density of axonal swellings, indicative of a topographic projection. The intermediate structure extended across an area approximately fourfold greater and also contained numerous axonal swellings. The diffuse arborization of nRt neurons covered a large region of VB and contained a relatively low density of axonal swellings. Analysis of somatic size and shape revealed that diffuse arborizations arose from significantly smaller, fusiform-shaped somata. Cytochrome oxidase reactivity or parvalbumin immunoreactivity was used to delineate a discontinuous staining pattern representing thalamic barreloids. The size of a cluster arborization closely approximated that of an individual barreloid. The heterogeneous arborizations from nRt neurons may reflect a dynamic range of inhibitory influences of nRt on dorsal thalamic activity. © 1996 Wiley-Liss, Inc.  相似文献   

13.
The auditory system comprises some very large axonal terminals like the endbulb and calyx of Held and “giant” corticothalamic synapses. Previously, we described a hitherto unknown population of giant thalamocortical boutons arising from the medial division of the medial geniculate body (MGm) in the Mongolian gerbil, which terminate over a wide cortical range but in a columnar manner particularly in the extragranular layers of the auditory cortex. As a first step towards an understanding of their potential functional role, we here describe their ultrastructure combining anterograde tract‐tracing with biocytin and electron microscopy. Quantitative ultrastructural analyses revealed that biocytin‐labelled MGm boutons reach much larger sizes than other, non‐labelled boutons. Also, mitochondria occupy more space within labelled boutons whereas synapses are of similar size. Labelled boutons are very heterogeneous in size but homogeneous with respect to their ultrastructural characteristics, with asymmetric synapses containing clear, round vesicles and targeting dendritic spines. Functionally, the ultrastructure of the MGm terminals indicates that they form excitatory contacts, which may transmit their information in a rapid, powerful and high‐fidelity manner onto strategically advantageous compartments of their cortical target cells.  相似文献   

14.
We have investigated connections between the thalamic reticular nucleus (TRN) and the anterior thalamic nuclei (ATN) in the rat, following injections of horseradish peroxidase (HRP) into subnuclei of the ATN and different regions of the rostral TRN. Three nonoverlapping groups of neurons in the dorsal part of the ipsilateral rostral TRN project to, and receive reciprocal projections from, specific subnuclei of the ATN. A vertical sheet of neurons in the most dorsal part of the rostral TRN projects to the dorsal half of the posterior subdivision of the anteroventral thalamic nucleus (AVp), the dorsal region of the medial subdivision of the anteroventral thalamic nucleus (AVm), and the dorsolateral part of the rostral anterodorsal thalamic nucleus (AD). Immediately ventral to this part of TRN, but still within its dorsal portion, are a lateral cluster of neurons and a medially located vertical sheet of neurons. The lateral cluster projects to the ventral part of AVp and to the dorsomedial part of rostral AD. The medial sheet projects to the ventral part of AVm, the ventral part of rostral AD, and to the caudal portions of both AV and AD. There appears to be no input to the anteromedial thalamic nucleus (AM) from the TRN. These findings shed new light on the anatomy of the rostral TRN, the ATN, and the connections between the two, and are relevant to emerging hypotheses about the functional organization of the TRN and reticulo-thalamic projections.  相似文献   

15.
The ventral lateral geniculate nucleus (LGNv) is a retinorecipient part of the ventral thalamus and in cats, it consists of medial (M), medial intermediate (IM), lateral intermediate (IL), lateral (L), and dorsal (D) subdivisions. These subdivisions can be differentiated not only by their cytoarchitecture, but also by their connectivity and putative functions. The LGNv may play a role in visuomotor gating, in that there is evidence of cerebellar afferent projections to the intermediate subdivisions. The cerebellar posterior interpositus (IP) and lateral (LC) nuclei are known to project to IM and IL, but the specifics of these projections are unclear. We hypothesized that the IP and LC project differentially to IM and IL. To evaluate LGNv innervation by the deep cerebellar nuclei, we injected the tract‐tracer wheat germ agglutinin‐horseradish peroxidase (WGA‐HRP) into several different regions of the LGNv and cerebellar nuclei of adult cats in either sex. Small injections into the middle and posterior LGNv retrogradely labeled cells in the ventral part of the IP. However, injections in the anterior regions of the LGNv, with or without diffusion into the thalamic reticular nucleus (Re), retrogradely labeled cells in the ventral part of both the IP and the LC. Confirmatory injections into the IP and LC produced terminal‐like labeling distributed in IM, IL, and Re; injections mostly localized to the LC resulted in labeling mainly in IM and Re. We concluded that the IP projects to IL whereas the LC projects to IM and Re.  相似文献   

16.
The organization of the visual field representation within the thalamic reticular nucleus (TRN) of the rabbit was studied. Focal injections of horseradish peroxidase (HRP) and/or [3H]proline were made into visuocortical areas V1 and V2 and the dorsal lateral geniculate nucleus (dLGN). The resultant labelling in the thalamus was analysed. A single injection in V1 or V2 results in a single zone of terminal label within the TRN that is restricted to the dorsocaudal part of the sheet-like nucleus. In comparisons of the zones of label following injections at two different cortical sites in V1, a medial to lateral shift in label across the thickness of the TRN sheet is accompanied by a medial to lateral shift in label in the dLGN; a dorsal to ventral shift in label within the plane of the TRN sheet is accompanied by a dorsal to ventral shift in label in the dLGN. Thus, like the dLGN the TRN receives a precise topographic projection from V1. In reconstructions from horizontal sections the zones of label within the TRN resemble 'slabs', which lie within the plane of the nucleus parallel to its borders. Thus, the slabs of visuocortical terminals and reticular dendrites are similarly oriented. As revealed by the orientation of the slabs, the lines of projection representing points in visual space are represented by the oblique rostrocaudal dimension of the TRN. Injections restricted to V1 produce terminal labelling that is confined to the outer two-thirds of the TRN across its thickness, whilst those involving V2 result in terminal labelling within the inner one-third of the nucleus. Thus, the adjacent cortical areas V1 and V2 project in a continuous fashion across the mediolateral dimension of the TRN. The organization of the map within the TRN, which was revealed by visuocortical injections, was confirmed by the pattern of retrograde labelling within the nucleus following geniculate injections of HRP. On the basis of these findings and those in other mammalian species, two major conclusions can be reached that alter our view of the TRN. First, rather than mapping onto the whole nucleus in a continuous fashion, the cortical projection to the TRN has significant discontinuities. Second, rather than integrating efferents from widespread cortical areas, the reticular dendrites are related to focal areas of cortex.  相似文献   

17.
The visual sector of the thalamic reticular nucleus is the source of the primary inhibitory projection to the visual thalamic relay nucleus, the dorsal lateral geniculate nucleus. The purpose of this study was to investigate laminar and cellular targets of individual thalamic reticular nucleus axons in the highly laminated lateral geniculate nucleus of the prosimian primate Galago to better understand the nature and function of this projection. Thalamic reticular axons labeled anterogradely by means of biotinylated dextran amine were examined by using light microscopic serial reconstruction and electron microscopic analysis in combination with postembedding immunohistochemical labeling for the neurotransmitter gamma-aminobutyric acid (GABA). The synaptic targets of labeled reticular terminal profiles were primarily GABA-negative dendrites (79-84%) of thalamocortical cells, whereas up to 16% were GABA-positive dendritic shafts or F2 terminals of interneurons. Reconstructed thalamic reticular nucleus axons were narrowly aligned along a single axis perpendicular to the geniculate laminar plane, exhibiting a high degree of visuotopic precision. Individual reticular axons targeted multiple or all geniculate laminae, with little laminar selectivity in the distribution of swellings with regard to the eye of origin or to the parvocellular, koniocellular, or magnocellular type neurons contained in the separate layers of the Galago lateral geniculate nucleus. These results suggest that cells in the visual thalamic reticular nucleus influence the lateral geniculate nucleus retinotopically, with little regard to visual functional streams.  相似文献   

18.
Abstract The immunoarchitectonics of the macaque motor thalamus was analysed to look for a possible neurochemical characterization of thalamic territories, which were not definable cytoarchitectonically, associated with different functional pathways. Thalamic sections from 15 macaque monkeys were processed for visualization of calbindin (CB), parvalbumin (PV), calretinin (CR) and SMI-32 immunoreactivity (ir). PV-, CR- and SMI-32ir distributions did not show any clear correlation with known functional subdivisions. In contrast, CBir distribution reliably defined two markedly distinct motor thalamic territories, one characterized by high cell and neuropil CBir (CB-positive territory), the other by very low cell and neuropil CBir (CB-negative territory). These two neurochemically distinct compartments, the CB-negative and the CB-positive territories, appear to correspond to the cerebellar- and basal ganglia-recipient territories, respectively. To verify the possible correspondence of the CB-negative territory with the cerebellar-recipient sector of the motor thalamus, we compared the distribution of cerebello-thalamic projections with the distribution of CBir in two monkeys. The distribution of cerebellar afferent terminals was similar to that reported from previous reports and in line with the notion that in the motor thalamus the cerebellar-recipient territory does not respect cytoarchitectonic boundaries. Comparison with CB immunoarchitecture showed very close correspondence in the motor thalamus between the distribution of the anterograde labeling and the CB-negative territory, suggesting that the CB-negative territory represents the architectonic counterpart of the cerebellar-recipient territory. CB immunostaining may therefore represent a helpful tool for describing the association between thalamocortical projections and the basal ganglia or the cerebellar loops and for establishing possible homologies between the motor thalamus of non-human primates and humans.  相似文献   

19.
The advance of knowledge of the thalamic reticular nucleus and its connections has been reviewed and Max Cowan's contributions to this knowledge and to the methods used for studying the nucleus have been summarized. Whereas 50 years ago the nucleus was seen as a diffusely organized cell group closely related to the brain stem reticular formation, it can now be seen as a complex, tightly organized entity that has a significant inhibitory, modulatory action on the thalamic relay to cortex. The nucleus is under the control, on the one hand, of topographically organized afferents from the cerebral cortex and the thalamus, and on the other of more diffuse afferents from brain stem, basal forebrain, and other regions. Whereas the second group of afferents can be expected to have global actions on thalamocortical transmission, relevant for overall attentive state, the former group will have local actions, modulating transmission through the thalamus to cortex with highly specific local effects. Since it appears that all areas of cortex and all parts of the thalamus are linked directly to the reticular nucleus, it now becomes important to define how the several pathways that pass through the thalamus relate to each other in their reticular connections.  相似文献   

20.
We have studied the pattern of connectivity of the visual cortical areas 17, 18, 19, 20a, 21a, posteromedial lateral (PMLS), and the posterolateral lateral (PLLS) suprasylvian areas with the reticular thalamic nucleus (RTN) of the cat ventral thalamus. Three cortical areas per hemisphere were injected iontophoretically with either 4% wheat germ agglutinin-horseradish peroxidase, 4% dextran-fluororuby, or 4% dextran-biotin. The visual field representations of the injection sites were determined by reference to previously published visuotopic maps of the cortex. The locations of labelled fibres, presumed terminals and cell bodies were determined with the aid of a camera lucida attachment and computer aided stereometry. In the ventral thalamus, the primary visual cortices (areas 17 and 18) project in a topographic manner to both the perigeniculate nucleus (PGN) and the RTN. By contrast, the "higher" visual cortical areas (areas 19, 21a, 20a, PMLS, and PLLS) project only to the RTN. Our experiments demonstrate the existence of a single, albeit coarse, visuotopic map within the RTN but do not support the notion of separate subregions within the RTN that can be related specifically to a particular visual cortical area. The putative single visuotopic map in the RTN appears to be organised in such a way that the vertical meridians are represented along the rostrocaudal axis of the RTN, whereas the horizontal meridians are mapped within the dorsoventral axis of the nucleus. The upper visual field is represented within regions of the RTN adjacent to the caudal part of the dorsal lateral geniculate nucleus (LGNd), whereas the lower visual field is represented in the parts of the RTN rostral to the LGNd. The map also shows a ventrodorsal shift along the rostrocaudal axis of the RTN such that in the rostral RTN the representation of vertical meridian is placed more ventrally than that in the caudal part of the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号